
1

StreamBit: Sketching high-performance
implementations of bitstream programs

Armando Solar-Lezama, Rastislav Bodik
UC Berkeley

Bitstream Programs

• Bitstream programs: A Growing Domain
– Crypto: DES, Serpent, Rijndael, …
– coding in general
– NSA/BitTwiddle

• Bitstream programs operate under strict constraints
– Performance is very important

• Resource constrained environments like smartcards

– Correctness is crucial
• Subtle bug in Blowfish implementation allowed over half the

keys to be cracked in less than 10 minutes

• Efficient bitstream programs are hard to write

2

Current State of the art

• Lots of hand compilation
– Tedious
– Error prone
– Not portable: optimizing for different word-size non-trivial

• Difficult to automate
– Exponentially many choices
– Greedy is Bad

The 64 bits of the input block to be enciphered are first
subjected to the following permutation, called the initial
permutation IP:

IP
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

That is the permuted input has bit 58 of the input as its first
bit, bit 50 as its second bit, and so on with bit 7 as its last

bit.

Description from NIST document Code from LibDES

#define PERM_OP(a,b,t,n,m) ((t)=((((a)>>(n))^(b))&(m)),\
(b)^=(t),\
(a)^=((t)<<(n)))

#define IP(l,r) \
{ \

register DES_LONG tt; \
PERM_OP(r,l,tt, 4,0x0f0f0f0fL); \
PERM_OP(l,r,tt,16,0x0000ffffL); \
PERM_OP(r,l,tt, 2,0x33333333L); \
PERM_OP(l,r,tt, 8,0x00ff00ffL); \
PERM_OP(r,l,tt, 1,0x55555555L); \

}

We can do better

• Separate specification from implementation
– Specify the task without regard for performance
– Specify Implementation without regard for bug

• How?
– High level program encodes Task description
– Sequence of transformations from Task description into

equivalent Low Level program encodes an implementation
– Transformations can be Sketched!

Task description Implementation

3

Example

• “Drop every third bit in the bit stream.”
• Exhibits many features of complicated permutations

– Exponentially many choices
– Greedy choice is suboptimal

• Fast implementation can be sketched

functionality
sketch

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

FAST implementation

+

What you gain

• Drop Third Benchmark:
– Speedups over naïve code with a 14 line sketch:

• 32 bit on a Pentium IV: 83.8%
• 64 bit on an Itanium II: 233%

• DES Benchmark:
– 32 bit on a Pentium IV with 30 line sketch:

• 634% speedup over naïve
• Within ¾ of hand optimized libDES

4

The DSL: StreamIt

• High-level bitstream algorithms written a language
derived from StreamIt
– Synchronous Dataflow language
– Filters represented internally as matrices

1 0 0
0 1 0

3

2

consumes a 3-bit chunk of input;
produces a 2-bit of output.

x
y
z

x
yx =

Implementation in StreamIt

• Make each filter correspond to one basic operation
available in the hardware

• Example

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

duplicate

or

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

t1 = in AND 1100

t2 = in SHIFTL 1

t3 = t2 AND 0010

out = t1 OR t3

in

5

The Full Picture

• For every task there is a space of programs that describe it
• Greedy Transformation algorithm defines a path from any

program to an implementation
• Halfway Transformation can be used to get a different

implementation
• A Sketch can simplify the process of writing a transformation

Level of abstraction (high low)

Implementations

Task Description

Greedy Transformation

1 0 0
0 1 0

3

2 1 0 0
0 1 0

3

2

• Defines a default implementation for any program
• Leveraged by the user for custom implementations
• Example: Drop Third Bit

– Unroll filter
– decompose into filters operating on W=4 bits of input.
– decompose into filters producing W=4 bits of output

6

Half way transformations

• Allows the user to guide lowering
– Impart structure to the filter
– Bring it closer to the desired implementation

• Add structure by decomposing into a pipeline of steps
– Equivalent to specifying a matrix decomposition.
– filter = filter1 filter2 guarantees correctness

• This can be done hierarchically,
– Detail is only added where necessary.

F.F_1

Half way transformations-example

• User provides high level decomposition
• System Takes care of Lowering F.F_i
• Correctness is guaranteed as long as

[F.F_3] [F.F_2] [F.F_1] = F
• Avoid spelling out the decomposition:

Sketch It!

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

F

F.F_2

F.F_3

F.F_1

F.F_2

F.F_3

Half way
transformation to
specify FAST bit
shifting algorithm:

7

Sketching: How it works

• Start with a sketch
• Define xi,j as the amount bit i will move on step j
• Semantic equivalence imposes linear constraints on the xi,j

• Many of the constraints in the sketch also impose linear constraints on xi,j

• Solving the linear constraints produces a space of possible solutions
• Map the nonlinear constraints to this solution space
• Search

SketchDecomp[
[shift(1:32 by 0 || 1)],
[shift(1:32 by 0 || 2)],
[shift(1:32 by 0 || 4)],
[shift(1:32 by 0 || 8)]

](Filter);

Programming with StreamBit
The 64 bits of the input block to be enciphered are first
subjected to the following permutation, called the initial
permutation IP:

IP
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

That is the permuted input has bit 58 of the input as its first
bit, bit 50 as its second bit, and so on with bit 7 as its last

bit.

• StreamBit program close to original
task description

• Clever algebraic transformation
expressed as a sketch

Description from NIST document

filter DES_IP {
Work push 2 pop 3 {

int p[] = { 58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7 };

for (int i = 0; i < 64; ++i){
x = peek(p[i]);
push(x);
pop();

}
}

} StreamIt Code

SketchDecomp[
[shift(1:2:31 by -33), shift(34:2:64 by 33),

shift(1:64 by 0 || 33 || -33)],
[]

] (DES Encoding.IP);
Sketch

8

Productivity

• User still has to come up with clever idea
– People are good at clever ideas
– Machines are good at tedious details

• Sketching allows user to experiment with different
implementations
– 6 different implementations in one afternoon
– Don’t have to worry about bugs

Concluding Remarks

• StreamBit allows for
– Task specification oblivious to performance
– Implementation specification without bugs

• Same idea may apply in other domains
– If people currently resort to very low level coding
– If some algebraic structure can be imposed on the task
– It may be amiable to Sketching.

