v

Semantic Translation of Simulink/Stateflow
Models to Hybrid Automata using Graph
Transformations

A. Agarwal, Gy. Simon, G. Karsai
ISIS, Vanderbilt University
Nashville, TN 37235, USA

\ Y4 Overview

Translation problem
Tool used: GReAT
Algorithm with example
Summary

CHESS Review 2/14 Aditya Agrawal

The translation problem

Motivation

capability

Simulink/Stateflow
= De facto prototyping and
simulation environment for
dynamic systems

= E.g.: Embedded controllers for
automobiles

= Large legacy libraries
= No formal verification

Hybrid automata
=Mathematical modeling

technique

=Formal foundations
=Few real-life examples
=Verification capability

CHESS Review

3/14

Aditya Agrawal

The translation problem

Simulink/Stateflow Example (Input)

(-]

Switeh1 h
200 |
Ll
w | —~ i T o H
Lt = A : W w
Switeh2 > Laak P! em_flow
MATLAS S
> Function
Switch3 overflow
/ , |:||

BT

Control level of tank:

.
in flow VZT v3
. —»
Fy em_How
“il 12 vl
¥ ¥ —%

Low
entry: vi=0;v2=1

[em_flow=5]

[h<8]

[‘l‘p:10] :
High
entry: v1=1,v3=1

[h=8]

[em_flow=5]

Too_High
entry; v2=0

CHESS Review

4/14

Aditya Agrawal

A\ Y/ The translation problem

Hybrid Automata (Output)

Hybrid Systems:

Dynamic systems with simultaneous [Tank'—TankcInl-max(tank-15.0)*3
continuous and discrete dynamics \
Hybrid Automata Example (ref: SAL @ [Tank <Int-max(Tank-15.0)°3

U Penn)

A = (X, V, flow,inv, init, E, jump, d, syn) ' *E\ \
h<8
— X : a set of real-valued variables ® /;::;—"‘\
— V1 a set of control modes
— flow : a flow condition over X B'{ ‘\A\ |

— inv : a set of invariant over X flows5 hes
— init : an initial condition & hes em Hows5 \ em_flow=5
— E : a set of transitions h<s _Jr /
— jump : a condition for transition
—d : aset of events Too Too
— syn : a set of synchronization labels High High High
000 001 101/,

Tank’=0 ! J
Jlank emax a1y Ok l Tank’= -tank-max(tank-15,0)*3

CHESS Review 5/14 Aditya Agrawal

Background -
V Metamodels as graph grammars @

Simulink/Stateflow metamodel:| _Simuink

<<Folder=>

¥ Simulink/Stateflow model:
Block
cchodel> P SubSystem[0." N
Description : figld TV . - c_i{:t:;l) lz‘ b@_‘ ' _E

Hame field)

Prigity : fiald Mame - field -

Tag: field . ‘ i T S " n F{?[_E
BlockType : field o o 0 I — 5 =

" Connectar Controter =

Reference Primitive ,¢‘ ViSU Iization

<<Model=> <<Modal== Port BranchPoint
ScurceBIock.: fiald Dea_dlin.o: field << Aoy <<ftom=:=
SoceType ! Tl | ErecutionTime fiatg| [unts - eoum [Model Object Network]
Graph grammar ------------ » Graph

UML-based metamodels for:
Simulink/Stateflow and HSIF (HA interchange language)

CHESS Review 6/14 Aditya Agrawal

Vv

Tool used: GReAT

Transformation

Modeling Model

) Transformation
Metamodel of Source Specification

Refers to

Metamodel of Target

Source Models

4 ; . 1
_ T _— I
|
Dcs‘l:ribcs msmlus
|
T T
Transformation I 1
Execution I
| I

E
)
s

Model APL E
&

v
Target Model

Model API

CHESS Review 714

Aditya Agrawal

GReAT:

Vv

UMT: A Simple Model Transformation Language

1.Pattern specification

=Pattern variables are typed with their UML
classes

= Cardinality of association-ends is checked

=Extra (OCL) constraints define guard conditions
2.Graph transformation and rewrite

=Create new/delete/modify objects

= Attribute mapping (procedural)

=“Cross-links”: edges between old/new objects

= Input/output ports: pre-bound pattern
variables

3."High-level” control flow over the rules

1L«+ 3=

EbwaluTrans,

=)

/

=Port connections imply “data flow” and control
flow

=Hierarchy/Sequencing/Recursion/Branching

-/
=

CHESS Review

8/14

Aditya Agrawal

A Algorithm

1. Stateflow Part .
1. Convert to StateChart L b
1. Create Hierarchical StateChart, flatten it entry: v1=0v2=1 entry: v1=1,v3=1
- 2. Determine data dependencies, extend state T [h<B]
machines
3. Prune unreachable states (em_flew=5] (em_flow>5]
2. Convert to HSIF (h<g] Too_High
1. Create Hybrid Automata, variables entry. v2=0
2. Add transitions with guards
2. Simulink Part L4
Iy oA -8 #2
1. Locate associated ' Switchi h o
Hybrid Automata [, N - ’EI
. - v - »h Vi V2
2. Add variables as fon =,] % a— =
needed e "
3. Derive and add Swtera svertiow W=
equations em_flow
CHESS Review 9/14 Aditya Agrawal

A\ Y4 Algorithm
Determine data dependencies, extend state machines

u it but3 S » [T | B [T | et w4
In Oul
e 7
InferlmplicitSi s CreateTribes Tra rTransitions Reachability
4
3 o Gl O
E ‘O 3 ould ’ua .23 [E“ & oull [I]m .)I;alg] s
G C Tribg’ CopySignals T i ReplicateTribe
-0
_ Out,

[rerman A

[54 men | [rww vmg.

CHESS Review 10/14 Aditya Agrawal

Algorithm

Inferring signals, extending state machines

e=t0] e >=10]
v i v 14
Low [High Low ngh
entry: vi=0v2=1v3=7 \entry: vi=1v2=7v3= l;. entry: vi=0,v2=1,v3= A
T] Q
[h<8 y, \ _ [h< o /s
> fem/flow=5] A [em ﬂw?]j/ [9Wﬁ0W>5|
\, N ———— ’{
\ N,
q [h<8
Q‘aj Tno High] Q_] Too_High |
\en E! v1-?v2 0v3=7? = v1 =Xv2=0v3=
(a) Initial model (b) Model after inference
. [h>=1 0] [h>=10
entry. vi=0v2=1,v3=0 ean‘I vi=1 u2-‘| v3=1 . m
T 5] [h>= 1u}
Low E{h=8]
iee) | entry: vi =0.y2=1.v3=‘ e [emfiow=5] om
[em_flow=5]1 nms
<8 : om. ow>5 am_ﬂow’bs
[em low=5]) [h<8)
Too ngh Too_High
entryv1=0v2=0v3=0 | | entry:v1=0v2=0,v3=1
Ik Too ‘I‘oo
Too_High Too_High H|gh Hsgh High
entry. v1=1,v2=0v3=0 entryvi=1v2=0v3=1 000 101

(c¢) Transferring the transitions

(d) Final Hybrid Automata States

CHESS Review

11/14

Aditya Agrawal

Vv

Status, metrics

= Math

= Nonlinear

= Signal and Systems
= Source and Sinks

= A hierarchal Simulink diagram with the following primitives:
= Continuous : Integrator

: Product/Sum/Gain/Abs/Min/Max/Signum/Saturate
: Mux/Demux/Ground

: Constant/Workspace variables

: Controlled Switch/Manual Switch

= The Simulink diagram can contain any n
= Stateflow diagram can be hierarchical.

= The Stateflow diagram receives signals from Simulink and can only produce
switching signals that control the switches.

= Switches cannot be controlled by any other Simulink block.
= In Stateflow, the switch control action can only be performed in the entry

umber of Stateflow diagram.

= Some parts are worst-case exponential:
= State-splitting
= __Flattening

action.
Complexity Size
= Most algorithms are of polynomial . — .
complexity Primitive rules: 154

= Complex rules: 43
= C++ code: ~6000 lines

CHESS Review 12/14

Aditya Agrawal

\ ¥4 GReAT in Action

Hand
GReAT
code
Problem Developer
Primitive Rules
#/ Compound Man hours LoC
Rules #
Hierarchical Data Flow (HDF) to Staff Eng
Flat Data Flow (FDF) 11/3 ~3 ~200
KHORUS to GUDML MSc Student
° ¢ SeEn 19/10 ~8 | ~500
Hierarchical Concurrent State PhD Student
Machine (HCSM) to Finite State 21/5 ~8 ~500
Machine (FSM)
Simulink Stateflow to C code PhD Researcher
70/50 ~25 ~2.5K
Matlab Simulink/ Stateflow to PhD Student
Hybrid Automata 154/43 ~60 ~6K
CHESS Review 13/14 Aditya Agrawal
Y Summary, further work

= Tool integration requires translators that convert models

tools. Translators are essential for design automation...but
difficult to build.

problems ... if good supporting tools are available.
= Modeling a transformation using GT programs offers an

potential area for research.

created in one tool into semantically equivalent models in other

= Graph transformations can be used to solve practical translation

opportunity for reasoning about the transformations --- A4 great

CHESS Review 14/14

Aditya Agrawal

Background slides

CHESS Review

15/14

Aditya Agrawal

UMT

A Transformation Rule

p

Input{ [» |

port { In
Guard

OrState

”

f

OrState

”

f

State |refers

S

Attribute Attribute

old : String new ; String

. | StateMew

AttributeMapping

[

”

”

J

Qut

%(_)%/—/

Pattern

Effect

Output
port

CHESS Review

16/14

Aditya Agrawal

v
Rule execution — Rules and Blocks

Rules produce multiple matches: “packets”. By “Blocks” are composite rules, with simple
default, all packets are consumed by a rule, and new composition semantics.
set of packets is produced
(1) #[e

3
(™)

)

Rulel Rule2
R I R | i ! R | R[R
L Dl Dot DDy Pysal P
(@) [a->2xp s 28
Rule1 Rule2 ()

17/14 Aditya Agrawal

CHESS Review

\ umT
Rule execution- ForBlocks and Test/Cases

“ForBlocks” process single packets. ‘ l Tests are conditional control structures built from Cases. ‘
' -
(1) e
SRR .
:) | Also supported :
(2) P, : __‘ol.l: = Recursion
“& = Non-deterministic _{:—_'__‘E}_
execution o
7 18R h :
@3) & |e i -a g]
R o, T o, i oc Camad
- '8
r ¥
jﬂ
R of
(4) ; fafooa | [Aemece |
z 4 — g
\E Tl) 25/ o 2| o |\
' ey oo -2 o 18
(R - — S TR Y e
o™ > e e -l L.g = |
NE Eunl Bies L= .
18/14 Aditya Agrawal

CHESS Review

