
1

Semantic Translation of Simulink/Stateflow
Models to Hybrid Automata using Graph
Transformations

A. Agarwal, Gy. Simon, G. Karsai
ISIS, Vanderbilt University
Nashville, TN 37235, USA

CHESS Review Aditya Agrawal2/14

Overview

Translation problem
Tool used: GReAT
Algorithm with example
Summary

2

CHESS Review Aditya Agrawal3/14

The translation problem
Motivation

Simulink/Stateflow
De facto prototyping and
simulation environment for
dynamic systems

E.g.: Embedded controllers for
automobiles

Large legacy libraries
No formal verification
capability

Hybrid automata
Mathematical modeling
technique
Formal foundations
Few real-life examples
Verification capability

?

CHESS Review Aditya Agrawal4/14

The translation problem
Simulink/Stateflow Example (Input)

Control level of tank:

3

CHESS Review Aditya Agrawal5/14

The translation problem
Hybrid Automata (Output)

Hybrid Systems:
Dynamic systems with simultaneous
continuous and discrete dynamics

Hybrid Automata Example (ref: SAL @
U Penn)

Tank’=0

Tank’=-Tank+In1-max(tank-15,0)*3

Tank’= -tank-max(tank-15,0)*3Tank’=-max(tank-15,0)*3

Tank’=In1-max(Tank-15,0)*3

Tank’ = In1

A = (X, V, flow,inv, init, E, jump, å, syn)

― X : a set of real-valued variables
― V : a set of control modes
― flow : a flow condition over X
― inv : a set of invariant over X
― init : an initial condition
― E : a set of transitions
― jump : a condition for transition
― å : a set of events
― syn : a set of synchronization labels

CHESS Review Aditya Agrawal6/14

Background
Metamodels as graph grammars

Simulink/Stateflow model:

Graph grammar

Model Object Network

Graph

Visualization

UML-based metamodels for:
Simulink/Stateflow and HSIF (HA interchange language)

Simulink/Stateflow metamodel:

4

CHESS Review Aditya Agrawal7/14

Tool used: GReAT

Metamodel of Source
Metamodel of Target

DS-PI ModelDS-PI Model

Source Models

DS-PS ModelDS-PS Model

Target Model

Model
Transformation
Specification

Input Output

Describes Describes

Refers to

Refers to

Transformation
Modeling

Transformation
Execution

Transformation

M
od

el
 A

PI

MetaMeta

GRE

M
od

el
 A

PI

CHESS Review Aditya Agrawal8/14

GReAT:
UMT: A Simple Model Transformation Language

1.Pattern specification
Pattern variables are typed with their UML
classes
Cardinality of association-ends is checked
Extra (OCL) constraints define guard conditions

2.Graph transformation and rewrite
Create new/delete/modify objects
Attribute mapping (procedural)
“Cross-links”: edges between old/new objects
Input/output ports: pre-bound pattern
variables

3.“High-level” control flow over the rules
Port connections imply “data flow” and control
flow
Hierarchy/Sequencing/Recursion/Branching

5

CHESS Review Aditya Agrawal9/14

Algorithm
1. Stateflow Part

1. Convert to StateChart
1. Create Hierarchical StateChart, flatten it
2. Determine data dependencies, extend state

machines
3. Prune unreachable states

2. Convert to HSIF
1. Create Hybrid Automata, variables
2. Add transitions with guards

2. Simulink Part
1. Locate associated

Hybrid Automata
2. Add variables as

needed
3. Derive and add

equations

CHESS Review Aditya Agrawal10/14

Algorithm
Determine data dependencies, extend state machines

6

CHESS Review Aditya Agrawal11/14

Algorithm
Inferring signals, extending state machines

(d) Final Hybrid Automata States

CHESS Review Aditya Agrawal12/14

Status, metrics
A hierarchal Simulink diagram with the following primitives:

Continuous : Integrator
Math : Product/Sum/Gain/Abs/Min/Max/Signum/Saturate
Signal and Systems : Mux/Demux/Ground
Source and Sinks : Constant/Workspace variables
Nonlinear : Controlled Switch/Manual Switch

The Simulink diagram can contain any number of Stateflow diagram.
Stateflow diagram can be hierarchical.
The Stateflow diagram receives signals from Simulink and can only produce
switching signals that control the switches.
Switches cannot be controlled by any other Simulink block.
In Stateflow, the switch control action can only be performed in the entry
action.

Size
Primitive rules: 154
Complex rules: 43
C++ code: ~6000 lines

Complexity
Most algorithms are of polynomial
complexity
Some parts are worst-case exponential:

State-splitting
Flattening

7

CHESS Review Aditya Agrawal13/14

GReAT in Action

Matlab Simulink/ Stateflow to
Hybrid Automata

Simulink Stateflow to C code

Hierarchical Concurrent State
Machine (HCSM) to Finite State
Machine (FSM)

KHORUS to GUDML

Hierarchical Data Flow (HDF) to
Flat Data Flow (FDF)

Problem

~2.5K~2570/50PhD Researcher

~6K~60154/43
PhD Student

~500~821/5
PhD Student

~500~819/10MSc Student

~200~311/3Staff Eng

LOCMan hours
Primitive Rules
#/ Compound

Rules #

Hand
codeGReAT

Developer

CHESS Review Aditya Agrawal14/14

Summary, further work

Tool integration requires translators that convert models
created in one tool into semantically equivalent models in other
tools. Translators are essential for design automation…but
difficult to build.
Graph transformations can be used to solve practical translation
problems … if good supporting tools are available.
Modeling a transformation using GT programs offers an
opportunity for reasoning about the transformations --- A great
potential area for research.

8

CHESS Review Aditya Agrawal15/14

Background slides

CHESS Review Aditya Agrawal16/14

UMT
A Transformation Rule

Pattern Effect

Output
port

Input
port

9

CHESS Review Aditya Agrawal17/14

UMT
Rule execution – Rules and Blocks

Rules produce multiple matches: “packets”. By
default, all packets are consumed by a rule, and new
set of packets is produced

“Blocks” are composite rules, with simple
composition semantics.

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)

CHESS Review Aditya Agrawal18/14

UMT
Rule execution- ForBlocks and Test/Cases

“ForBlocks” process single packets. Tests are conditional control structures built from Cases.

(1)

(2)

(3)

(4)

(5)

A single Case:

(1)

(2)

(3)

Also supported
Recursion
Non-deterministic
execution

