CHESS Review
University of California, Berkeley, USA

May 10, 2004
Arkadeb Ghosal

Joint work with Marco A. Sanvido, Christoph M. Kirsch and Thomas
A. Henzinger

University of California, Berkeley

Overview

U Introduction

[Language Features
U The LET model
U Language Constructs
U Event Scoping

U Analysis
U Implementation
U Ongoing Work

10 May CHESS Review 2004 2

Control System

Fuel Injection Speed Sensor

AFR Controller

injector 1 injector 2 injector 3

CalclnjPar CalelniPar
t i — —
oo10: LB A 4§ 607 B9 1 2

[smegee UL AL UL UL
Signal
[0} —+{ contioning] et | m L

Crank shaft Cam shaft

10 May CHESS Review 2004

Implementation Strategies

U Traditional
O Uses priorities to specify the relative deadlines of software tasks
O Supports efficient code generation based on scheduling theory
O Run-time behavior is highly non-deterministic

U Synchronous Languages
O Esterel, Lustre, Signal

O Based on synchrony assumption: task computation takes negligible
execution time

O Shows deterministic behavior

U Timed Languages
O Based on Logical Execution Time (LET) for tasks

O Giotto
[Time Triggered
O xGiotto

O Event Triggered
O Scoping of events

10 May CHESS Review 2004

Logical Execution Time

The logical and physical Event generated by Events generated by
execution times are the environment: the platform:
depicted below. The release estart
events controlling a task «termination *preempt
behavior are: ‘resume
ecompletion
comple}ion event
release event Logical Execution Time (LET) ! termination event
Logical { e :
e runRING runR o e
Physical{ 1J 7 1 9 1 1—7
release start preemption resume completion termination
10 May CHESS Review 2004 5

Logical Execution Time

’ Time determinism ‘

l P1 ‘ Value of output port
— - remains invariant at any
D . >] F b instant independent of
=3 F > E > ESi—t execution pattern

[——}

Local ports copied to global

Global input ports copied to
output ports in logical zero time

local ports in logical zero time

’ Value determinism ‘

I — i ~ [P1]
— P1 1 LET@

AP — _= P2 P&

LET
10 May CHESS Review 2004 6

Reactions and Triggers

U A trigger maps an event to a reaction
U When the event occurs the reaction is invoked
U A reaction defines
U New triggers
4 A termination event
4 Events of a reaction block are the events of its triggers and the termination event
Q A reaction block defines a scope for its events
O When a trigger is invoked
O The events of the new reaction block are enabled (active)
O The events of the callee reaction block become passive (inactive)

Reaction Block —{ react R1 { .
|_—When [e2] react R2: 7 Triggers
Reaction Name/ when [e3] react R3; 4
} until [e7];«————— Until Event
Events of R1: €2, €3, e7 Scope of €2, e3, e7: R1
10 May CHESS Review 2004

react R1{ {R3 react R2 {

w:en [e:25] react gg "ea:.,‘,vhen §e4] react Ré: reacth4 { i when [e8] react R5;
} LY:\tiTFe[;’]J reactRS 1|} until [e6]; } until [eSF; ||} until [ed);

e2 X e6 X

e3 ed m e5 €6 e2
b b
[e2.e3.7) o207 e2¢7 || |(E260)

10 May CHESS Review 2004

Tasks

Tasks instances are defined by release statements

Tasks instances

O released with the invocation of the reaction block

O terminated with the termination of the reaction block

0 LET of the task is given by the life-span of the reaction block

00

Task Name

Release Statement react R1 { /// Input Port
|, release t1 (i1) (01); «

when [e2] react R2;
when [e3] react R3;
} until [e7]; Output Port

10 May CHESS Review 2004 9

Releasing Tasks

reads p;, updates p_
port
Pini

Pout/

event
A 4 > start;
stop;

Logical Execution Time
task T (i) output (o)
{/* compute */}

start stop

react R {

release start preemption resume completion termination release T(p,.) (P..:) 7
in out/ 7

¥) ¥ } until [stop]

* & % > { when [start] react R;}
pis is copied to PoutiS Updated by
local port of task T the local copy of task T

10 May CHESS Review 2004 10

Tasks

[Tasks are released with the invocation of the reaction block
[Tasks are terminated with the termination of the reaction block

react R1 { react R3 { react R2
when [e2] react R2; release t1; rearztlezllé t2: re|easg t3;
when [e3] react R3; when [e4] react R4; } until [e5]; ' when [e8] react R5;
} until [e7]; } until [e6]; } until [e9];
e2 X e6 X

e3 e4 m eb5 €6 e2
S S S
62,0367 e2,e7 e2e7 || |(e280)

(e] ([u] |) t3

10 May CHESS Review 2004 1"

Handling Events

O Areaction block defines a scope: this implicitly denotes the scope of an even
U When an active trigger is invoked, the called reaction becomes the active
scope and the caller reaction, the passive scope
O The event of a passive scope can be
O Ignored (forget)
1 Postponed until its scope becomes active again (remember)

t R1
rea\<;/hen §e2] react R2; | | ®3% R react R4 { react R2 {
when [e3] react R3: when [ed] react R4; } until [e5]; when [e8] react R5;
} until [e7]; |t e 2 (e 1| 3 unil e

32*

e3 e4 o6 e6 Hea e5 e2
e —| —
G2e8ieq| |[e2e7)| |[lezer)| |[le2e7]| |([e2ET0

10 May CHESS Review 2004 12

Parallelism

O A trigger may invoke multiple reaction blocks in parallel.
When the trigger is invoked all the reactions become active simultaneously.
U The parent block is active only when all the parallel reaction blocks have terminated.

O

react R1 { react R3 { reactiR2;{ react R6 {
when [e2] react R2 || R3; release t1; release t2;)
} until [e7]; when [e5] react R5; when [e6] react R6; } until [ed];
: } until [e9]; } until [e8]; :
e7 X e8 X

6
2| €58 (6559 —

) 1, 2

10 May CHESS Review 2004 13

Environment Assumption

reads p,, updates po, ",
Pout 7
\ 4
event
T start;
top;
Ak‘ L > s Op
~ - X - task T (i) output (o)
Logical Execution Time {/* compute */}
start StOp react R {

release T(p;,) (Pou) /

. when [now] react {} until [3ms];
release start preemption resume completion termination

until [3hmep]sto
44 L Il } [8msp] stop]
+_.§ \ w { when [start] react R; }
>
t t
i is copied to Pout i Updated by
local port of task T the local copy of task T

10 May CHESS Review 2004 14

xGiotto: Basic Constructs

U Reaction Blocks
O Basic programming blocks in xGiotto
O Consists of release statements and trigger statements along

with an termination information om0 {
reaction
U Releases tasks and invokes triggers release task1 (i1) (01);

1 react {reaction block} until [event]; release task2 (i2) (02);
when event1 react block1;

} until event;

whenever event2 react block2;

U Release Instruction
O Tasks are released with the invocation of the reaction block
O Tasks are terminated with the termination of the reaction block
O release task (input ports) (output ports);
O Trigger Statements

O Defines the invoking action associated with an event
O when [event] reaction block;
0 Repetition construct using whenever

10 May CHESS Review 2004

Structuring Events

O Scoping of events
O Areaction block defines a scope: this implicitly denotes the scope of an event.
O When an active trigger is invoked, the called reaction becomes the active scope
and the caller reaction, the passive scope.
O The tree of scopes and the state of program variables denotes the state of the
program.

a Handllng of events (of a passive scope)
It may be ignored (forget)
EI It may be postponed until its scope becomes active again (remember)

O It may disable trigger statements of all descendent blocks and thus speeding up
their termination (asap)

U Invoking reactions in parallel
O Wait-parallelism
O Asap-parallelism

U Embedding Environment Assumption
d Event calculus

10 May CHESS Review 2004

The Program Flow

Event Filter:

The Event Filter implements
the event scoping mechanism
and filter the incoming event. It
determines which event needs
to be reacted upon depending
upon the event qualifiers —
forget, remember or asap .

Reactor:

The Reactor executes the
specified reaction and
activates new events
(when/whenever/until) and
activates and terminates
tasks (release).

Scheduler:

The Scheduler chooses
from the active tasks, a
task to be executed on the
given platform (CPU). The
scheduler generates an
event at task completion.

Schedule Completion

Event

Event Reaction
\\\\v//////f—> *‘\\\\\////—* T . —\\\\v////+

Reactor (E machine)

Event Filter

Rl:call driver

Scheduler

R2:

call driver
schedule taskl by X
when (ever) Y

until A

exit

_

(until)
10 May

Activate Event
(when/whenever)

J

CHESS Review 2004 17

AFR Controller

port
/* fuel ports */
/* pulse ports */

react channel2 {
react { } until [5ms : teeth];
when remember [5ms : teeth] react {release set} until [ms];
react
loop react {release reset; dec; } until [ms];
} until asap [50ms : 9teeth]

event
teeth; synch; stop;

react calcFuel { release CalcFuellnj; } until [10ms : teeth];

task set { /* opens the valve */ }
task reset { /* closes the valve */ }
task dec {/* pulse generation */}

task CalcFuellnj
{/* fuel parameter computation */}

react controller {
react calcFuel;
when remember [teeth]
react channel1 || react channel2 || ...;
} until remember [10teeth]

10 May

react start {
whenever remember [10teeth] react controller;

} until [stop];

CHESS Review 2004 18

Analysis

U Platform independent

O Race Condition Detection

O Verifying whether a port may be updated by multiple task
invocations and thus leading to non-determinism

U Resource Size Analysis

U Predicting the run-time memory requirements for executing an
xGiotto program: the bound on the size of the event filter and
scopes (trigger queue size and active task set size).

U Platform dependant
U Schedulability Analysis

U Ensuring that all the task invocations get access to the executing
platform at least equal to their worst-case-execution times before
their termination

10 May CHESS Review 2004 19

Implementation

‘ Race Exists 1 I Not Safe
- No
xGiotto Possible Check |Race Check
] il E ti —
Program |—,_' ! Race Time Safety WCET}
Traces
] Safe
Scheduli
—(Code Generator ‘— sf,a:e:ymg
execute E code task release
| 1 t v
Event Modified
H Embedded Scheduler
Filter =
Machine
t |
active scope task completion

10 May CHESS Review 2004 20

Implementation

Metropolis Platform

‘ Race Exis% I Not Safe Exploration

i No
xGiotto Feean Check| Race| Check
e ion —>| - i
p,og,am Execution Race [Time Safetyt] WCET [+ Exploration
Traces
| Safe
Schedi |'l
Code Generator - - —sf;:;:; -== -I
|
|
execute E code task release I
[T 1 [1 Tasks
Event Modified 1 Meta Model
Filter Embedded Scheduler 1
Machine ! 5
t | [| L i Reactions
active scope task completion Meta Model
Sensors Environment

Platform
Meta Model

10 May CHESS Review 2004 21

Ongoing Works

U Implementation

U Generate code
0 Embedded Virtual Machine code
0 Metropolis Meta-model

Porting to RTOS
O EVM, JVM, OSEK

Case studies
1 Porting AFR controller on OSEK

O Analysis
U Defining the run-time system for xGiotto
O Schedulability check in time polynomial to the size of the program

1 Future Direction

O Sub-classes of xGiotto
0 Definition, inter relation and effectiveness towards event-driven programming
O Type Checking

10 May CHESS Review 2004 22

I

Thank You !

