
1

Event Driven Real-Time
Programming

CHESS Review
University of California, Berkeley, USA

May 10, 2004

Arkadeb Ghosal
Joint work with Marco A. Sanvido, Christoph M. Kirsch and Thomas
A. Henzinger

University of California, Berkeley

10 May CHESS Review 2004 2

Overview

Introduction
Language Features

The LET model
Language Constructs
Event Scoping

Analysis
Implementation
Ongoing Work

2

10 May CHESS Review 2004 3

Control System

Controller

SystemActuators Sensors

AFR Controller

Automotive EngineFuel Injection Speed Sensor

10 May CHESS Review 2004 4

Implementation Strategies

Traditional
Uses priorities to specify the relative deadlines of software tasks
Supports efficient code generation based on scheduling theory
Run-time behavior is highly non-deterministic

Synchronous Languages
Esterel, Lustre, Signal
Based on synchrony assumption: task computation takes negligible
execution time
Shows deterministic behavior

Timed Languages
Based on Logical Execution Time (LET) for tasks
Giotto

Time Triggered
xGiotto

Event Triggered
Scoping of events

3

10 May CHESS Review 2004 5

Logical Execution Time

active

release start preemption resume completion termination

running running

Logical Execution Time (LET)

completion event

{Physical

{Logical

release event termination event

The logical and physical
execution times are
depicted below. The
events controlling a task
behavior are:

Events generated by
the platform:
•start
•preempt
•resume
•completion

Event generated by
the environment:
•release
•termination

10 May CHESS Review 2004 6

Logical Execution Time

{ {

Global input ports copied to
local ports in logical zero time

Local ports copied to global
output ports in logical zero time

Value of output port
remains invariant at any
instant independent of
execution pattern

Time determinism

Value determinism

P2

P1
LET P2P1

P2 P1

LET

LET

P1

4

10 May CHESS Review 2004 7

Reactions and Triggers

react R1 {
when [e2] react R2;
when [e3] react R3;

} until [e7];

A trigger maps an event to a reaction
When the event occurs the reaction is invoked

A reaction defines
New triggers
A termination event

Events of a reaction block are the events of its triggers and the termination event
A reaction block defines a scope for its events

When a trigger is invoked
The events of the new reaction block are enabled (active)
The events of the callee reaction block become passive (inactive)

Reaction Block

Reaction Name

Triggers

Until Event

Events of R1: e2, e3, e7 Scope of e2, e3, e7: R1

10 May CHESS Review 2004 8

Reactions and Triggers

e4,e6e3
e5

react R1 {
when [e2] react R2;
when [e3] react R3;

} until [e7];

react R3 {
when [e4] react R4;

} until [e6];
react R4 {
} until [e5];

e2,e3,e7
e6e4

e2

e2,e7 e2,e7
e6e5

e2,e7

react R2 {
when [e8] react R5;

} until [e9];

e2,e7 e7
e8,e9

e6

e6 e2

5

10 May CHESS Review 2004 9

Tasks

react R1 {
release t1 (i1) (o1);
when [e2] react R2;
when [e3] react R3;

} until [e7];

Tasks instances are defined by release statements
Tasks instances

released with the invocation of the reaction block
terminated with the termination of the reaction block

LET of the task is given by the life-span of the reaction block

Release Statement

Task Name

Input Port

Output Port

10 May CHESS Review 2004 10

Releasing Tasks

port
pin;
pout;

stopstart

Logical Execution Time

T

reads pin updates pout

release start preemption resume completion termination

pout is updated by
the local copy of task T

pin is copied to
local port of task T

event
start;
stop;

task T (i) output (o)
{/* compute */}

react R {
release T(pin)(pout);

} until [stop]

{ when [start] react R;}

6

10 May CHESS Review 2004 11

Tasks

e4,e6e3
e5

react R1 {
when [e2] react R2;
when [e3] react R3;

} until [e7];

react R3 {
release t1;
when [e4] react R4;

} until [e6];

react R4 {
release t2;

} until [e5];

e2,e3,e7
e6e4

e2

e2,e7 e2,e7
e6e5

e2,e7

react R2 {
release t3;
when [e8] react R5;

} until [e9];

e2,e7 e7
e8,e9

e6

e6 e2

t1 t1, t2 t1 t3

Tasks are released with the invocation of the reaction block
Tasks are terminated with the termination of the reaction block

10 May CHESS Review 2004 12

Handling Events

e4,e6e3
e5

react R1 {
when [e2] react R2;
when [e3] react R3;

} until [e7];

react R3 {
when [e4] react R4;

} until remember [e6];
react R4 {
} until [e5];

e2,e3,e7
e6e4

e2

e2,e7 e2,e7
e6e6

e2,e7

react R2 {
when [e8] react R5;

} until [e9];

e2,e7 e7
e8,e9e5 e2

e5

A reaction block defines a scope: this implicitly denotes the scope of an event
When an active trigger is invoked, the called reaction becomes the active
scope and the caller reaction, the passive scope
The event of a passive scope can be

Ignored (forget)
Postponed until its scope becomes active again (remember)

7

10 May CHESS Review 2004 13

Parallelism

e2

react R1 {
when [e2] react R2 || R3;

} until [e7];

react R3 {
release t1;
when [e5] react R5;

} until [e9];

e2,e7
e9

e7

e7

react R2 {
release t2;
when [e6] react R6;

} until [e8];

e8

t1, t2

e6,e8 e5,e9

react R6 {

} until [e4];

e7

t1, t2

e8 e5,e9

e4

e6 e4
e7

t2

e8

e4

t2

e7

e8

A trigger may invoke multiple reaction blocks in parallel.
When the trigger is invoked all the reactions become active simultaneously.
The parent block is active only when all the parallel reaction blocks have terminated.

10 May CHESS Review 2004 14

Environment Assumption

port
pin;
pout;

stopstart

Logical Execution Time

T

reads pin updates pout

release start preemption resume completion termination

pout is updated by
the local copy of task T

pin is copied to
local port of task T

event
start;
stop;

task T (i) output (o)
{/* compute */}

react R {
release T(pin)(pout);

} until [stop]

{ when [start] react R; }

when [now] react {} until [3ms];

react R {
release T(pin)(pout);

} until [3ms; stop]

8

10 May CHESS Review 2004 15

xGiotto: Basic Constructs
Reaction Blocks

Basic programming blocks in xGiotto
Consists of release statements and trigger statements along
with an termination information
Releases tasks and invokes triggers

react {reaction block} until [event];

Release Instruction
Tasks are released with the invocation of the reaction block
Tasks are terminated with the termination of the reaction block

release task (input ports) (output ports);

Trigger Statements
Defines the invoking action associated with an event

when [event] reaction block;
Repetition construct using whenever

reaction() {
release task1 (i1) (o1);
release task2 (i2) (o2);
when event1 react block1;
whenever event2 react block2;

} until event;

10 May CHESS Review 2004 16

Structuring Events
Scoping of events

A reaction block defines a scope: this implicitly denotes the scope of an event.
When an active trigger is invoked, the called reaction becomes the active scope
and the caller reaction, the passive scope.
The tree of scopes and the state of program variables denotes the state of the
program.

Handling of events (of a passive scope)
It may be ignored (forget)
It may be postponed until its scope becomes active again (remember)
It may disable trigger statements of all descendent blocks and thus speeding up
their termination (asap)

Invoking reactions in parallel
Wait-parallelism
Asap-parallelism

Embedding Environment Assumption
Event calculus

9

10 May CHESS Review 2004 17

The Program Flow
Event Filter:
The Event Filter implements
the event scoping mechanism
and filter the incoming event. It
determines which event needs
to be reacted upon depending
upon the event qualifiers –
forget, remember or asap .

Reactor:
The Reactor executes the
specified reaction and
activates new events
(when/whenever/until) and
activates and terminates
tasks (release).

Scheduler:
The Scheduler chooses
from the active tasks, a
task to be executed on the
given platform (CPU). The
scheduler generates an
event at task completion.

Event Reaction

Reactor (E machine)

R1: call driver
schedule task1
when(ever) A
exit
R2: call driver

schedule task1 by X
when(ever) Y
until A
exit

Activate Event
(when/whenever)

(until)

Schedule
Terminate

task1
task2
task3
task4
task n

Scheduler

Completion
Event

Event Filter

e1

e2 e3

e5e4

10 May CHESS Review 2004 18

AFR Controller

react start {
whenever remember [10teeth] react controller;

} until [stop];

react channel2 {
react { } until [5ms : teeth];
when remember [5ms : teeth] react {release set} until [ms];
react

loop react {release reset; dec; } until [ms];
} until asap [50ms : 9teeth]

react calcFuel { release CalcFuelInj; } until [10ms : teeth];

react controller {
react calcFuel;
when remember [teeth]

react channel1 || react channel2 || … ;
} until remember [10teeth]

port
/* fuel ports */
/* pulse ports */

event
teeth; synch; stop;

task set { /* opens the valve */ }
task reset { /* closes the valve */ }
task dec {/* pulse generation */}

task CalcFuelInj
{/* fuel parameter computation */}

10

10 May CHESS Review 2004 19

Analysis

Platform independent
Race Condition Detection

Verifying whether a port may be updated by multiple task
invocations and thus leading to non-determinism

Resource Size Analysis
Predicting the run-time memory requirements for executing an
xGiotto program: the bound on the size of the event filter and
scopes (trigger queue size and active task set size).

Platform dependant
Schedulability Analysis

Ensuring that all the task invocations get access to the executing
platform at least equal to their worst-case-execution times before
their termination

10 May CHESS Review 2004 20

Event
Filter

Modified
Embedded

Machine
Scheduler

EnvironmentSensors Actuators

Platform

active scope task completion

execute E code task release

Implementation

xGiotto
Reactions

xGiotto
Program Compiler

Possible
Execution

Traces

Code Generator

Check
Time Safety

Check
Race WCET

Safe

Scheduling
Strategy

Not SafeRace Exists
No
Race

xGiotto
Tasks

11

10 May CHESS Review 2004 21

Implementation

Event
Filter

Modified
Embedded
Machine

Scheduler

EnvironmentSensors Actuators

Platform

active scope task completion

execute E code task release

xGiotto
Reactions

xGiotto
Program Compiler

Possible
Execution

Traces

Code Generator

Check
Time Safety

Check
Race WCET

Safe

Scheduling
Strategy

Not SafeRace Exists
No
Race

xGiotto
Tasks

Tasks
Meta Model

Reactions
Meta Model

Platform
Meta Model

Exploration

Metropolis Platform
Exploration

10 May CHESS Review 2004 22

Ongoing Works

Implementation
Generate code

Embedded Virtual Machine code
Metropolis Meta-model

Porting to RTOS
EVM, JVM, OSEK

Case studies
Porting AFR controller on OSEK

Analysis
Defining the run-time system for xGiotto
Schedulability check in time polynomial to the size of the program

Future Direction
Sub-classes of xGiotto

Definition, inter relation and effectiveness towards event-driven programming
Type Checking

12

10 May CHESS Review 2004 23

Thank You !

