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Motivation

v Challenges in Embedded Design:
— Increasing complexity and heterogeneity
— Time-to-market pressure
— Verification

v Solution:
— Design with formal semantics

— Support different models of computation within a
common semantic framework
— Promote re-use by orthogonalizing concerns
e Behavior vs. Architecture
e Capability vs. Cost
e Computation vs. Communication

Platform-Based Design Methodology
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Metropolis Metamodel (MMM) Language

Captures both architectural and functional aspects

Syntax based on Java
— Object-oriented
— Interfaces

Supports the importing of legacy code through
“blackbox” statements

Allows imperative and declarative constructs

Basic constructs:
1. Process — A thread of control
2. Media — Connects processes with each other

3. Quantity Managers — Decide allocation of scarce
resources (e.g. time, power, access to media)

Metropolis Framework

v Modular structure facilitates addition of new backends and integration
with external tools
— SPIN model checker Meta model language
— Intel’s Forte

Metamodel
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Picture-in-Picture (PiP) System Case Study

v Data dominated application, with some control
Product: Set-top box
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v Functional model contains 60 processes and 200
communication channels

v Some MPEG decoding code imported from C
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Functional Modeling

v Initial partitioning of functionality into processes
chosen by designer

v Two levels of abstraction

* Network of processes with a sequential program for
each process

» Unbounded FIFOs with multi-rate read and write
(known as YAPI API)

* Refinement relationship between communication media,
properties to be preserved specified declaratively

» Communication refined to or
with finer primitives (known as TTL API):

allocate/release space, move data, probe space/data

TTL: Bounded Resource Communication

v Independent FIFO: v Shared FIFO:

v Netlist of media
refines the original
YAPI channel

v Bounded FIFO media
is a circular buffer v Allocation and de-allocation

schemes chosen
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Architectural Modeling

v Phase 1: Scheduled Network makes requests

v Phase 2: Scheduling Network decides which requests to grant
with resolve() and annotates events with quantity values

Creating new architectural models

v To model different
architectural platforms, we
can leverage interfaces
and connect existing
components in different
ways

v To create more detailed
architectural models, we
can add new services at a
finer granularity

v Different evaluation
criteria for architectural
performance can be
supported by addin L Network
quantity managers ?e.g. Network
power) Expanded Architecture




Modeling Scheduling Policies

v Changes to scheduling policies are confined to
guantity managers

v Example: First-Come-First-Serve &FCFS) and Time-
Sliced Scheduling of tasks on a CPU

v FCFS:

— Every time resolve() is called, the first request in the
pending queue is permitted to proceed, all others
remain blocked

v Time-Sliced Scheduling:

— Resolve() internally simulates each time slice, first
request that is completely satisfied is permitted to
proceed

— If requested times are larger than a time slice,
intermediate states not taken into account

Performance Estimation

v Each request asks for a certain amount of a quantity

— E.g. a Bus read may take 5 cycles and 10 pJ of Energy
v This amount represents the cost of utilizing a service
v Different physical implementation platforms can be modeled by

changing these costs

— Separation of concerns between behavior and cost
v For PiP case study, numbers taken from a particular

configuration of the Xilinx VIrtex II FPGA

— PowerPC core

— CoreConnect Bus

— SelectRAM+ memory
v As refined models are created, numbers are at finer levels of

granularity

— Fewer assumptions




Mapping

v Aim: To associate functional and architectural
models explicitly and formally

v Add declarative constraints that associate events —
usually service functions — in both models

v Accomplished with the “synch”keyword in MMM

v One of the key features that differentiates Metropolis
from related approaches

el = beg(func_process, bf.release_data);
e2 = beg(arch_task, arch_task.release_data);
synch(el, e2: n_bytes@el == n_bytes@e2,
addr@el == addr@e2);
e3 = end(func_process, bf.release_data);
Network Network e4 = end(arch_task, arch_task.release_data);

synch(e3, e4);

Mapping (cont'd)

v Different design choices can be concentrated in the
mapping network

— Which version of architecture used? (abstract, refined,
# CPUs, #tasks)

— Which processes are mapped to which tasks? (priority)

— Which communication scheme is used? (TTL with
shared memory or independent FIFOs)

— Where are the communication channels mapped in
memory? (Which memory)




Design Space Exploration for PiP

v Questions to answer:
— Number of CPUs in implementation platform?
— Use cache?
— Share memory for communication channels or keep
independent FIFOs?

v Four critical channels chosen from Horizontal Resize
block in PiP
v Axes of exploration
— Number of CPUs: 1, 2, and 4
— Abstract architecture and expanded architecture
— Independent FIFOs and Shared memory

v Concentrate on read and write services

Design Space Exploration for PiP (2)

v Numbers represent normalized memory access times (us) to
process a fixed amount of MPEG data

v Shared FIFO scheme uses half of the total memory of the
Independent FIFO scheme

v Increasing the number of CPUs is beneficial for both schemes
— Fewer context switches since fewer tasks per CPU

v Tradeoff between communication schemes is more complex

Arch. Configuration Independent FIFO Shared FIFO




Future Work

v Automated design space exploration
— Automation based on:
o Structural information
e Trace-based information
e Reasoning on formal model

— Implement using Metropolis shell and customized
backends

v Refined architectural models

— Target Xilinx applications and Virtex II FPGA
configurations




