Metropolis: An Environment for
System-Level Design

The Metropolis Team
Presenter: Abhijit Davare

CHESS Review - May 10, 2004

letﬂpolis .

Outline

v Motivation
v Platform-Based Design Methodology
v Metropolis Framework

v Picture-in-Picture System
— Functional Modeling
— Architectural Modeling
— Mapping

v Design Space Exploration

v Future Work

Motivation

v Challenges in Embedded Design:
— Increasing complexity and heterogeneity
— Time-to-market pressure
— Verification

v Solution:
— Design with formal semantics

— Support different models of computation within a
common semantic framework
— Promote re-use by orthogonalizing concerns
e Behavior vs. Architecture
e Capability vs. Cost
e Computation vs. Communication

Platform-Based Design Methodology

Layers of abstractions are s D
precisely defined to allow only e 5
relevant information to pass Application Instance

through

Designs built on top of these Platform

layers are then isolated from Mapping

unnecessary subsystem

details but provided with
enough information to fully

explore their design space

These layers of abstraction Platform
Design-Space

are called platforms Export

The system can be presented

as the combination of a top-

level view, a bottom level

[®
view, and a set of tools and Platform Instance
methods that map between Architectural Space
abstraction layers

bt

Platform

Metropolis Metamodel (MMM) Language

Captures both architectural and functional aspects

Syntax based on Java
— Object-oriented
— Interfaces

Supports the importing of legacy code through
“blackbox” statements

Allows imperative and declarative constructs

Basic constructs:
1. Process — A thread of control
2. Media — Connects processes with each other

3. Quantity Managers — Decide allocation of scarce
resources (e.g. time, power, access to media)

Metropolis Framework

v Modular structure facilitates addition of new backends and integration
with external tools
— SPIN model checker Meta model language
— Intel’s Forte

Metamodel

Compiler
* Load designs

* Browse designs Abstract syntax trees

* Relate designs .
_ Metropolis
+ Refine, map, etc. Interactive

* Invoke tools Shell

* Analyze results

Simulator Synthesis Verification
tool tool tool

Picture-in-Picture (PiP) System Case Study

v Data dominated application, with some control
Product: Set-top box

Application
Multimedia platform s
oooooog

MPEG2
Engine
Platform-based
System Design

Boooooooo

2 || custor
Graphic:

P DS
oooooooooooo

000o00000o00o0o0o00

oooon

Hardware CPU core Bus Controller

Y\/%

PiP' Application

v Functional model contains 60 processes and 200
communication channels

v Some MPEG decoding code imported from C

USRCONTROL

PARSER

Functional Modeling

v Initial partitioning of functionality into processes
chosen by designer

v Two levels of abstraction

* Network of processes with a sequential program for
each process

» Unbounded FIFOs with multi-rate read and write
(known as YAPI API)

* Refinement relationship between communication media,
properties to be preserved specified declaratively

» Communication refined to or
with finer primitives (known as TTL API):

allocate/release space, move data, probe space/data

TTL: Bounded Resource Communication

v Independent FIFO: v Shared FIFO:

v Netlist of media
refines the original
YAPI channel

v Bounded FIFO media
is a circular buffer v Allocation and de-allocation

schemes chosen

Free List

— # [puuey)
"4 [puuey)

u # [puueyd

Architectural Modeling

v Phase 1: Scheduled Network makes requests

v Phase 2: Scheduling Network decides which requests to grant
with resolve() and annotates events with quantity values

Creating new architectural models

v To model different
architectural platforms, we
can leverage interfaces
and connect existing
components in different
ways

v To create more detailed
architectural models, we
can add new services at a
finer granularity

v Different evaluation
criteria for architectural
performance can be
supported by addin L Network
quantity managers ?e.g. Network
power) Expanded Architecture

Modeling Scheduling Policies

v Changes to scheduling policies are confined to
guantity managers

v Example: First-Come-First-Serve &FCFS) and Time-
Sliced Scheduling of tasks on a CPU

v FCFS:

— Every time resolve() is called, the first request in the
pending queue is permitted to proceed, all others
remain blocked

v Time-Sliced Scheduling:

— Resolve() internally simulates each time slice, first
request that is completely satisfied is permitted to
proceed

— If requested times are larger than a time slice,
intermediate states not taken into account

Performance Estimation

v Each request asks for a certain amount of a quantity

— E.g. a Bus read may take 5 cycles and 10 pJ of Energy
v This amount represents the cost of utilizing a service
v Different physical implementation platforms can be modeled by

changing these costs

— Separation of concerns between behavior and cost
v For PiP case study, numbers taken from a particular

configuration of the Xilinx VIrtex II FPGA

— PowerPC core

— CoreConnect Bus

— SelectRAM+ memory
v As refined models are created, numbers are at finer levels of

granularity

— Fewer assumptions

Mapping

v Aim: To associate functional and architectural
models explicitly and formally

v Add declarative constraints that associate events —
usually service functions — in both models

v Accomplished with the “synch”keyword in MMM

v One of the key features that differentiates Metropolis
from related approaches

el = beg(func_process, bf.release_data);
e2 = beg(arch_task, arch_task.release_data);
synch(el, e2: n_bytes@el == n_bytes@e2,
addr@el == addr@e2);
e3 = end(func_process, bf.release_data);
Network Network e4 = end(arch_task, arch_task.release_data);

synch(e3, e4);

Mapping (cont'd)

v Different design choices can be concentrated in the
mapping network

— Which version of architecture used? (abstract, refined,
CPUs, #tasks)

— Which processes are mapped to which tasks? (priority)

— Which communication scheme is used? (TTL with
shared memory or independent FIFOs)

— Where are the communication channels mapped in
memory? (Which memory)

Design Space Exploration for PiP

v Questions to answer:
— Number of CPUs in implementation platform?
— Use cache?
— Share memory for communication channels or keep
independent FIFOs?

v Four critical channels chosen from Horizontal Resize
block in PiP
v Axes of exploration
— Number of CPUs: 1, 2, and 4
— Abstract architecture and expanded architecture
— Independent FIFOs and Shared memory

v Concentrate on read and write services

Design Space Exploration for PiP (2)

v Numbers represent normalized memory access times (us) to
process a fixed amount of MPEG data

v Shared FIFO scheme uses half of the total memory of the
Independent FIFO scheme

v Increasing the number of CPUs is beneficial for both schemes
— Fewer context switches since fewer tasks per CPU

v Tradeoff between communication schemes is more complex

Arch. Configuration Independent FIFO Shared FIFO

Future Work

v Automated design space exploration
— Automation based on:
o Structural information
e Trace-based information
e Reasoning on formal model

— Implement using Metropolis shell and customized
backends

v Refined architectural models

— Target Xilinx applications and Virtex II FPGA
configurations

