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1. The Newton-Raphson Algorithm 
 
The Newton-Raphson algorithm is a numerical method for finding the roots of a function. It does 
so by computing the Jacobian linearization of the function around an initial guess point, and using 
this linearization to move closer to the nearest zero.  
 
Consider a function H:Rn→Rn that has a zero at x*, i.e. H(x*)=0. If we set y=H(x), we can 
approximate changes in y, Δy, due to changes in x, Δx, by linearizing H around some point xi.  
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Because (1) is a Jacobian linearization of H, (2) provides a change in x that that moves closer to 
the desired zero. A second iteration of this process can now be performed at a point xi+1 such that 
xi+1= xi+Δx. Using (2), this becomes 
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(3) can be used iteratively from some initial guess to yield a better and better approximation of 
x*. The algorithm terminates once a value of x is reached such that H(x) is sufficiently close to 
zero.  
 
The image below shows a graphical representation of one iteration of the method for a function  
f:R→R. 
 

 
 
 



 
Poincaré plane Σ intersecting a state 
trajectory. 

2. Newton-Raphson and Fixed Points 
 

The Newton-Raphson method can be used to find the 
fixed points of systems that have stable limit cycles. 
Consider a hybrid system H with guard condition G ∈ 
TQ, where TQ is the tangent bundle of the configuration 
space of H. To find a fixed point of the system, we 
construct a Poincaré hyperplane Σ such that  
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In essence, this plane samples the phase trajectory of the 
system each time the guard condition is reached. We now 
define a mapping P: Σ→Σ, i.e. P is a mapping from a 
state on the Poincaré plane back to the plane: 
P=xk+1=φ(xk), where φ is the flow of the state trajectory. 

Computationally, φ is simply the forward integration of the hybrid system’s underlying equations 
of motion, run until the guard condition is met.  
 
A fixed point is defined as a location on the Poincaré plane, x*, such that x*=φ(x*). We can find 
this value from some initial guess point xi by establishing an error function E(x)= φ(x)-x that 
provides the difference between a state vector and the result of the forward integration from that 
point along the phase trajectory. This error is zero for a fixed point, thus finding a fixed point 
corresponds to finding the zero of E, which can be accomplished using the multidimensional form 
of the Newton-Raphson algorithm.  
 
If we start from an initial guess for the fixed point, xi, then (3) becomes 
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The task now is to determine the Jacobian matrix of the error function at the point xi.  If the phase 
space is a subset of Rn, then the error function E is a mapping E: Rn→ Rn, where the ith element in 
E, Ei, defines the error of the ith state variable. The Jacobian for such a function is an nxn matrix 
of the form 
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Note that each column contains the derivatives of E with respect to a particular state variable. The 
derivatives contained in (5) can be computed by perturbing each state variable in xi in turn by a 
small amount, Δ, along the Poncaré plane, and evaluating the resulting vector with the flow φ. We 
then apply the error function to the result. When Δ is small, this process estimates the derivative 
of the error with respect to the perturbed variable: 
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column of (5), we perturb the first state variable in our initial guess by a small amount, while 
keeping the other variables the same: 
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We now evaluate the error function with this perturbed variable, giving us the change in E due to 
the small change in xi 
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When Δ1 becomes small, 
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which corresponds to the first column of the Jacobian matrix of E. This process can be repeated 
for each state variable in xi, eventually yielding the matrix in (5).  
 
With the Jacobian identified, (4) can be used to find the next guess for the fixed point. The loop 
terminates once all the elements in the error function are below some small number ε>0 
sufficiently close to zero, i.e. when 
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Note that convergence of (4) does not occur if at any time i, the error increases with the next 
iteration, i+1.  
 
 
 
 
 


