
1

Chess Review
May 10, 2004
Berkeley, CA

Verifying Data Structure Invariants
in Device Drivers

Scott McPeak (smcpeak@cs)
George Necula (necula@cs)

Chess Review, May 10, 2004 2

Motivation

• Want to verify programs that use pointers
• Need precise description of heap’s shape

– Traditional alias analysis won’t do
– Must be able to do strong updates, i.e.

distinguish a particular object from the rest
• Examples

– “This is a tree”
– “These structures are disjoint”
– “Node p is reachable from node q”

• BUT: Language should be simple, tractable
• Our approach: FODIL, a First-Order Data

structure Invariant Language

2

Chess Review, May 10, 2004 3

The FODIL Language

Invariant

Quantifier

Predicate

Atom

Term

Chess Review, May 10, 2004 4

Full FODIL is undecidable

• Problem: lots of function symbols

• e.g., can reduce word problem:
– given abc=def, de=s, sf=q, cba=q
– is abc=cba ?
– yes: abc ! def ! sf ! q ! cba

• to FODIL:
– 8 p. p->a->b->c = p->d->e->f,
8 p. p->d->e = p->s,
8 p. p->s->f = p->q

– is x->a->b->c = x->c->b->a ?

3

Chess Review, May 10, 2004 5

Ghost fields

• Verifier treats them like other fields
– Added to assist description
– Way of making global properties local
– Like strengthening an inductive hypothesis

• Must be updated like other fields!
– For now, this is done manually
– But like other annotations, inference is possible

• Compiler ignores them
– Hence, can’t be inspected at run-time
– Discarding ghost fields can be seen as an

optimization

Chess Review, May 10, 2004 6

Injectivity Pattern

• Want to say: “these nodes form a tree”

struct Node {
Node *left;
Node *right;

};

4

Chess Review, May 10, 2004 7

Injectivity Pattern

• Want to say: “these nodes form a tree”
• Instead #1: “the child selector is injective”

struct Node {
Node *left;
Node *right;

};

p->left ≡ child(p, “left”)
p->right ≡ child(p, “right”)

Chess Review, May 10, 2004 8

Injectivity Pattern

• Want to say: “these nodes form a tree”
• Instead #1: “the child selector is injective”
• Instead #2: “child selector has an inverse”

struct Node {
Node *left;
Node *right;
Node *parent;
bool isLeft;

};

p->left ≡ child(p, true)
p->right ≡ child(p, false)

p->parent ≡ fst(child-1(p))
p->isLeft ≡ snd(child-1(p))

8 p. p->left->isLeft == true &&
p->left->parent == p;

5

Chess Review, May 10, 2004 9

Transitivity Pattern

• Want to say that all reachable nodes have
some property

• Instead, associate the property with a
ghost field

• Then say neighbor nodes’ fields are equal

struct Node {
Node *next;
Node *head;

};
8 p. p->next->head == p->head;

Chess Review, May 10, 2004 10

Dynamic types

• Every static type has a corresponding
dynamic type tag

• Every structure has a (ghost) tag field
• malloc sets the tag to the proper value
• free sets the tag to zero
• An object must have the proper tag for a

field access to be safe (i.e. not a dangling
reference)

• NULL’s tag is zero, so a nonzero tag implies
a pointer is not NULL

6

Chess Review, May 10, 2004 11

Example: Linked list of circular lists

head
...

M

...

M

backbone

rings

Chess Review, May 10, 2004 12

Example: Linked list of circular lists

head
...

M

...

M

struct BNode {
BNode *next;
BNode *prev;
RNode *ring;

};
struct RNode {
BNode *bnode;
RNode *next;
RNode *prev;

};

7

Chess Review, May 10, 2004 13

Example: Linked list of circular lists

struct BNode {
BNode *next;
BNode *prev;
RNode *ring;

};
struct RNode {
BNode *bnode;
RNode *next;
RNode *prev;

};

forall(BNode *b) {
b->next != NULL ==>
b->next->prev == b;

b->ring->tag == RNode;
b->ring->bnode == b;

}
forall(RNode *r) {
r->next->tag == RNode;
r->prev->tag == RNode;
r->next->prev == r;
r->prev->next == r;
r->next->bnode == r->bnode;

};

inj

inj

inj
inj

trans

Chess Review, May 10, 2004 14

Verification: deallocNode()

deallocNode(...) {
for (BNode *b = head; b; b = b->next) {

if (...) {
RNode *r = b->ring;
do {
if (... && r != r->next) {
// remove ‘r’ from its ring
r->prev->next = r->next;
r->next->prev = r->prev;
if (r->bnode == b)
b->ring = r->next;

free(r); return;
}
r = r->next;

} while (r != b->ring); }}}

8

Chess Review, May 10, 2004 15

Proof: No dangling references

forall(BNode *b) {
...
b->ring->tag == RNode;
b->ring->bnode == b;

}

Given:
invariant held to begin with;
r->bnode = b;
b->ring ≠ r;
r->tag = 0;

Goal:
8 b. b->ring->tag = RNode

:Goal, instantiated with fresh var:
c->ring->tag ≠ RNode

i.e.
c->ring->(tag0{r a 0}) ≠ RNode

If c->ring = r:
then r->bnode = c
so b = c, contr.

If c->ring ≠ r:
then c->ring->tag0 ≠ RNode
contradicts orig. invariant

Chess Review, May 10, 2004 16

Decision procedure

• Key question: when to instantiate
universally quantified facts?

• Our answer (for now): ad-hoc matching
– 8 p. p->a->b = p, match on “p->a”
– 8 p. p->a->b = p->b, match on “p->a” or “p->b”

• For these cases we can prove completeness
– Relies on detailed reasoning about the e-dag, a

data structure used by the theorem prover
• Open question: more general strategy?

– Have explored variation of Knuth-Bendix
completion, still unclear if it can work

9

Chess Review, May 10, 2004 17

Experimental Results

• Verified two linux drivers (~1kloc each)
– scull: Rubini example, complicated data str.
– pc_keyb: PC keyboard + mouse driver

• Verified several data structure kernels
– lists, arrays, etc.
– red-black trees
– b+-trees (including balance + key properties)

• Annotation effort metrics
– Between 50 and 100% of original code size
– Takes time to learn how the code works

Chess Review, May 10, 2004 18

Related: Shape Types

• Fradet and Métayer POPL97
• Formalism using graph grammars
• Doubly-linked list:

– Doubly ::= head x, pred x NULL, L x
L x ::= next x y, pred y x, L y

| next x NULL
• Undecidable in general (like FODIL); but

practical decidable subset not apparent
• Arguably less natural ...
• All examples in their paper are expressible

in FODIL (with inj+trans only)

10

Chess Review, May 10, 2004 19

Related: Graph Types

• Moller and Schwartzbach PLDI01,
Klarlund and Schwartzbach POPL93

• Invariants expressed as quantified
formulas

• Notion of trees is built into their logic; i.e.
injectivity is implicit (no circular lists..)

• Uses regular expressions to describe non-
tree pointers’ targets

• We can reduce deterministic graph types
to FODIL (with inj+trans only)

Chess Review, May 10, 2004 20

Related: 3-Valued Logic (TVLA)

• (e.g.) Sagiv et. al TOPLAS02
• Abstract interpretation; heap abstraction

has yes/no/maybe pointers (“3-Valued”)
• Requires instrumentation predicates

– Supplied by programmer, defined in terms of
other fields, predicates

– Many similarities to global invariants of ghost
fields

• Approach favors automation over precision
• Not obvious how to extend (e.g. to specify

a tree is balanced)

11

Chess Review, May 10, 2004 21

Future Work

• Generalize decidable FODIL forms
• More atomic predicates: partial orders, ...
• Change isolation; some connections to

bunched implication
– e.g.: ok for module A to call into module B while

A’s invariant is broken, if B can’t see it
• Annotation automation/inference

– Existing invariant inference is simple, effective
– Want annotation abstractions: “this kind of loop

always has these invariants: ...”
• More sophisticated proof failure diagnosis

Chess Review, May 10, 2004 22

Conclusion

• Device drivers use the heap nontrivially;
must characterize that use precisely

• Injectivity and transitivity are key
concepts in data structure description

• We can describe them using simple
quantified equalities
– No need to add trees or transitive closure to

the logic
– Ghost fields are a more tractable alternative,

making global properties expressible locally

