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ABSTRACT | System-level design (SLD) is considered by many

as the next frontier in electronic design automation (EDA). SLD

means many things to different people since there is no wide

agreement on a definition of the term. Academia, designers,

and EDA experts have taken different avenues to attack the

problem, for the most part springing from the basis of

traditional EDA and trying to raise the level of abstraction at

which integrated circuit designs are captured, analyzed, and

synthesized from. However, my opinion is that this is just the

tip of the iceberg of a much bigger problem that is common to

all system industry. In particular, I believe that notwithstanding

the obvious differences in the vertical industrial segments (for

example, consumer, automotive, computing, and communica-

tion), there is a common underlying basis that can be explored.

This basis may yield a novel EDA industry and even a novel

engineering field that could bring substantial productivity

gains not only to the semiconductor industry but to all system

industries including industrial and automotive, communication

and computing, avionics and building automation, space and

agriculture, and health and security, in short, a real technical

renaissance.

In this paper, I present the challenges faced by industry in

system level design. Then, I propose a design methodology,

platform-based design (PBD), that has the potential of addres-

sing these challenges in a unified way. Further, I place

methodology and tools available today in the PBD framework

and present a tool environment, Metropolis, that supports PBD

and that can be used to integrate available tools and methods

together with two examples of its application to separate

industrial domains.
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and tools; platform-based design (PBD); system-level design
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I . INTRODUCTION

Electronic design automation (EDA) has played a pivotal
role in the past 25 years in making it possible to develop a

new generation of electronic systems and circuits. Howev-

er, innovation in design tools has slowed down significantly

as we approach a limit in the complexity of systems we can

design today satisfying increasing constraints on time-to-

market and correctness. The EDA community has not

succeeded as of today in establishing a new layer of

abstraction universally agreed upon that could provide
productivity gains similar to the ones of the traditional

design flow (Register Transfer Level (RTL) to GDSII) when

it was first introduced. Nor has it been able to expand

significantly into new adjacent markets to increase its total

available market. Among the adjacencies of interest, I

believe the electronics system market has great potential

since system companies that are now facing significant
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difficulties due to an exponentially raising complexity and
to increased demands on functionality, correctness, and

time-to-market are contemplating a radical change in the

way they bring new products to market.

In this paper, I will discuss the following two aspects.

1) Raising the level of abstraction when designing chips.

In this framework, the term system-level design

for an integrated circuit relates to any level of

abstraction that is Babove[ RTL. Transaction level
modeling (TLM), behavioral, algorithmic, and

functional modeling are terms often used to

indicate higher levels of abstraction in hardware

design. The International Technology Roadmap

for Semiconductors (ITRS) in 2004 places SLD

Ba level above RTL including both HW and SW

design.[ SLD is defined to Bconsist of a behavioral

(before HW/SW partitioning) and architectural
level (after)[ and is claimed to increase produc-

tivity by 200K gates/designer-year. The ITRS

states that SLD will produce an estimated 60%

productivity improvement over what they call the

Bintelligent testbench[ approach (the previously

proposed electronic system design improvement)

[178]. While these claims cannot be verified as yet

and do look quite aggressive, most agree that the
overarching benefits that ESL should bring to the

table are to:

a) raise the level of abstraction at which

designers express systems;

b) enable new levels of design reuse.

2) Dealing with electronics system design and, in
particular, embedded system design. In the context

of this paper, the term embedded systems refers to
the electronic components (which almost always

include one or more software programmable

parts) of a wide variety of personal or broad-use

devices, e.g., a mechanical system such as an

automobile, a train, a plane, an electrical system

such as an electrical motor or generator, a

chemical system such as a distillation plant, or

health-care equipment such as a pacemaker.
Hence, an embedded system is a special-purpose

system in which the computing element is

completely encapsulated by the device it controls.

Unlike a general-purpose computer, an embedded

system performs one or a few predefined tasks,

usually with very specific requirements [204]. In

technical terms, an embedded system interacts

with the surrounding environment in a controlled
way satisfying a set of requirements on respon-

siveness in terms of quality and timeliness.

Typically, it has to satisfy implementation require-

ments such as cost, power consumed, and use of

limited physical resources. Ideally, its interaction

with the environment should be continuously

available for the entire life of the artifact.

To deal with system-level problems, let them be at the
chip or embedded system level, the issue to address is not
developing new tools, albeit they are essential to advance the
state of the art in design, rather, it is the understanding of the
principles of system design, the necessary change to design
methodologies, and the dynamics of the supply chain.

Developing this understanding is necessary to define a

sound approach to the needs of the system and IC

companies as they try to serve their customers better, to
develop their products faster and with higher quality. It is

no wonder that EDA experts have stayed away from

system-level design; in fact, EDA experts are essentially

tied to the semiconductor industry needs in the imple-
mentation flow with little or no expertise in the intricacies

of embedded systems that include a large amount of

software and system integration concerns. The motivation

for EDA experts to learn system design has not been there
as yet since:

1) IC companies are still struggling with the under-

standing of higher levels of abstraction;

2) system companies have not perceived as yet

design methodology or tools to be on their critical

path, hence they have not been willing to invest in

Bexpensive[ tools.

Clearly, as we are hitting a wall in the development of the
next generation systems, this situation is rapidly changing.

Major productivity gains are needed and better verification

and validation is a necessity as the safety and reliability

requirements of embedded systems become more strin-

gent and the complexity of chips is hitting an all-time high.

Several approaches have emerged in the design community

to improve the situation and some EDA companies have

invested in the area but a broad EDA industry support for
these approaches is still missing.

I share with a number of colleagues [111], [112], [131],

[135], [176], [188], [208] (this list also provides an

excellent set of references for the state-of-the-art and

directions for embedded system design) the strong belief

that a new design science must be developed to address the

challenges listed above where the physical is married to

the abstract, where the world of analog signals is coupled
with the one of digital processors, and where ubiquitous

sensing and actuation make our entire environment safer

and more responsive to our needs. SLD should be based on

the new design science to address our needs in a

fundamental way. However, the present directions are

not completely clear as the new paradigm has not yet fully

emerged in the design community with the strength

necessary to change the EDA and design technology
landscape, albeit the papers quoted in this paragraph have

chartered the field with increasing clarity.

Support for the development of this design science is

given in the U.S. by the traditional research funding

organizations in collaboration with industrial associations.

The Gigascale System Research Center (GSRC) [101] of

the MARCO program [a joint initiative of the Defense
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Advanced Research Project Agency (DARPA) and the
Semiconductor Industry Association (SIA)] and the

National Science Foundation (NSF) with the Center for

Hybrid and Embedded Software Systems (CHESS) [112]

are two examples of this effort. However, a much stronger

effort is afoot in Europe, where the European community

has been supporting embedded system research and novel

methodologies for chip design for years with large inte-

grated projects (e.g., SPEEDS) and networks of excellence
(e.g., Artist 2 [2] and HYCON [119]) and is planning an

increased effort for the VII Framework. In addition, a

technology platform, Artemis [51], was formed three years

ago by the leading European industrial companies (the

initial founding group included Nokia, Ericsson, ST, ABB,

Airbus, Infineon, British Telecom, Siemens, Bosch, Con-

titeves, Daimler-Chrysler, Thales, FIAT, Finmeccanica,

Philips, COMAU, Symbian, Telenor, and PARADES with
the support of research organizations such as IMEC,

Verimag, and the Technical University of Vienna, a healthy

combination of Academia, service providers, software

companies, system, subsystem and semiconductor manu-

facturers). The companies have recently formed the

Artemis Industrial Association (ARTEMISIA), while the

European community is deciding to make it a joint

technology initiative, an instrument to funnel substantial
resources of the member states. In the last meeting of

the European Community Prime Ministers on October

2006, Artemis was quoted by some of the participants

(in particular, the Finnish Prime Minister) as an exam-

ple of agenda setting initiative for the industrial future of

Europe.

This paper is not intended to review exhaustively the

various approaches and tools that have been proposed over
the years (a reader interested in tools and environments

available today is referred to [63] for a taxonomy), albeit I

will review the most relevant contributions in the

perspective presented here.

The paper is organized as follows: in Section II, I focus

on the pressing concerns of system level design together

with the strategic and business concerns in the supply

chains of the mobile terminal and automotive vertical
domains as examples of the issues to be taken into

consideration when we think about expanding the reach of

design methodology and tools. I then present my view on

how to form a unified approach to embedded system

design, platform-based design (PBD), that could provide a

solution to the challenges presented in the previous

sections (Section III). In Section IV, I describe some of the

most promising approaches to embedded system design
using the PBD context as a guide. Then, I present a brief

overview of a system design framework that supports this

methodology (Section V) and that could form the basis for

a unified environment for system level design and

integration. In this section, I also present two test cases

of the application of the methodology and of the

framework from widely different industrial domains: the

design of a JPEG encoder on a heterogeneous single chip
computing platform and the design of a distributed

architecture for supervisory control in automotive. In

Section VI, I draw conclusions and indicate future

directions for research and industrial developments.

Notably missing from this paper is testing. The topic is

extremely important for SLD but to do justice to it, an

entire new paper would be needed.

II . SETTING THE STAGE: CHALLENGES
OF SYSTEM LEVEL DESIGN

In the present technology environment and industrial

structure, SLD has to address concerns of individual

players in the industrial domain that are facing serious

problems in bringing their products to market in time and

with the required functionality. I do believe that SLD also
needs to be concerned about the entire industrial supply

chain that spans from customer-facing companies to

subsystem and component suppliers, since the health of

an industrial sector depends on the smooth interaction

among the players of the chain as if they were part of the

same company. In this section, I present a view on both

challenges that underline commonalities that allow a

unified approach to SLD.

A. Managing Complexity and Integration
The ability to integrate an exponentially rising number

of transistors within a chip, the ever-expanding use of

electronic embedded systems to control increasingly many

aspects of the Breal world,[ and the trend to interconnect

more and more such systems (often from different

manufacturers) into a global network are creating a
challenging scenario for embedded system designers.

Complexity and scope are exploding into the three inter-

related but independently growing directions, while teams

are even shrinking in size to further reduce costs. In this

scenario, the three challenges that are taking center stage

are as follows.

1) Heterogeneity and Complexity of the Hardware Platform:
The trends mentioned above result in exponential

complexity growth of the features that can be implemented

in hardware. The integration capabilities make it possible

to build a real complex system on a chip including analog

and RF components, general purpose processors (GPP)

and Application-Specific Instruction-set Processors

(ASIP). The decision of what goes on a chip is no longer

dictated by the amount of circuitry that can be placed
there, but by reliability, yield, power consumption,

performance, and ultimately cost (it is well known that

analog and RF components force the use of more

conservative manufacturing lines with more processing

steps than pure digital ICs). Even if manufacturing

concerns suggest to implement hardware in separate

chips, the resulting package may still be very small given
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the advances in packaging technology yielding the concept
of system-in-package (SiP). Pure digital chips are also

featuring an increasing number of components. Design

time, cost, and manufacturing unpredictability for deep

submicron technology make the use of custom hardware

implementations appealing only for products that are

addressing a very large market and for experienced and

financially rich companies. Even for these companies, the

present design methodologies are not yielding the
necessary productivity forcing them to increase beyond

reason the size of design and verification teams. These IC

companies (for example Intel, Freescale, ST, and TI) are

looking increasingly to system design methods to allow

them to assemble large chips out of predesigned

components and to reduce validation costs (design reuse).

In this context, the adoption of design models above RTL

and of communication mechanism among components
with guaranteed properties and standard interfaces is only

a matter of time.

2) Embedded Software Complexity: Given the cost and

risks associated to developing hardware solutions, an

increasing number of companies is selecting hardware

platforms that can be customized by reconfiguration and/

or by software programmability. In particular, software is
taking the lion’s share of the implementation budgets and

cost. In cell phones, more than 1 million lines of code is

standard today, while in automobiles the estimated

number of lines by 2010 is in the order of hundreds of

millions [199]. The number of lines of source code of
embedded software required for defense avionics systems

is also growing exponentially as reported in Fig. 1 [made

available by Robert Gold Associate Director, Software and

Embedded Systems, Office of the Deputy Under Secretary

of Defense (Science and Technology)]. However, as this

happens, the complexity explosion of the software

component causes serious concerns for the final quality

of the products and the productivity of the engineering
teams. In transportation, the productivity of embedded

software writers using the traditional methods of software

development ranges in the few tens of lines per day. The

reasons for such a low productivity are in the time needed

for verification of the system and long redesign cycles that

come from the need for developing full system prototypes

for the lack of appropriate virtual engineering methods and

tools for embedded software. Embedded software is
substantially different from traditional software for com-

mercial and corporate applications. By virtue of being

embedded in a surrounding system, the software must be

able to continuously react to stimuli in the desired way,

i.e., within bounds on timing, power consumed, and

cost. Verifying the correctness of the system requires

that the model of the software be transformed to include

information that involves physical quantities to retain
only what is relevant to the task at hand. In traditional

software systems, the abstraction process leaves out all
the physical aspects of the systems as only the functional

aspects of the code matter.

Fig. 1. Software growth in avionics.
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Given the impact that embedded software has on the
safety of embedded system devices and on the quality of

the final artifact, there is an increasingly strong interest in

having high assurance that embedded software is correct.

Software certification demonstrates the reliability and safety

of software systems in such a way that it can be checked

by an independent authority with minimal trust in the

techniques and tools used in the certification process itself.

It builds on existing software assurance, validation, and
verification techniques but introduces the notion of

explicit software certificates, which contain all the

information necessary for an independent assessment of

the properties. Software certification has been required by

military applications for years and has been recently

extended to the U.S. aviation sector. The FAA accepted the

DO-178B regulations as the means of certifying all new

aviation software. A joint committee with the European
authorities has been recently empowered to Bpromote safe

implementation of aeronautical software, to provide clear

and consistent ties with the systems and safety processes,

to address emerging software trends and technologies, and

to implement an approach that can change with the

technology[ [69], [70]. I believe that certification will

expand into new safety-critical domains and will create an

additional, serious burden on the embedded software
design process not only for the aviation industry but for an

increasingly large number of companies worldwide. Note

that today, the main scope of the certification process

relates to the process followed to develop software. I

believe it will be of extreme importance to link the

certification process with the content of the software and

not only with the development process. This approach will

have to include formal verification techniques as I believe
this is the only way to increase the confidence in the

correctness of the software.

3) Integration Complexity: A standard technique to deal

with complexity is decomposing Btop-down[ the system

into subsystems. This approach, which has been custom-

arily adopted by the semiconductor industry for years, has

a limitation as a designer or a group of designers has to
fully comprehend the entire system and to partition

appropriately its various parts, a difficult task given the

enormous complexity of today’s systems. Hence, the future

is one of developing systems by composing pieces that all or

in part have already been predesigned or designed

independently by other design groups or even companies.

This has been done routinely in vertical design chains for

example in the avionics and automotive verticals, albeit in
a heuristic and ad hoc way. The resulting lack of an overall

understanding of the interplay of the subsystems and of the

difficulties encountered in integrating very complex parts

causes system integration to become a nightmare in the

system industry. For example, Jurgen Hubbert, then in

charge of the Mercedes-Benz passenger car division,

publicly stated in 2003: BThe industry is fighting to solve

problems that are coming from electronics. Companies that
introduce new technologies face additional risks. We have
experienced blackouts on our cockpit management and
navigation command system and there have been problems
with telephone connections and seat heating.[

I believe that in today’s environment this state is the

rule rather than the exception for the leading system

original equipment manufacturers (OEMs)1 in all indus-

trial sectors [51]. The source of these problems is clearly
the increased complexity but also the difficulty of the

OEMs in managing the integration and maintenance

process with subsystems that come from different suppliers

who use different design methods, different software

architecture, different hardware platforms, and different

(and often proprietary) real-time operating systems.

Therefore, there is a need for standards in the software

and hardware domains that will allow plug-and-play of
subsystems and their implementation. The ability to

integrate subsystems will then become a commodity

item, available to all OEMs. The competitive advantage of

an OEM will increasingly reside on novel and compelling

functionalities.

There is also the need for improving the interaction

among all the players in the supply chain to improve the

integration challenges in a substantial way as I argue in the
next section.

B. Industrial Supply Chain Landscape
The design and supply chains are the backbone for any

industrial sector. Their health and efficiency are essential

for economic viability. While tools for supply chain

management have been around for quite some time,

support for the design chain has not been pursued nearly as
vigorously. There are great opportunities for improving the

situation substantially at least in the safety-driven indus-

trial sector, which includes the transportation as well as

industrial automation domain, with a combination of tools

and methodologies. We are just at the beginning.

Integration of electronic and mechanical design tools

and frameworks will be essential in the near future.

Integration of chemical, electronic, and biology tools will
also be essential in the further future for nanosystems.

Data integration and information flow among the compa-

nies forming the chain have to be supported. In other

words, it is essential that the fundamental steps of system

design (functional partitioning, allocation on computa-

tional resources, integration, and verification) be sup-

ported across the entire design development cycle. Thus,

whether the integrations pertains to SW-SW integration on
a distributed network, HW-SW integration on a single

electronic control unit (ECU), or electronics and mechan-

ical integration for a subsystem, tools and models have to

1In this paper, OEM is used to refer to the companies that acquire a
product or component and reuse or incorporate it into a new product with
their own brand names. Examples are Mercedes, GM, and Toyota, as well
as Boeing and Airbus.
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be integrated seamlessly from a static point of view (e.g.,
data dictionaries and off-line model transformations) and

dynamic point of view (e.g., cosimulation, HW-in-the-loop

simulations and emulation).

Assuming the design methodology and the infrastruc-

ture for design chain integration are all in place, what will

be the implication on the industrial structure?

The dynamics in the system industry is similar across
the vertical domains but certainly there are important
differences. For example, for embedded controllers in

industrial engineering applications, automotive, avionics,

energy production, and health related equipment, safety

considerations, and hence hard real-time constraints, are

of paramount importance. In the case of consumer

electronics, including entertainment subsystems in cars

and airplanes, cell phones, cameras, and games, the

concerns are on sound, video, and recording quality and on
the look and feel of the devices in presence of severe cost

constraints. I will briefly discuss the cell phone design

chain and the automotive design chain as the representa-

tives of the embedded system market dynamics.

1) Mobile Communication Design Chain: The cell phone

industrial segment is a complex ecosystem in continuous

evolution with the following actors.
a) Application developers such as gaming, ring

tones, and video. These companies sell their prod-

ucts directly to the end customer except in cases

where these applications come bundled either with

standard services like voice offered by service

providers such as Cingular, Verizon, or Telecom

Italia, or with the device itself offered by makers

such as Nokia, Motorola, Samsung, or Ericsson.
Their designs are, in general, implemented in

software running on the platform provided by the

device manufacturers who choose also the OS.

b) Service providers who offer the access to the

network infrastructure for voice and data. These

providers also offer other services such as news,

weather information, and traffic. The GSM

standard introduced (and mandated) the use of
the subscriber identity module (SIM), a smart

card that securely stores the key identifying a

mobile phone service subscriber, as well as

subscription information, saved telephone num-

bers, preferences, text messages, and other

information. The use of the SIM card is important

in the dynamics of the vertical segment as it is

under control of the service providers. The service
provider technology relates to the management of

the infrastructure and of the service delivery.

They worry, for example, about communication

handoffs when cell boundaries are traversed and

base-station location.

c) Device makers who manufacture the mobile

terminal, e.g., the cell phone. Device makers

must master a number of different technologies as
they manufacture systems with significant soft-

ware content (more than 1 million lines of code

today) and hardware content including computing

and communication circuitry involving analog and

RF. In most cases, the IC content is obtained by

chip manufacturers such as Qualcomm, TI, Free-

scale, and ST, but it may also be designed by

captive teams. One of the many challenges of a
mobile terminal manufacturer is integrating

heterogeneous semiconductors manufactured by

different companies (for example, DSPs and

microcontrollers for the digital part, base-band,

and RF circuitry) whose interaction must be

accurately predicted and controlled to provide

the functionality with no errors. There is a

significant IP content acquired by middleware
software providers such as the Symbian OS, an

operating system designed for mobile devices,

with associated libraries, user interface frame-

works, and reference implementations of common

tools, produced by Symbian Ltd. In addition,

styling, ergonomics, and user-friendliness are

major attractions for the end customer.

d) IC providers who offer semiconductors and other
IPs that implement a variety of a mobile terminal

functions. Semiconductor technology has had a

major impact in the diffusion of mobile terminals

as it is responsible for the dimension, power

consumption, performance, functionality, and

cost of the terminal. Because of the complexity

of the design and of the need of interfacing with

other vendors, IC manufacturers have turned to a
particular design style that is the major content of

this paper, platform-based design. The TI OMAP

[55] platform together with the Nexperia Philips

platform for digital video are the first examples of

complex semiconductors designed in this style.

Given the sale volumes of mobile terminals, IC

manufacturers are competing fiercely and to

provide the features needed by the device
manufacturers, they had to enter into system-

level design and into the development of signif-

icant software components including device

drivers and other middleware. The semiconductor

manufacturers are themselves integrating third

party IPs.

e) IP providers who provide components to the rest

of the design chain. Symbian (with its OS for cell
phones), Microsoft (with Windows CE), and ARM

(with its processors) are examples of IP providers.

These components are integrated in the semi-

conductors or in the terminal to perform an

important function. They are instrumental to the

functioning of the devices but cannot be sold to

the end customer per se.
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f) Outsourcing companies who provide design and
manufacturing services to the rest of the chain. For

example, Flextronics provides manufacturing ser-

vices to a large variety of companies in the system

domain including mobile terminal manufacturers.

E-silicon [73] in U.S., Accent [6] in Europe and

Faraday [87] in Taiwan offer design services to

semiconductor and device manufacturers for part

or entire chips as well as brokerage services to
manage the interactions with silicon foundries.

Finally, semiconductor foundries such as TSMC

[200], IBM [153] and UMC [201] provide IC

manufacturing services.

Today, there is a great deal of competition and turf

battles to determine where the added value is inserted. For

example, the boundary between service providers and

device makers as well as the one between device and IC
makers is under stress. Service providers favored the SIM

card as a way of capturing value in their products and

defend it against the device makers. The standard that

limits the communication bandwidth between SIM cards

and the cell phone electronics defends the device makers

turf against the intrusion of the service providers. The

device makers defend their added value against IC

manufacturers by avoiding being locked into a single pro-
vider situation, farming out different components to

different companies. In addition, they force, whenever

possible, the IC providers to use standards that favor the

possibility of using different IPs as they see fit. The use of

the Open Core Protocol [157] standard in the TI OMAP

[55] platform is a case where the interest of the device

makers and the one of the IC provider aligned since it was

also the interest of the IC provider to be able to incorporate
quickly external and internal IPs. My opinion is that pro-

viding a unified methodology and framework, we will favor

the balance of the chain where everyone reaches an equi-

librium point that maximizes the welfare of the system.

2) Automotive Design Chain: The need for integrating

widely different subsystems such as safety, propulsion,

communication, and entertainment makes this vertical
very interesting for our purposes. Today, the roles of car

makers and their suppliers are relatively stable but they are

undergoing a period of stress due to the increased

importance of electronics and its added value. The

Automotive supply chain includes:

a) Car manufacturers (OEMs) such as GM, Ford,

Daimler-Chrysler, and Toyota, who provide the

final product to the consumer market.
b) Tier 1 suppliers such as Bosch, Contiteves,

Siemens, Nippon Denso, Delphi, and Magneti-

Marelli, who provide subsystems such as power-

train management, suspension control, and

brake-by-wire devices to OEMs.

c) Tier 2 suppliers, e.g., chip manufacturers such as

Freescale, Infineon, ST, and Renesas, IP providers

e.g., ARM and RTOS suppliers such as WindRiver
and ETAS, who serve OEMs and more likely Tier 1

suppliers.

d) Manufacturing suppliers such as Flextronics

and TSMC who provide manufacturing services.

Opposite to verticals that are not safety critical,

liability issues make the recourse to outside

manufacturing not as common. However, there

are signs that manufacturing for Tier 1 suppliers
is increasingly considered for outsourcing.

Car makers express the desire of gaining a stronger grip

on the integration process and on the critical parts of the

electronics subsystems. At the same time, there is evidence

that sharing IPs among car makers and Tier 1 suppliers

could improve substantially time-to-market, development,

and maintenance costs. The essential technical problem to

solve for this vision is the establishment of standards for
interoperability among IPs and tools. AUTOSAR [107], a

world-wide consortium of almost all players in the

automotive domain electronics supply chain, has this

goal very clear in mind. However, there are technical and

business challenges to overcome. In particular, from the

technical point of view, while sharing algorithms and

functional designs seems feasible at this time, the sharing

of hard real-time software is difficult even assuming
substantial improvements in design methods and technol-

ogy, if run-time efficiency has to be retained. The issues are

related to the interplay that different tasks can have at the

RTOS level. The timing of the software tasks depend on the

presence or absence of other tasks. A scheduling policy that

could prevent timing variability in the presence of

dynamical changing task characteristics can be conceived

(for example, timing isolation or resource reservation
policies) but it will carry overhead, albeit potentially not

prohibitive; further, this kind of policy is not supported by

any of the commercially available RTOS. This situation is

the standard tradeoff between efficiency and reliability but

it has more important business implications than usual. In

fact, if software from different sources has to be integrated

on a common hardware platform, in the absence of

composition rules and formal verification of the properties
of composed systems, who will be responsible for the

correct functioning of the final product?

Whoever will take on this responsibility would need a

very strong methodology and an iron fist to make

suppliers and partners comply with it. This may not be

enough, in the sense that software characteristics are hard

to pin down and with the best intentions of this world,

one may not be able to guarantee functional and timing
behavior in the presence of foreign components. The

constant growth of complexity of the embedded systems

designed today makes manual analysis and design

impractical and error prone. The ideal approach would

be a tool that could map automatically the set of tasks

onto the platform guaranteeing the correct functionality

and timing with optimal resource utilization [160]. This
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tool should take the design description at the pure
functional level with performance and other constraints

and the architecture of the platform and produce correct

settings for the RTOS and optimized code. We are still far

from this ideal situation. It is likely, then, that the

responsibility for subsystem integration will still rest with

the car manufacturers but the responsibility for integrat-

ing software components onto ECUs will be assigned to

Tier 1 suppliers. In this case, the burden of Tier 1
suppliers will be increased at a possibly reduced premium

because of the perceived reduction in added value. This is

likely to be an unstable model and major attention should

be devoted to find a common ground where both car

makers and suppliers find their economic return.

If the strategy followed by car makers in AUTOSAR

succeeds, then it is likely that a global restructuring of the

industry will take place by creating an environment where
Tier 1 players with small market share will find themselves

in a difficult position unless they find a way of competing

on a more leveled ground with the major stake holders. In

this scenario, Tier 2 suppliers including IP providers may

find themselves in a better position to entertain business

relations directly with the car manufacturer. Tool

providers will be in a more strategic position as providers

of mapping tools that make the business model feasible.
Hence, it is likely that a shift of recognized value will take

place from Tier 1 suppliers towards tool providers and

Tier 2 suppliers. The redistribution of wealth in the design

chain may or may not be a positive outcome for the health

of the industrial sector. If the discontinuities are sharp,

then there may be a period of instability where much

effort will be required to keep the products coming out

with quality and reliability problems that may be larger
than the ones observed lately. However, if it is well

managed, then a natural shake-up with stronger players

emerging will have a double positive: more quality in the

products at lower cost. An additional benefit from a real

plug-and-play environment will be the acceleration of the

rate of innovation. Today, the automotive sector is

considered conservative and the innovations in design

methods and electronic components are slow to come. For
example, if a well-oiled mechanism existed to migrate

from one hardware platform to another, the Boptimal[
solutions would be selected instead of the ones that have

been traditionally used. In this case, the Tier 2 market

place will also be rationalized and the rate of innovation

will likely be increased.

As a final consequence, the introduction of new

functionalities will be a matter of algorithm and architec-
ture rather than detailed software and hardware selection.

The trend in electronics for the automotive industry (but

for other verticals as well) is clear: less customization,

more standardization. For a subsystem supplier, the choice

will be richer in terms of platforms but it will not require

heavy investment in IC design or RTOS development. For

car manufacturers, the granularity of the choices will be

also richer because of interoperability. They will have the
choice of selecting entire macro systems or components

that could be integrated in a large automotive platform.

The choice will be guided by cost, quality, and product

innovation.

The final goal of the strategy is rather clear. The way of

getting there is not as clear and the road has many bumps

and turns that are difficult to negotiate. A positive outcome

will have to come from a process of deep business and
technical cooperation among all players in the design chain

as well as the research community. It is a unique

opportunity and a great challenge.

3) Remarks on the Needs of the Supply Chains: The design

chains should connect seamlessly to minimize design

errors and time-to-market delays. Yet, the boundaries

among companies are often not as clean as needed and
design specs move from one company to the next in

nonexecutable and often imprecise forms, thus yielding

misinterpretations and consequent design errors. In

addition, errors are often caught only at the final

integration step as the specifications were not complete

and imprecise; further, nonfunctional specifications (e.g.,

timing, power consumption, size) are difficult to trace. I

believe also that since the design process is fragmented,
product optimization is rarely carried out across more than

one company boundary. If the design process were carried

out as in a unique Bvirtual[ company including all the

players shown above, the overall ecosystem would greatly

benefit. We have seen that many of the design chain

problems are typical of two very diverse verticals, the

difference between the two being in the importance given

to time-to-market and to the customer appeal of the
products versus safety and hard-time constraints. Similar

considerations could be drawn also for the consumer

electronic market at large that shares many of its

characteristics with the wireless communication market.

This consideration motivates the view that the unified

methodology and framework could be used in several

(if not all) industrial vertical domains.

III . PRINCIPLES OF A UNIFIED DESIGN
APPROACH: PBD

As I will discuss in Section V, most of the present

approaches to SLD used in industry have the drawback of

primarily addressing either hardware or software but not

both. Hardware/software codesign has been a topic of

interest for years, but the proposed methodologies have
still treated the two aspects essentially in a segregated way.

Software approaches miss time and concurrency in their

semantics making it pretty much impossible to describe,

synthesize, and verify hardware. Hardware approaches are

too specific to the hardware semantics to work well for

software designers. I also believe that the levels of

abstraction available in these approaches are not rich
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enough to allow the supply chain to exchange design data
in a seamless fashion.

These drawbacks cause the presently available ap-

proaches to address some of the challenges presented in

Section II but not all, failing especially in the integration

complexity realm and in the supply chain support domain.

A more powerful approach would be to use an all-

encompassing methodology and the supporting tools that:

a) would include both hardware and embedded-
software design as two faces of the same coin;

b) favor the use of high levels of abstraction for the

initial design description;

c) offer effective architectural design exploration;

d) achieve detailed implementation by synthesis or

manual refinement.

In this section I present the PBD methodology and argue

that it meets these requirements.
The concept of Bplatform[ has been around for years.

The main idea of a platform is one of reuse and of

facilitating the work of adapting a common design to a

variety of different applications. Several papers and books

have appeared in the literature discussing platforms and

their use in embedded system design (see for example,

[48], [95], [129], [170], [171], [173], [175], and [176].

In this section, I first introduce the use of the platform
concept in industry, then I present a distilled way of

considering platforms as the building blocks for a general

design methodology that could be used across different

boundaries. I then present the application of this

methodology to an emerging system domain application,

wireless sensor networks, to illustrate the unification

power of platform-based design.

A. Conventional Use of the Platform Concept
There are many definitions of Bplatform[ that depend

on the domain of application.

IC Domain: a platform is considered a flexible

integrated circuit where customization for a particular

application is achieved by programming one or more of the

components of the chip. Programming may imply metal

customization (gate arrays), electrical modification (FPGA
personalization), or software to run on a microprocessor or

a DSP. For example, a platform may be based on a fixed

micro-architecture to minimize mask-making costs but

flexible enough to warrant its use for a set of applications

so that production volume will be high over an extended

chip lifetime. Microcontrollers designed for automotive

applications such as the Freescale PowerPC are examples

of this approach. The problem with this approach is the
potential lack of optimization that in some applications

may make performance too low and size too large.

An extension of this concept is a Bfamily[ of similar

chips that differ for one or more components but that are

based on the same microprocessor(s). Freescale developed

the Oak Family [92] of PowerPC-based microcontrollers

that cover the market more efficiently by differing in flash

memory size and peripherals. The TI OMAP platform [55]
for wireless communication2 was indeed developed with

the platform concept well in mind. J.-M. Chateau of ST

Microelectronics commenting on its division commitment

to platform-based design defines it Bas the creation of a

stable microprocessor-based architecture that can be

rapidly extended, customized for a range of applications,

and delivered to customers for quick deployment.[
The use of the platform-based design concept actually

started with the Phillips Nexperia Digital Video Platform

(DVP). The concept of PBD for IC design has not been

without its critics. G. Smith, the former Gartner Data

Quest Analyst for CAD, pointed out a number of short-

comings [185] that make, in his words, PBD work well in

an embedded software development context as advocated

in [176] but not so for chip design. However, not a month

later, in an interview [62], [213], McGregor, former CEO
of Philips semiconductors was quoted: B. . . we redoubled

the company’s efforts in platform-based design. Philips

embraced the idea earlyVin the mid’90s, The recommit-

ment to the platform approach under my watch is among

my most notable accomplishments.[ In another important

quote: BST’s Geyres attributed ST’s continued success in

the set-top business to its migration from systems-on-chip

to application platforms,[ [214]. At this time, there is little
doubt that PBD has made significant inroads in any

semiconductor application domain. The Xilinx Virtex II

[210] family is a platform rich in flexibility offered by an

extensive FPGA fabric coupled with hard software

programmable IPs (up to four PowerPC cores and a

variety of peripherals. The FPGA fabric is enriched by a set

of Bsoft[ library elements such as the microblaze processor

and a variety of smaller granularity functional blocks such
as adders and multipliers.

I believe there will be a converging path towards the

platform of the future, where traditional semiconductor

companies will increase the flexibility of their platforms by

possibly adding FPGA-like blocks and heterogeneous

programmable processors, while the FPGA-based compa-

nies will make their platforms more cost and performance

efficient by adding hard macros, thus differentiating their
offerings according to the markets of interest. The more

heterogeneity is added to the platform, the more potential

for optimizing an application at the price of a more

complex design process for the application engineers who

have to allocate functionality to the various components

and develop code for the programmable parts. In this

context, the interaction among the various components

has problems similar to those faced by the system

2From the TI home page: BTI’s OMAP Platform is comprised of market
proven, high-performance, power efficient processors, a robust software
infrastructure and comprehensive support network for the rapid develop-
ment of differentiated internet appliances, 2.5G and 3G wireless handsets
and PDAs, portable data terminals and other multimedia-enhanced
devices.[
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companies in an inherently distributed implementation
domain (e.g., cars, airplanes, industrial plants). The

Bright[ balance among the various components is difficult

to strike and the methodology I will describe later is an

attempt to give the appropriate weapons to fight this battle.

PC Domain: PC makers and application software

designers have been able to develop their products quickly

and efficiently around a standard Bplatform[ that emerged

over the years. The Barchitecture[ platform standards can
be summarized in the following list.

1) The x86 instruction set architecture (ISA) makes

it possible to reuse the operating system and the

software application at the binary level3.

2) A fully specified set of busses (ISA, USB, PCI)

make it possible to use the same expansion boards

or IC’s for different products.

3) A full specification of a set of I/O devices, such as
keyboard, mouse, audio and video devices.

All PCs should satisfy this set of constraints. Both the

application developers and the hardware designers

benefited from the existence of a standard layer of

abstraction. Software designers have long used well-

defined interfaces that are largely independent from the

details of the hardware architecture. IC designers could

invent new micro-architectures and circuits as long as
their designs satisfied the standard. If we examine

carefully the structure of a PC platform, we note that it

is not the detailed hardware micro-architecture that is

standardized, but rather an abstraction characterized by a

set of constraints on the architecture. The platform is an

abstraction of a Bfamily[ of micro-architectures. In this

case, IC design time is certainly minimized since the

essential components of the architecture are fixed and the
remaining degrees of freedom allow some optimization of

performance and cost. Software can also be developed

independently of the new hardware availability, thus

offering a real hardware–software codesign approach.

System Domain: The definition of a platform is very

loose. This quote from an Ericsson press release is a good

example: BEricsson’s Internet Services Platform is a new

tool for helping CDMA operators and service providers
deploy Mobile Internet applications rapidly, efficiently

and cost-effectively.[ The essential concept outlined here

is the aspect of the capabilities a platform offers to develop

quickly new applications. It is similar to the application

software view of a PC platform, but it is clearly at a higher

level of abstraction. The term platform has been also used

by car makers to indicate the common features shared

between different models. For automobiles, platforms are
characterized by common mechanical features such as

engines, chassis, and entire powertrains. It is not

infrequent to see a number of different models even

across brands share many mechanical parts, addressing

different markets with optimized interior and styling.

Here, the focus on subsystem commonality allows for

faster time-to-market and less expensive development.

There are clearly common elements in the platform
approaches across industrial domains. To make platforms a

general framework for system design, a distillation of the

principles is needed so that a rigorous methodology can be

developed and profitably used across different design

domains.

B. Platform-Based Design Methodology
The principles at the basis of platform-based design

consist of starting at the highest level of abstraction, hiding

unnecessary details of an implementation, summarizing

the important parameters of the implementation in an

abstract model, limiting the design space exploration to a

set of available components, and carrying out the design as

a sequence of Brefinement[ steps that go from the initial

specification towards the final implementation using

platforms at various level of abstraction [44], [129], [174].

1) Platform Definition: A platform is defined to be a

library of components that can be assembled to generate a

design at that level of abstraction.

This library not only contains computational blocks that

carry out the appropriate computation but also communi-
cation components that are used to interconnect the

computational components.
It is important to keep communication and computation

elements well separated as we may want to use different

methods for representing and refining these blocks. For

example, communication plays a fundamental role in

determining the properties of models of computation. In

addition, designing by aggregation of components requires

a great care in defining the communication mechanisms as

they may help or hurt design reuse. In design methodol-
ogies based on IP assembly, communication is the most

important aspect. Unexpected behavior of the composition

is often due to negligence in defining the interfaces and

the communication among the components.

Each element of the library has a characterization in

terms of performance parameters together with the

functionality it can support.

The library is in some sense a parameterization of the
space of possible solutions. Not all elements in the library

are pre-existing components. Some may be Bplace holders[
to indicate the flexibility of Bcustomizing,[ a part of the

design that is offered to the designer. For example, in a

Virtex II platform, part of the design may be mapped to a

set of virtual gates using logic synthesis and place-and-

route tools. For this part, we do not have a complete

characterization of the element since its performance
parameters depend upon a lower level of abstraction.

A platform instance is a set of components that is

selected from the library (the platform) and whose

parameters are set. In the case of a virtual component,

the parameters are set by the requirements rather than by

the implementation. In this case, they have to be

considered as constraints for the next level of refinement.
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This concept of platform encapsulates the notion of
reuse as a family of solutions that share a set of common

features (the elements of the platform). Since we associate

the notion of platform to a set of potential solutions to a

design problem, we need to capture the process of

mapping a functionality (what the system is supposed to

do) with the platform elements that will be used to build a

platform instance or an Barchitecture[ (how the system

does what is supposed to do). This process is the essential
step for refinement and provides a mechanism to proceed

towards implementation in a structured way.

I strongly believe that function and architecture should

be kept separate as functionality and architectures are

often defined independently, by different groups (e.g.,

video encoding and decoding experts versus hardware/

software designers in multimedia applications). Too often

I have seen designs being difficult to understand and to
debug because the two aspects are intermingled at the

design capture stage. If the functional aspects are

indistinguishable from the implementation aspects, then

it is very difficult to evolve the design over multiple

hardware generations.

2) Design Process: The PBD design process is not a fully

top-down nor a fully bottom-up approach in the traditional
sense; rather, it is a meet-in-the-middle process (see

Fig. 2) as it can be seen as the combination of two efforts.

1) Top-down: Map an instance of the functionality

of the design into an instance of the platform and

propagate constraints.

2) Bottom-up: Build a platform by choosing the

components of the library that characterizes it and

an associated performance abstraction (e.g.,
timing of the execution of the instruction set for

a processor, power consumed in performing an

atomic action, number of literals for technology

independent optimization at the logic synthesis

level, area and propagation delay for a cell in a

standard cell library).

The Bmiddle[ is where functionality meets the platform.

Given the original semantic difference between the two,

the meeting place must be described with a common

semantic domain so that the Bmapping[ of functionality to

elements of the platform to yield an implementation can

be formalized and automated.

To represent better the refinement process and to
stress that platforms may pre-exist the functionality of the

system to be designed, we turn the triangles on the side

and represent the Bmiddle[ as the mapped functionality.

Then, the refinement process takes place on the mapped

functionality that becomes the Bfunction[ at the lower

level of the refinement. Another platform is then

considered side-by-side with the mapped instance and

the process is iterated until all the components are
implemented in their final form. This process is applied at

all levels of abstraction, thus exposing what I call the

Bfractal nature of design.[ Note that some of the

components may have reached their final implementation

early in the refinement stage if these elements are fully

detailed in the platform.

The resulting Fig. 3 exemplifies this aspect of the

methodology. It is reminiscent of the Y-chart of Gajski,
albeit it has a different meaning since for us architecture

and functionality are peers and architecture is not

necessarily derived from functionality but may exist

independently.3 It was used as the basis for the

development of Polis [17] and of VCC [123]. The concept

of architecture is well captured by the platform concept

presented above.

The result of the mapping process from functionality to
architecture can be interpreted as functionality at a lower

level of abstraction where a new set of components,

interconnects, and composition rules are identified. To

progress in the design, we have to map the new

Fig. 2. PBD triangles.

Fig. 3. PBD process.

3This diagram together with its associated design methodology was
presented independently by Bart Kienhuis and colleagues (see e.g., [130]).
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functionality to the new set of architectural components.
In case, the previous step used an architectural component

that was fully instantiated, then that part of the design is

considered concluded and the mapping process involves

only the parts that have not been fully specified as yet.

While it is rather easy to grasp the notion of a

programmable hardware platform, the concept is com-

pletely general and should be exploited through the entire

design flow to solve the design problem. For example, the
functional side of Fig. 3 can be as high level as a

denotational specification (find x such that fðxÞ ¼ 0) and

the corresponding platform can be a set of algorithms for

operationalizing the specification (e.g., a Newton–

Raphson algorithm and a nonlinear successive over re-

laxation scheme) together with their performance (e.g.,

quadratic or linear convergence). The choice of a platform

instance would be in this case the selection of the
algorithm to use together with the constraints that this

choice requires (e.g., differentiability of f , nonsingularity

of the Jacobian at the solution for Newton–Raphson).

Assuming Newton–Raphson to be the choice, then this

platform instance becomes the functional specification for

the next layer. In this case, a library of linear equation

solvers to be used in the Newton–Raphson algorithm is

then the next layer platform. We can continue along this
line of reasoning until we decide to use a particular

computing platform for the implementation of the fully

specified algorithm that is available.

3) Considerations on Use of PBD: In PBD, the partitioning
of the design into hardware and software is not the essence of
system design as many think, rather it is a consequence of
decisions taken at a higher level of abstraction. Critical
decisions are about the architecture of the system, e.g.,

processors, buses, hardware accelerators, and memories,

that will carry on the computation and communication

tasks associated with the overall specification of the

design.

In the PBD refinement-based design process, platforms
should be defined to eliminate large loop iterations for
affordable designs. They should restrict the design space via
new forms of regularity and structure that surrender some

design potential for lower cost and first-pass success. The

library of functional and communication components is

the design space that we are allowed to explore at the

appropriate level of abstraction.

Establishing the number, location, and components of
intermediate Bplatforms[ is the essence of PBD. In fact,

designs with different requirements and specifications may
use different intermediate platforms, hence different

layers of regularity and design-space constraints. The

tradeoffs involved in the selection of the number and

characteristics of platforms relate to the size of the design

space to be explored and the accuracy of the estimation of

the characteristics of the solution adopted. Naturally, the

larger the step across platforms, the more difficult is

predicting performance, optimizing at the higher levels of
abstraction, and providing a tight lower bound. In fact, the

design space for this approach may actually be smaller than

the one obtained with smaller steps because it becomes

harder to explore meaningful design alternatives and the

restriction on search impedes complete design-space

exploration. Ultimately, predictions/abstractions may be

so inaccurate that design optimizations are misguided and

the lower bounds are incorrect.
The identification of precisely defined layers where the

mapping processes take place is an important design decision
and should be agreed upon at the top design management
level. Each layer supports a design stage where the

performance indexes that characterize the architectural

components provide an opaque abstraction of lower layers

that allows accurate performance estimations used to

guide the mapping process.
This approach results in better reuse, because it decouples

independent aspects, that would otherwise be tied, e.g., a given
functional specification to low-level implementation details, or
to a specific communication paradigm, or to a scheduling
algorithm. It is very important to define only as many

aspects as needed at every level of abstraction, in the

interest of flexibility and rapid design-space exploration.

C. Application of PBD: Wireless Sensor
Network Design

In this section, I demonstrate that PBD is applicable

not only to digital designs and hardware/software codesign

approaches (the most obvious applications) but also to

design problems as different as wireless sensor networks.

In these examples, I emphasize the levels of abstraction

and their relative positions, as well as the way they relate
to the overall design flow. I invite the interested readers to

see [45], [61], and [168], for a set of different applications

that include hardware/software co-design, analog design,

automotive electronic system design, and communication

design both on-chip and at the system level.

The application of Wireless Sensor Networks technol-

ogy [54] to the design of field-area networks for industrial

communication and control systems has the potential to
provide major benefits in terms of flexible installation and

maintenance of field devices, support for monitoring the

operations of mobile robots, and reduction in costs and

problems due to wire cabling [205], [217].

The software for control applications within industrial

plants is usually written by process or mechanical

engineers that are expert in process control technology,

but know little of the communication and sensing
infrastructure that has to be deployed to support these

algorithms. On the other side, the communication

infrastructure is designed by communication engineers

that know little about process control technology. More-

over, the adoption of wireless technology further compli-

cates the design of these networks. Being able to satisfy

high requirements on communication performance over
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an unreliable communication channel is a difficult task.
Consequently, the gap between the control algorithm

designers and the network designers will inevitably

increase. This phenomenon might delay the adoption of

wireless sensor networks technology.

The platform-based methodology can contribute to the

solution of these problems focusing the effort on the

definition of a clear set of abstraction layers across which

the design progresses. For a more detailed overview of
the methodology, the interested readers is referred to

[28]–[30] and [180]. The different abstraction layers

presented below and their relationship are shown in

Fig. 4.

The first layer is an application interface called sensor
network service platform (SNSP). The SNSP defines a set of

services available to the application engineer to specify the

target application formally without dealing with the details
of a particular network implementation. The SNSP offers a

query service (QS) used by controllers to get information

from other components, a command service (CS) used by

controllers to set the state of other components, a timing/
synchronization service (TSS) used by components to agree

on a common time, a location service (LS) used by

components to learn their location, and a concept repository
service (CRS) which maintains a map of the capabilities of
the deployed system and it is used by all the components to

maintain a common consistent definition of the concepts

that they agreed upon during the network operation. While

the SNSP description suffices to capture the interaction

between controllers, sensors, and actuators, it is a purely

functional description, which does not prescribe how and

where each of these functions will be implemented.

Hence, information such as communication protocols,
energy, delay, cost, and memory size are not included.

The second abstraction layer is called Sensor Network
Ad hoc Protocol Platform (SNAPP) [29]. The SNAPP defines

a library of communication protocols and the interfaces

that these protocols offer to the SNSP. In Fig. 4, RAND

and SERAN are two examples of protocols that populate
the SNAPP.

Once the communication protocol is selected, it must

be implemented on a set of physical nodes. A description

of the actual hardware platform is given by the sensor
network implementation platform (SNIP) [180]. In Fig. 4,

MICA [155] and TELOS [156] are two commonly available

hardware platforms.

The process of mapping the SNSP description to a
SNAPP instance and eventually to a SNIP instance goes

through a set of steps. First, the selected topology and

communication protocol must be ensured to be capable of

supporting the sensing, actuation and communication

requirements implied by the application.

Once the constraints on sensing, actuation, and

communication have been derived, the methodology

requires an abstraction of the physical layer properties of
the proposed hardware platform (candidate SNIP in-

stance) and selects an adequate topology and communi-

cation protocol among the ones available in the SNAPP.

Finally, the parameters of the protocol are synthesized so

that the given constraints are satisfied and energy

consumption optimized.

Tools that help bridging between two different layers of

abstraction have been developed for particular application
domains [28].

Summarizing, the methodology:

1) allows the control algorithm designer to specify

the application using a clear interface that

abstracts the drudgeries of the network imple-

mentation;

2) derives a set of constraints on the end-to-end

(E2E) latency and packet error rate that the
network has to satisfy starting from the applica-

tion description;

3) derives a solution for MAC and Routing that

satisfies requirements and optimizes for energy

consumption using the E2E requirements and an

abstraction of the hardware platform;

4) maps the communication protocol to the hard-

ware nodes and the PLC.
The introduction of the levels of abstraction and of the

tools allows a seamless path to implementation from high-

level application-driven specifications where various sup-

ply chain players can optimize their contributions. The

layers of abstraction define the boundaries across which

the design transition occurs. Note that application

designers when using this approach can quickly adapt to

a new implementation platform (even an heterogeneous
one where different nodes may be provided by different

vendors) exploiting the advantages of the technology

without having to pay the price of redesigning their

applications.

The definition of the platform levels allows us also to

develop synthesis and verification tools that would have

been impossible otherwise. This layered approach isFig. 4. PBD for wireless sensor networks.
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reminiscent of the standard ISO-OSI layering but it has
important differences as the layers are not necessarily

predefined and standardized and the potential of optimi-

zation is much greater. In some sense, PBD retains the

favorable aspects of the layered approach to communica-

tion design while improving performance and design

freedom.

D. Platform-Based Design and
Model-Driven Development

The paradigm that most closely resembles PBD is

model-driven (software) development (MDD). MDD is a

subject of intense research and investigation in the

software development community as it bears much

promise to improve the quality of software. For an

excellent review of the state of the art and of challenges

that MDD poses to the software community, I recommend
the March 2006 issue of the IBM Systems Journal [66] and,

in particular, the paper BModel-Driven Development: The

good, the bad and the ugly[ by B. Hailpern and P. Tarr, for

a deep analysis of the pros and cons of the approach.

MDD is based on the concept of model-driven

architecture. The OMG defines the term model-driven

architecture (MDA) to be as follows: BMDA is based on a

Platform-Independent Model (PIM) of the application or
specification’s business functionality and behavior. A

complete MDA specification consists of a definitive

platform-independent base model, plus one or more

Platform-Specific Models (PSMs) and sets of interface

definitions, each describing how the base model is

implemented on a different middleware platform. A

complete MDA application consists of a definitive PIM,

plus one or more PSMs and complete implementations,
one on each platform that the application developer

decides to support. MDA begins with a model concerned

with the (business-level) functionality of the system,

independent of the underlying technologies (processors,

protocols, etc.). MDA tools then support the mapping of

the PIM to the PSMs as new technologies become available

or implementation decisions change,[ [98].

The concept of separation of concerns between
function and platform is clearly stated. The use of the

mapping of functionality to platforms as a mean to move

towards the final implementation is also expressed.

However, the similarities between the two approaches

end here as the definition of platform is not fully described

nor are the semantics to be used for embedded software

design.

The Vanderbilt University group [127] has evolved an
embedded software design methodology and a set of tools

based on MDD. In their approach, models explicitly

represent the embedded software and the environment it

operates in and capture the requirements and the design of

the application, simultaneously. Models are descriptive, in

the sense that they allow the formal analysis, verification,

and validation of the embedded system at design time.

Models are also generative, in the sense that they carry
enough information for automatically generating embed-

ded software using the techniques of program generators.

Because of the widely varying nature of embedded systems,

the Vanderbilt researchers emphasize that a single modeling
language may not be suitable for all domains; thus, modeling

languages should be domain-specific (DSL). These lan-

guages have a significant impact on the design process

[118] for complex software systems. In embedded systems,
where computation and communication interact with the

physical world, DSLs offer an effective way to structure

information about the system to be designed along the

Bnatural dimensions[ of the application [86]. I take the
position that DSLs for embedded systems should have a
mathematically manipulable representation.

This view goes against the use of a general language for

embedded systems and favors customization to obtain
better optimization and easier adoption. However, custo-

mization carries obvious drawbacks in terms of develop-

ment costs and support efforts. To decrease the cost of

defining and integrating domain-specific modeling lan-

guages and corresponding analysis and synthesis tools, the

model-integrated computing (MIC) [127] approach is

applied in an architecture, where formal models of

domain-specific modeling languages-called metamodels
play a key role in customizing and connecting components

of tool chains. The generic modeling environment (GME)

[127] provides a framework for model transformations

enabling easy exchange of models between tools and offers

sophisticated ways to support syntactic (but not semantic)

heterogeneity. The KerMeta metamodeling workbench

[128], [159] is similar in scope.

In synthesis, MDD emphasizes design by (whenever
possible automatic) model transformations. Model-based

approaches have been applied for years in the hardware

domain where one can argue that since the introduction of

logic synthesis, this approach has had great success. Most

of the formal approaches to hardware design are indeed

model driven in the sense that a design model is

successively transformed into hardware. In embedded

software, the approach still has to be fully exploited as
using a model-driven method requires the description of

the software with mathematical models, a step that for

most software designers is not easy. DSLs will probably

help in pushing for the adoption of MDD in the embedded

software community since it is possible to design these

languages to meet the specific needs of a homogeneous

group of designers thus allowing them to be more effective

in expressing their designs. However, if indeed each
design group is going to have its specific language, the

problem will be how to interface the various parts of the

design so that the composition can be analyzed and

verified. I believe that this issue can be resolved only if the

semantics of the languages are well understood and the

interaction among parts described with different languages

is mathematically well characterized. The Vanderbilt
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group is addressing some of these issues with semantic
anchoring of DSLs using abstract semantics based on

abstract state machines [32], [103]. In addition, the

MILAN framework [126] offers a number of simulation,

analysis, and synthesis tools that leverage the MIC

framework. A recent approach to Bgluing[ parts described

by different languages consists of using higher level

programming models and languages for distributed

programming, called coordination models and languages
[46], [50]. In the coordination model approach, one can

build a complete programming model out of two separate

piecesVthe computation model and the coordination model.
The computation model allows programmers to build a

single computational activity, a single-threaded step-at-a-

time computation. The coordination model is the glue that

binds separate activities into an ensemble. The similarity

with the separation between computation and communi-
cation in PBD is strong.

A coordination language is Bthe linguistic embodiment

of a coordination model[ [46]. The most famous example

of a coordination model is the Tuple Space in Linda, a

language introduced in the mid 1980s, that was the first

commercial product to implement a virtual shared

memory (VSM), now popularly known as tuples-pace

technology for supercomputers and large workstation
clusters. It is used at hundreds of sites worldwide [16].

Linda can be seen as a sort of assembly level coordination

language since it offers:

1) very simple coordination entities, namely, active

and passive tuples, which represent processes and

messages, respectively;

2) a unique coordination medium, the Tuple Space,

in which all tuples reside;
3) a small number of coordination laws embedded in

four primitives only.

Coordination languages can be built on Linda to offer a

higher level of abstraction construct to simplify the

synchronization and message passing among the compo-

nents. Many coordination languages have been built over

the years. An excellent review of Linda derivatives and

coordination languages such as Laura and Shade can be
found in [161].

Once more, I advocate the add a strong mathematically

sound semantics to the linguistic approach to composition.

This is indeed the contribution of some of the environ-

ments for heterogeneous models of computation such as

Ptolemy II and Metropolis.

E. Concluding Remarks on PBD
The notion of PBD presented in this section is being

adopted rather widely by the EDA companies who are

active in the system space or that are eyeing that market.

CoWare [170] and Mentor Graphics [52] use platforms in

their architectural design and design-space exploration

tools pretty much in the sense I introduced here. Cadence

and National Instruments use the concepts of platforms in

the description of their tools and approaches using
diagrams similar to Fig. 2.

I believe PBD serves well the purpose of the supply

chain as the layers of abstraction represented by the

platforms can be used to define the hand-off points of

complex designs. In addition, the performance and cost

characteristics associated to the platforms represent a

Bcontract[ between two players of the design chain. If the

platform has been fully specified with performance and
cost given by the supplier, then the client can design at his/

her level of abstraction with the assumption that the

Bcontract[ will be satisfied [82], [134]. If the supplier has

done his/her homework well, the design cycles are

considerably shortened. If one or more of the components

of the platform instance chosen by the client is not made

available by the supplier, but it has to be designed anew,

the performance assumed by the client can serve as a
specification for the supplier. In both cases, the Bcontract[
is expressed in executable form and prevents misunder-

standings and long design cycles.

The platform concept is also ideal to raise the level of

abstraction since it does not distinguish between hard-

ware and software but between functionality and archi-

tecture. Hence, the design-space exploration can take

place with a more degrees of freedom than in the
traditional flows. In addition, the partitioning between

hardware and software components can be done in an

intelligent and optimized way.

On the other hand, PBD does require a specific

training of designers to guide them in the definition of the

Bright[ levels of abstraction and of the relationships

among them. It does benefit from the presence of

supporting tools for analysis, simulation, and synthesis
organized in a well-structured design flow that reflects the

relationships among the platforms at the different layers of

abstraction. Designers have to be careful in extracting

implementation aspects they want to analyze from

behavior of their design. In my experience of interaction

with industry on importing PBD, this has possibly been the

most difficult step to implement. However, once it is well

understood, it gave strong benefits not only in terms of
design time and quality, but also in terms of documenta-

tion of the design.

IV. STATE-OF-THE-ART IN EMBEDDED
SYSTEM DESIGN REVIEW USING THE
PBD PARADIGM

As mentioned several times, the methodology, framework,
and tools presented above can serve as an integration

framework to leverage the many years of important work

of several researchers. As done in [63], I use the diagram of

Fig. 5, a simplification of Fig. 3, to place in context system-

level design approaches reported in literature. This

classification is not only for taxonomy purposes. It also

shows how to combine existing approaches into the unified
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view offered by PBD to build optimized flows that can be

customized for particular applications.

A. Representing the Functional Aspects of an
Embedded System

We argued that for true system level design, we must

be able to capture the functionality of the design at the
highest possible level of abstraction without using implicit

assumptions about an implementation choice. Since a most

appealing feature of capturing the functionality of the

design is to be able to execute it on a computer for

verification and analysis, it is natural that designers and

researchers cast the problem in terms of design languages.

1) Languages for Hardware Design: Because of the
popularity and the efficiency of C, several approaches for

raising the levels of abstraction for hardware design are

based on C and its variants.4 C has been used successfully

to represent the high-level functional behavior of hardware

systems and to simulate its behavior. A simulation amounts

to running the compiled C code and hence is very fast,

limited by the speed of the simulation host and by the

quality of the compiler. The main problem with this
approach is the lack of concurrency and of the concept of
time in C. In fact, hardware is inherently concurrent and

time is essential to represent its behavior accurately. In

addition, C has been designed with standard programming

application in mind and in its constructs, it relies upon

standard communication mechanisms through memory

that are inadequate, to say the least, for hardware

representation. For these reasons, a number of derivative
languages have been introduced, some with more success

than others. The pioneering work in this field was done by

De Micheli and students [81], [152] who discussed the

main problems of using C as a hardware description

language from which a register transfer level (RTL)

description could be synthesized. Commercial offerings

such as Mentor CatapultC, Celoxica Handel-C [47],

C2Verilog, and Bach [85] defined a subset of ANSI C to
do either synthesis or verification.

More recently, there has been a strong interest in

languages that are derived from C or C++ and that

explicitly capture the particular aspects of hardware. In

particular, SystemC [97], [196] and SpecC [68] stand out.

SystemC is a class library of the C++ language while

SpecC is a super set of ANSI C. Both have special

constructs to represent hardware concepts, to support
concurrency and a rich set of communication primitives.

The resemblance to C of these languages is then mainly

syntactical while their semantics are quite different.

The usefulness to a designer of a language is not only

the capability of representing his/her intent but also the

support given in terms of verification, formal analysis, and

synthesis. Both SystemC and SpecC are not directly

synthesizable nor formally verifiable. To verify formally
or synthesize a design expressed in System C or SpecC, we

need either to subset the language (SystemC) or to go

through a set of manual or automatic transformations to

yield a synthesizable representation (SpecC).

SystemC is used mainly for simulation. Several

SystemC simulation engines are available (one is open

source). Of course, the performance of the simulation

and the leverage in design representation comes from the
level of abstraction of the models described in these

languages. There are a few synthesis tools that generate

RTL from SystemC-like languages. Companies like

Mentor, Synopsys, and Forte Design offer tools in this

domain. The jury is still out regarding the degree of

acceptance of hardware designers for this kind of tool as

the quality of the results is mixed. Sometimes the quality

is comparable and even better than the one of human
designs, sometimes it is definitely worse.

An alternative approach to raising the level of

abstraction is to extend existing RTLs to cover constructs

that help in describing and verifying higher levels of

abstraction. In this context, SystemVerilog [90], [193] has

been accepted with interest by the hardware design

community as it builds upon the widely used Hardware

Description Language (HDL) Verilog. While SystemVer-
ilog can be used almost for everything SystemC can do, the

opposers of this approach list as drawbacks the difficulty of

using SystemVerilog for system designers with software

background and the difficulty in expressing some of the

concepts important to system design.

An interesting approach to hardware synthesis and

verification is offered by BlueSpec [27]. BlueSpec takes as

input a SystemVerilog or a SystemC subset and manip-
ulates it with technology derived from term rewriting

systems (TRS) [15] initially developed at MIT by Arvind.

The idea of term rewriting was developed in computer

science and is the basis of several compiler techniques. It

offers a nice environment to capture successive refine-

ments to an initial high-level design that are guaranteed

correct by the system. The appeal of the approach is that

4We recommend to the interested reader the excellent survey paper
by Edwards for a critical review of C-derived languages [74].

Fig. 5. Function architecture mapping.
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designers can maintain their intent throughout their
design process and control the synthesis steps. This is a

significant deviation from the work on high-level synthesis

pioneered by the CMU school [67] where from a high-level

design representation, both architecture and micro-

architecture implementations were automatically gener-

ated. The general consensus today is that the chasm

between an algorithmic description and an implementa-

tion is just too wide to be able to obtain a good
implementation.

2) Languages for Embedded Software Design: Tradition-

ally, abstract analysis and design have been divorced from

implementation concerns, helped by the Turing abstrac-

tion that has simplified the task of programming by

decoupling functionality and the physical world. Because

of this dichotomy, today, embedded software designers use
low-level facilities of a real-time operating system (RTOS),

tweaking parameters such as priorities until the system

seems to work. The result is, of course, quite brittle.

The main difficulty faced by embedded software

designers are programmer productivity and design cor-

rectness. This is particularly true when the software is to

be distributed over a network, as in the case of avionics and

automotive applications. In this case, side effects due to
the interaction of different tasks implemented on different

elements of the design make the verification of the correct

behavior of the system very difficult since the traditional

paradigm of adjusting priorities does not apply.

Most of the design methodologies in use in the

embedded system industry have been borrowed by standard

software design practices, and emphasis is placed on

development processes rather than on the content of the
design. However, in the industrial sectors where safety is a

primary concern, there has been an interesting shift

towards the use of languages that have intrinsic correctness

guarantees and for which powerful analysis and synthesis

methods are possible. Ironically, while in the case of

hardware system design the state-of-the-art is the attempt at

adapting languages like C and C++ typically used for

software, the most advanced paradigm in embedded
software design is borrowed from hardware design! In

particular, the most elegant approach is the extension of the

synchronous design paradigm to software design.

Synchronous Languages: The goal of synchronous

languages is to offer strong formal semantics that make the

verification and the code generation problem easier by
construction. The work of the French school on synchro-

nous languages [25], and in particular, Esterel [26], Lustre
[104], and Signal [102] with their industrial derivatives

(e.g., Esterel Studio and Lustre-SCADE from Esterel

Technology and Signal-RT Builder from TN-Software

Division of Valiosys), has been at the forefront of a novel

way of thinking about embedded software. The synchro-

nous design languages approach has made some significant

in-roads in the safety critical domain, especially in avionics.

The synchronous languages adopt the synchronous
hardware design paradigm in the sense that they assume

that computation occurs in two separate phases, compu-

tation and communication, that do not overlap. Often this

concept is described as communication and computation

taking zero time, while a better way would be to say that

the actual time taken for communication and computation

does not matter from a functional point of view as they do

not overlap. The notion of time is then one of logical time
that relates to phases of behavior and sequencing. In this

model, behavior is predictable and independent of the

actual implementation platform. This is similar to

synchronous hardware where as long as the critical path

of the combinational hardware between latches takes less

time than the clock cycle, the behavior of the hardware is

independent of the actual delays of the combinational

logic.
The adoption of these languages in the embedded

software community has been limited to safety-critical

domains such as aviation and automotive, but I believe that

they could and should have a larger application.

3) Models of Computation: When we look at the

approaches used for software design and hardware design,

we see that the assumptions about the execution platform
are embedded in the formulation. Take a language like C.

The notion of sequential execution tied to the Von

Neumann computing architecture is deeply embedded in

its semantics. Our paradigm of separating functionality

from implementation is orthogonal to this. We insist that

the formulation must maintain maximum flexibility and

capture the functionality of the design using the least

constrained formalism. The design process then is
originated in a Bpure[ way that allows a designer complete

freedom in choosing an implementation. In addition,

formal verification and implementation by synthesis and

refinement is much better defined and more powerful

using this approach. Hence, the attention on design

capture must be shifted to mathematically sound repre-

sentations [75] from which a design process can generate

(possibly in an automatic fashion) an implementation.
These representations are expressed in an appropriate

language of course, but the syntactical aspects that make

the language usable and appealing to the designers are

secondary. The decision on the mathematical properties of

the representation is the critical one. We have already seen

hardware and software description languages that carry a

rigorous semantics (e.g., synchronous languages), but they

lack the generality needed to face the challenges set forth
in Section II. There is an interesting tradeoff to play: on

one hand, having a very expressive mathematical formal-

ism, such as discrete time, allows us to use one model for a

large number of designs; on the other, having a

mathematical model with strong properties, such as

finite-state machines or data flow, reduces the space of

expressible designs but makes formal analysis and
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synthesis much easier. How to strike a balance between
the two requirements is a part of the art of system design

formulation. The debate between one universal model

versus a set of ad hoc models has been raging for years. The

direction taken by the debate seems to favor the use of

models to represent application-specific designs but with

the possibility of mixing these models in a more general

framework, thus trying to leverage the strong properties of

each of the models and the generality offered by their
composition.

Heterogeneous Models of Computation: The issue of

mixing different models is nontrivial. Much has been

published on this topic (e.g., see [36], [75], [76], [136],

[146], [147], and [172]). In my view, making heteroge-

neous models of computation interact is a mathematically

ill-posed proposition. There is no precise meaning that can

be associated to this communication: information must be
added to the semantics of the original models to specify

separately the meaning of the interaction. In all the

publications about this issue, the interaction model is

chosen either by the user or by the people who built the

environment. I think it is preferable for the interaction to

be specified by the user since he/she is the one to connect

the different models and, hence, must know the semantics

of that construct. The tool builder’s responsibility is to take
into account the wishes of the user and point out potential

inconsistencies and contradictions. How the models are

made to communicate has strong impact on the analyz-

ability of the overall design. I believe that a reasonable

approach for the user is to find a common semantic

domain to embed the different models so that the

interaction can be specified in a controlled environment.

Then, the implications of the interconnection of the
models in the common semantics domain should be

projected back into the respective native domains of the

different models for analysis [163].

Another approach to analyze models of computation is

represented by the so-called LSV model [136]. In this

denotational model, a system is represented by a set of

behaviors. Behaviors are sets of events. Each event is

characterized by a data value and a tag that may be used to
represent partial orders, total orders, logical and physical

time. Complex systems are derived through the parallel

composition of simpler sub-systems, by taking the

conjunction (intersection) of their corresponding sets of

behaviors. This is the lowest level common semantic

domain where models of computation and their heteroge-

neous composition can be embedded. This model has been

used in a number of approaches to analyze the refinement
of Bsingle-clock[ synchronous models into less constrained

implementations [4], [42], [57] as well as design environ-

ments [19].

Yet another approach is about analyzing the behavior of

interfaces to find whether two models can be composed in

an appropriate semantic domain. Interface automata have

been proposed in [59] and used in [137] for heterogeneous

modeling within Ptolemy [76]. Interface automata are low-
level finite-state machines equipped with their usual

synchronous product. They model in a generic way

(an abstraction of) the microstep interface behavior of

different Ptolemy II domains. Interface automata are used

as a typing mechanism between domains. Informally, if P
and Q are models of respective domains domP 6¼ domQ and

respective interface automata P and Q, then the these two

domains can be composed if the automaton P �Q is
deadlock free. In case the two domains cannot be com-

posed, there is a synthesis procedure that can be developed

if certain conditions are satisfied [164], [165].

Environments for Heterogeneous Models of Computa-
tion: Environments for capturing designs based on

heterogeneous models of computation have been around

for a few years both in academia and in industry. We

review, in this section, the most relevant examples.
Ptolemy: Among the environments for heterogeneous

models of computation, Ptolemy II [176] is perhaps the

most well-known. Ptolemy II is the successor of Ptolemy

Classic, started jointly by Lee and Messerschmitt in 1990

[35], which was the first modeling environment to

systematically support multiple models of computation,

hierarchically combined. Ptolemy II introduced the notion

of domain polymorphism (where components could be
designed to be able to operate in multiple domains, for

example, in the discrete time and in the continuous-time

domain) and modal models (where finite-state machines

are combined hierarchically with other models of compu-

tation; in this case, the finite-state machine represents the

mode switching operation of the system). Ptolemy II

incorporates a continuous-time domain that, when com-

bined with the modal modeling capability, yields hybrid
system modeling. Ptolemy II has a sophisticated type

system with type inference and data polymorphism (where

components can be designed to operate on multiple data

types) and a rich expression language. The concept of

behavioral types emerged (where components and do-

mains could have interface definitions that describe not

just static structure, as with traditional type systems, but

also dynamic behavior).
The approach of Ptolemy to modeling is actor oriented.

This model is shared by other environments such as

Metropolis to be presented in details further on [21]. The

term actor was introduced in the 1970s by Hewitt of MIT to

describe the concept of autonomous reasoning agents [114].

The term evolved through the work of Agha and others to

describe a formalized model of concurrency [8], [9]. Agha’s

actors each have an independent thread of control and
communicate via asynchronous message passing. The

Ptolemy actors are still conceptually concurrent; and

although communication is still through some form of

message passing, it need not be strictly asynchronous.

The Ptolemy framework is an ideal playground for

researchers to experiment with novel models of compu-

tation and to analyze their properties. It is essentially
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geared towards embedded software as hardware architec-
tures do not have a particular place in the framework.

ForSyDe and SML-Sys: The formal system design

(ForSyDe) [172] provides a set of formal design-

transformation methods for a transparent refinement

process of a system model into an implementation model

that is optimized for synthesis. Similarly to other modeling

approaches, in ForSyDe the design process starts with a

functional specification. As opposed to the generality of the
Ptolemy paradigm, ForSyDe models of computation are

based on the synchronous paradigm, that is on the

assumption that the components of the design interact

according to precise rules that forbid computation and

communication to overlap. This system specification,

which must be expressed in the Haskell language [7], a

functional language as opposed to Ptolemy that uses Java,

an imperative language, is then refined through the
stepwise application of formally defined design transfor-

mations. Designers can either select among a predefined

set of basic transformation rules from a given library or

define new transformation rules to capture the character-

istics of target execution platform.

SML-Sys is based on the same approach as ForSyDe but

it uses instead the functional language Standard-ML [142];

more importantly, it aims at enabling the use of
heterogeneous models of computation at the specification

phase as in Ptolemy [146]. Noticing that functional

languages are not widely used in the industry due mainly

to issues of efficiency and reusability, the authors of

ForSyDe and SML-Sys have recently proposed a type-safe

framework for the untimed model of computation (UMoC)

that uses C++ while supporting a higher order functional

programming style [147].
Behavior-Interaction-Priority (BIP) framework: The BIP

[96] framework for modeling heterogeneous real-time

components, integrates results developed at Verimag over

the past five years. BIP supports a component construction

methodology based on the thesis that components are

obtained as the superposition of three layers. The lower

layer describes behavior. The intermediate layer includes a

set of connectors describing the interactions between
transitions of the behavior. The upper layer is a set of

priority rules describing scheduling policies for interac-

tions. Layering implies a clear separation between

behavior and structure (connectors and priority rules).

BIP uses a parameterized binary composition operator

on components. The product of two components consists of

composing their corresponding layers separately. Para-

meters are used to define new interactions as well as new
priority rules between the composed components. BIP

provides a mechanism for structuring interactions in-

volving strong synchronization (rendezvous) or weak syn-

chronization (broadcast). Synchronous execution is

characterized as a combination of properties of the three

layers. Finally, timed components can be obtained from

untimed components by applying a structure preserving

transformation of the three layers. BIP allows us to consider
the system construction process as a sequence of

transformations in the three-dimensional space it supports:

Behavior � Interaction � Priority. A transformation is the

result of the superposition of elementary transformations

for each dimension. This provides a basis for the study of

property preserving transformations or transformations

between subclasses of systems such as untimed/timed, asyn-

chronous/synchronous, and event-triggered/data triggered.
Industrial Frameworks: There are several examples of

actor-oriented industrial frameworks with, albeit limited,

support for heterogeneous model of computation.

1) Signal Processing Worksystem (SPW) [182] was

derived from the first approach to actor-oriented

design even earlier than Ptolemy. SPW deals with

data flow designs and uses discrete-event seman-

tics to simulate designs. SPW was developed by
Comdisco in the 1980s. It was later acquired by

Cadence Design Systems in the early 1990s and

placed in the Alta System division. In 2003, SPW

was acquired by CoWare. Similar tools were

Cossap [133] later acquired by Synopsys and the

Mentor Design Workbench based on the Berkeley

language Silage [115] and originated by the IMEC

Cathedral system [169] (no longer available
commercially).

2) Simulink from The MathWorks [183] has a func-

tionality similar to SPW but can simulate mixed

data flow-continuous time designs. The composi-

tion of the two domains is taken in discrete time

as the common semantic domain. In fact,

continuous time is discretized by the integration

formulae embedded in the simulation engine
before being composed with the data-flow com-

ponents that are converted in discrete time as

well. In concert with StateFlow [189], a program

that analyzes designs described as finite-state

machines with the semantics of StateCharts [105],

Simulink forms the most popular approach to

functional design today.

3) LabVIEW from National Instruments [125] is
making significant inroads in functional design

especially as a virtual measurement platform the

company offers.

4) Cocentric System studio from Synopsys [192] uses,

not surprisingly given the role of J. Buck in the

development of the tool [34], some of the Ptolemy

concepts, in particular, the hierarchical composi-

tion of models of computation. It can capture data
flow diagrams and finite-state machines. Both

modeling styles work together and can be nested

to any level of depth. For example, a designer can

model a state machine in which each state is best

modeled as a dataflow, and the algorithm

contained within such a dataflow block can con-

tain further dataflow or control models.
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Among these languages, Modelica [154], an object-
oriented, domain-specific modeling language, stands out.

Modelica was designed by H. Elmqvist and colleagues at

Lund to allow convenient, component-oriented modeling

of complex systems, e.g., systems containing mechanical,

electrical, electronic, hydraulic, thermal, control, electric

power, or process-oriented subcomponents. The free

Modelica language, free Modelica libraries, and Modelica

simulation tools are available, ready-to-use, and have been
utilized in demanding industrial applications, including

hardware-in-the-loop simulations. Dymola offered by

Dynasim [72] (very recently acquired by Dassault) is a

modeling environment and a simulation engine based on

the Modelica language.

B. Representing Architectures
In the PBD framework, the design proceeds from the

functional representation towards the implementation by

mapping the components of the functionality onto

platform instances (architectures). To implement this

design methodology, architectures have to be appropriate-

ly represented. In Fig. 5, the right branch corresponds to

this representation.

Architecture is a broad term used in very liberal ways.

In the computing systems literature, the instruction set
architecture (ISA) represents the highest level of abstrac-

tion that specifies what the processor is supposed to

implement. The micro-architecture is the set of compo-

nents and their interconnect that realizes the ISA.

In my view, the concept has been used mostly to refer

to the structure of a design. Hence, an architecture is a
netlist that establishes how a set of components is connected.

It is then possible to refer to an architecture as the basic
structure of an algorithm as well as a set of ECUs

connected by a CAN bus.

I also include the capabilities of the components as an

element of the architecture especially when thought in the

PBD domain. For example, the set of functions that a block

can compute are elements of the architecture. A Xilinx

FPGA block implements a look-up table (LUT) with four

logical inputs; thus, it can compute any of 32 logic
functions that can be formed with four Boolean input

variables. This information is part of the platform

(architecture) functional characterization.

In the PBD framework, an architectural block is decorated
with its Bcost,[ i.e., the time and power it takes to compute.

The communication infrastructure with its components

and performance information is an essential part of the

architecture. The Bcost[ is either a static evaluation for the
platform component or is computed dynamically by

executing a model of the operation of the component

where the basic steps of the execution have a Bcost[ model.

For example, the performance of a processor when

executing a program can be dynamically evaluated having

the time consumed by each basic operation of the

processor model; if the model is at the ISA level, the

performance of the processor when executing each
instruction has to be provided. In this case, a method for
computing the cost is associated with the component and

the actual cost can only be computed when a functionality

is mapped to the component.

1) Software Architecture Description: In literature, we

find descriptions of software systems involving terms such

as Bclient-server organization[ and Blayered system.[
These descriptions are typically expressed informally and

accompanied by diagram drawings indicating the global

organization of computational entities and the interactions

among them. While these descriptions may provide useful

documentation, the current level of informality limits their

usefulness. In the software domain, it is generally not clear

precisely what is meant by these architectural descriptions.

Hence, it may be impossible to analyze an architecture or
determine nontrivial properties.

Unified Modeling Language (UML): UML [31] is an

approach to software development that stresses a succes-

sive refinement approach to software design. UML is a

standard supported by the Object Management Group

(OMG) [158]. The OMG is an industrial consortium which

produces and maintains computer industry standards for

inter-operable enterprise applications. It is by now the
leading standardization body for modeling technologies

and processes. UML is the result of fusing the concept of

visual languages with the one of object oriented languages.

The language has broad scope and a structure based on

diagrams (Use Case, Interaction, Collaboration, State, and

Physical) that allows one to customize and extend it to

particular domains of application. The semantics of the

language is left unspecified except for the state diagrams
that have the semantics of state charts [105], a formalism

for the description of hierarchical state machines.

The original focus was on the description of software

architecture, i.e., of the causal, communication, and

hierarchy relationships. UML has nice syntactical features

including a graphical representation of the diagrams.

Several companies are standardizing on this language for

their software development.
The generality of UML is paid by the difficulty in

expressing constructs that are common to standard

programming languages such as one-dimensional and

sequential operations (assignments, loops, branches), the

difficulty in performing code generation efficiently and the

difficulty in having tools that support it in full. Its graphical

nature makes it a favorite for software developers to

describe the structure of their programs but is in the way in
the case textual descriptions are more compact.

UML initially targeted software development, and as

such it missed the concept of time, a very important

concept for hardware and real-time designs, and has

difficulty expressing concurrency. In UML 2.0, the latest

release of the language, the BSchedulability, Performance

and Time[ (SPT) UML profile definition is intended to
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address time following the pioneering work of Selic [177]
with real-time object-oriented modeling (ROOM). Yet, the

historical background of middleware software engineering

can be felt, with paradigms drawn straight from the world

of software components and asynchronous communicating

agents or real-time OS underlying many modeling notions.

Profiles refine UML for specific applications. This is at

the same time a strength and a weakness of the language;

today, there are more than 300 UML profiles! The profiles
may be inconsistent and overlap in ways that are not fully

documented.

Among this plethora of profiles, a novel UML profile,

SysML [99], is of great potential interest for embedded

system design. SysML represents a subset of UML 2 with

extensions to support the specification, analysis, design,

verification, and validation of systems that include

hardware, software, data, personnel, procedures, and
facilities. It has been approved by OMG in May 2006.

The four pillars of SysML are the capability of modeling

of requirements, behavior, structure, and parameters. It is

a complex language that is still in its infancy. Strong

support from vendors and application engineers is an

obvious prerequisite for its wide adoption. It does have

interesting aspects that may make its use quite powerful

in the development of embedded systems with real-time
requirements.

There has been a substantial rationalization of the

UML-based tool market as two players have the dominant

position after targeted acquisition: IBM with its Rational

tools [120]5 and Telelogic with Rhapsody [197]6 and Tau

[198] are the most visible providers of UML-based

software development tools. Rhapsody and Rational Rose

are especially targeted to embedded system designers. On
November 2006, a new Tau release (3.0) pulls out the

requirements profile that was embedded in the systems

modeling language (SysML) and makes it available to

anyone who does UML modeling.

With UML, we are still not able to check that the

overall description is consistent in the sense that the parts

fit together appropriately. Architectural description lan-

guages (ADL) are a step toward a complete theory of
architectural description [88] that allows us to reason

about the behavior of the system as a whole. For example,

Wright [10] provides a formal basis for specifying the

interactions among architectural components by providing

a notation and underlying theory that gives architectural

connection explicit semantic status.

Eclipse: Eclipse [91] is an open source platform

comprising a plug-in Java-based environment for building
software. It is the basic framework upon which the IBM

software development tools are built [120]. The Eclipse

platform has been gaining increased popularity and is by

now the preferred integrated development environment

(IDE) for many software development companies. The
Eclipse Modeling Framework (EMF), built as an Eclipse

plug-in, includes a metamodeling language, called Ecore,

and a framework to facilitate loading, access, editing, and

generation of Java code from Ecore models.

Recent software tools for system level design use

Eclipse (for example, BIP, and Metropolis) as a develop-

ment environment and for the definition of their user

interface. The concepts of architectural description not
only apply to hardware but to software as well.

2) Hardware Architecture Description: An architecture

description is useful especially when providing a model for

its Bexecution[ so that the performance and the properties

can be dynamically and statically analyzed. Some of the

critical questions to answer when analyzing an architec-

ture are: how long does it take this platform instance to
compute a particular function? How much power does it

consume? How large is its physical footprint? How

available are its components? What is the worst case

performance? What are the performance variations if we

change one or more elements of the platform instance?

Transaction Level Modeling: Currently, the levels of

abstraction above RTL are not precisely defined. They are

often generically referred to as transaction level models.
Gajski defines six levels of abstraction (PE-assembly

model, bus-arbitration model, time-accurate communica-

tion model, and cycle-accurate computation model) within

the TLM framework related to each other in terms of

accuracy and abstraction power. The SPIRIT (Structure for

Packaging, Integrating and Re-using IP within Tool-flows)

[187] consortium7 of EDA vendors and users, has set

course to define more precisely what is intended for TLM
so that it can be come a standard. TLM 2.0 is the most

recent version of the standard. F. Ghenassia of ST

Microelectronics, one of the most vocal and competent

proposers of this style of design capture and analysis [93]

estimates by using measurements on actual ST designs that

high-level TLM can provide a factor of three orders of

magnitude improvement in terms of simulation speed and

of one order of magnitude in modeling effort versus RTL.
Assembly tools: For now, let us assume that we have

the models at the level of accuracy we need for the

components and that we are interested in the performance

of the entire (virtual) platform instance. To answer these

questions, a simulation engine is almost always required.

For this reason, the most successful approaches are based

on SystemC descriptions that facilitate simulation. The

library of available components can be fully explicit or
encrypted for proprietary IPs. Hence, for the virtual

5The tools were developed by Rational Design, a company that was
acquired in 2002 by IBM.

6Rhapsody was developed by iLogix, acquired by Telelogic in 2006.

7The SPIRIT consortium has generated the IEEE P1685 SPIRIT
Standardization group whose scope is to define an XML Schema for
metadata that documents the characteristics of Intellectual Property (IP)
required for the automation of the configuration and integration of IP
blocks and to define an Application Programming Interface (API) to make
this metadata directly accessible to automation tools.
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platform environment, we need a library of models of the
available components, a library of models of the

components for the interconnections needed to build a

platform instance, a set of different Bcost[ functions, and a

simulation environment. The cost functions can be explicit

or the result of a computation that may involve models of

the components at lower levels of abstraction. Environ-

ments for platform description are generally application

specific since the models of the components are complex
to build and to maintain. Because the concept of platform

as defined in the previous sections is based on a limited

number of available components, application specific

environments can be very effective and allow efficient

architecture exploration and analysis.

CoWare Platform Architect [124], Synopsys Cocentric

System Studio [192], Mentor Platform Express [52], and

ARM MaxSim [141]8 are all addressing the issue of model
creation, integration, simulation, and analysis of platform

instances created by an assembly of components. Among

the academic efforts, MPARM [12], [140] is the most

complete approach. The differences among these tools are

mostly related to the level of abstraction supported and to

the claimed accuracy. It is quite interesting that only a few

years ago IC designers would not even consider a model

that was not guaranteed to be cycle accurate,9 while today
we are witnessing an increased interest in simulation

environment where accuracy is sacrificed to obtain faster

simulations. All of these systems are based on SystemC and

leverage its simulation capabilities. CoWare ConvergenSC

and the Cadence Incisive [122] verification platform are

interfaced to provide analysis capabilities including formal

verification from TLM to RTL implementations.

Communication-Based Design: To assemble (possibly
foreign) IPs, it is important to establish a standard

interface so that the modeling work is minimized and IP

reuse maximized. There are two approaches to intercon-

nect architectures: one is based on a bus structure to

reflect the most commonly used interconnect structure,

the other, Network-on-Chip (NoC), is based on a general

networking infrastructure and is the focus of a great deal of

research, so much so that in all EDA and design
conferences there is at least a session dedicated to NoC

and a Symposium on NoC [195], following a number of

informal NoC workshops such as the one held at DATE

[209]. So important is the design of the interconnect

infrastructure and of the IP interfaces that an entire design

methodology, communication-based design, was proposed

[179] as part of the GSRC [101] agenda.

The Open Core Protocol (OCP) [157] is a standard that
provides a rich modeling framework for its users, centered

around bus interconnects. This approach was actually

originated by the VSI Alliance (VSIA) formed in 1996 to

address the integration challenges of System-on-Chip
(SoC). The VSIA now endorses the OCP as a bus-interface

standard. The OCP was proposed by Sonics, Inc. [186],

[207], a company that specializes in optimized intercon-

nects to ease IP integration for SoCs. IBM with the

CoreConnect [121], ARM with the Amba architecture [13],

as well as the French start-up Arteris [14] are also offering

interconnect IPs. Several IC companies have their own

Bstandard[ interconnect IP (see, for example, [191]) that
may offer better performance for their particular IP design

methodology. The pros and cons of the various approaches

to bus-based interconnects coupled with TLM are dis-

cussed in [162].

The semiconductor industry has been experiencing a

paradigm shift from computation-bound design to commu-
nication-bound design [43]: the number of transistors that

can be reached in a clock cycle, and not those that can be
integrated on a chip, is now driving the design process.

While local interconnects scale in length approximately in

accordance with transistors, global wires do not because

they need to span across multiple IP cores to connect

distant gates [116]. Consequently, global interconnects

have been replacing transistors as the dominant determin-

er of chip performance; they are not only becoming

responsible for a larger fraction of the overall power
dissipation but exacerbate also design problems such as

noise coupling, routing congestion, and timing closure,

thereby imposing primary limits on the design productivity

for gigascale integration [151]. In this scenario, researchers

have proposed to implement on-chip global communica-

tion with packet-switched micro-networks [24], [56],

[109]. Based on a regular scalable structure such as a

mesh or a torus, an NOC is made of carefully engineered
links and represents a shared medium that could provide

enough bandwidth to replace many traditional bus-based

and/or point-to-point communications. On one hand,

NOCs have the potential to mitigate the complexity of

system-on-chip design by facilitating the assembling of

different IP cores through the emergence of standards for

communication protocols and network access points [143],

[144]. On the other hand, it is unlikely that one particular
network architecture will prevail as a single standard

solution. In fact, recent experimental studies [132] suggest

that the design of the interconnect network for a multicore

architecture must be coupled to the design of the

processing cores in a much tighter way than what is

typically done, for instance, for computer clusters.

The use of standard interconnects does not completely

eliminate the need for verification of the assembly of
components as they can interact in unexpected ways unless

a strong compositional approach is taken where the

properties of the components are inherited by the

assembly. As in the case of software components,

compositionality is indeed the goal of any approach that

aims at improving substantially design time and correct-

ness. Yet in most of the cases, compositionality is either

8MaxSim was developed by AXYS that was later acquired by ARM.
9This comment is the result of my interactions with designers when

discussing Polis [17] (and later VCC [123]) modeling philosophy that were
based on less accurate but faster models for software validation.
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not true or it may be computationally intractable to verify.
This is particularly true when implementation concerns

are considered as is typically done when performing

design-space exploration.

In the analysis of component-based systems, as in

design, it is usually insufficient to consider components in

isolation; rather, one must consider each component

together with an assumption about the environment in

which the component is placed. In other words, a
component typically meets its requirements only if the

environment does likewise. Such reasoning is inherently

circular, and not always sound. For example, the circular

(Bassume-guarantee[) reasoning is sound for safety prop-

erties: if component A does not fail (the guarantee)

provided B does not fail (the assumption), and B does not

fail provided A does not fail, then the composition of A and

B will never fail [3], [11], [150]. The same reasoning,
however, is unsound for liveness properties: if A will

respond eventually provided B does, and B will respond

eventually provided A does, this does not ensure that the

composition of A and B will ever respond. Little is known

about assume-guarantee reasoning for richer properties of

the kind we are interested in, such as timing, resource

usage, and performance [60], [113]. Indeed, such proper-

ties are inherently noncompositional if components are
viewed in isolation; for example, if two components share

the same resource, then their individual worst case timing

properties do not apply to the composition. Therefore,

assume-guarantee reasoning, with its emphasis on envi-

ronment assumptions, is essential for composing physical

and computational properties.

Microprocessor Modeling in Architecture Analysis: The

large majority of implementation platforms for embedded
systems contains one or more software programmable

processors since, as we argued earlier, these components

are the key to flexibility for embedded system designers.

When evaluating a platform, we need to run an application

on the platform itself. In the past, embedded system

designers would resort to emulation to evaluate their

software and to choose their processors. However,

emulation has obvious drawbacks when it comes to
flexibility and design-space exploration. This leads to

much work focusing on virtual platforms that simulate that

entire system on one or more general purpose computers.

The speed of such models is of tantamount concern, and

processor modeling is the main bottleneck to achieving

acceptable performance.

Thus, most of the research and industrial attention in

architecture modeling has been devoted to the develop-
ment of the fastest possible processor models for a given

accuracy. The models we need vary according to the design

problem we are addressing. If we are interested in

evaluating a platform where the set of processors is part

of the library, then we should not be interested in the

internal workings of the processor unless it is necessary for

the desired level of accuracy. On the other hand, if part of

our problem is to design the architecture or the micro-
architecture of the processor (or both), then we need to

describe them at a level of abstraction that can give us

confidence in our selection.

The approaches that have been used thus far are as

follows.

Virtual Processor Model (VPM) [23]: This approach is

based on a simple RISC processor model that is used to

Bemulate[ the target processor. The idea is to run the
code on the simplified processor whose model para-

meters are adjusted to mimic as accurately as possible

the cycle count and the memory address behavior of the

target processor. The source code is then back-

annotated with the estimated cycle counts and memory

accesses. This approach is very fast since the simplified

processor takes little time to execute on the simulation

machine but, of course, it may suffer from lack of
accuracy. It is ideal when several processor architec-

tures have to be quickly analyzed since adjusting the

model parameters does not take too long. This approach

does not take into account the optimizations that are

done by the target compiler since the approximated

model is at the architectural level. It works even if the

target processor development chain is not available.

C-Source Back Annotation (CABA) and model calibration
via target machine instruction set [23]: This approach

also uses an approximate model but the parameters of

the model are calibrated using the actual behavior of

the code on the target machine. In this case, we do

need the software development chain of the target

processor. Deriving the model for a given processor

requires one to two man months [23].

Interpreted Instruction-Set Simulator (I-ISS): I-ISS are
generally available from processor IP providers, often

integrating fast cache model and considering target

compiler optimizations and real data and code

addresses. They are rather slow compared to the

previous approaches.

Compiled Code Instruction-Set Simulator (CC-ISS):

Compiled-code ISS share all the features of the

Interpreted ones but are very fast. Unfortunately, they
are often not available from processor IP providers, and

they are expensive to create in terms of required skills

of the developers. Both require the complete software

development chain. This approach had been followed

by three interesting start-ups: Axys (later acquired by

ARM), Vast, and Virtio (later acquired by Synopsys).

All offer cycle accurate compiled-code ISSs. We already

mentioned AXYS’ MaxSim where the microprocessor
model was detailed enough to enable designing its

architecture and micro-architecture while it was fast

enough to run some application code. Vast Systems

[108] developed a modeling approach that produced the

fastest models but would not allow the designer to

break the microprocessor into its architectural compo-

nents. In addition, to achieve this speed, models for a
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given processor had to be developed by the company.
Virtio [202] took an intermediate approach, where the

internal structure of the processor could be accessed

but not to the level of details offered by MaxSim and the

simulation speed would not match Vast’s.The AXYS

modeling methodology was originated by the work at

Aachen of Meyr and Zivojnovic [216] on the LISA

language. A company focused on LISA, LisaTex, was

founded by H. Meyr and later acquired by CoWare,
which also features virtual platform capabilities similar

to MaxSim. The importance of LISA resides in the

capability of expressing models of microprocessors and

DSPs at different layers of abstraction and of generating

automatically the entire software development suite

(compiler, linker, assembler, and debugger) from the

model.

Worst Case Execution Time Estimation: In addition to
simulation, the performance of a program running on a

microprocessor or DSP can be estimated statically, i.e.,

performing a path analysis on the program execution

with timing annotation, similar to the way static timing

analysis is performed in hardware design. As in timing

analysis, we are interested in worst case execution

times which are in general very difficult and even

impossible to compute, hence the necessity to develop
methods for WCET estimation that are fast to compute

and safe, i.e., are upper bounds on the real execution

times. Of course, if the bounds are loose, then the static

analysis would be almost useless. Unfortunately, the

micro-architecture of modern microprocessors is so

complex with caches, pipelines, pre-fetch queues, and

branch prediction units that accurately predicting their

effects in execution time is a real challenge.
Several techniques for WCET estimate have been

proposed. The most mathematically elegant technique

relies on abstract interpretation [53], a theory of sound

approximation of the semantics of computer programs,

based on monotonic functions over ordered sets. It can be

viewed as a partial execution of a computer program that

gains information about its semantics (e.g., control

structure, flow of information) without performing all
the calculations. Path-analysis including cache and pipe-

line prediction was solved by Malik and students at

Princeton [138] using integer linear programming. Ab-

stract interpretation was also the foundation of the work of

Wilhelm and colleagues at the University of the Saarland,

which is the most comprehensive and effective body of

work in this area. The Wilhelm paper [89], [106] is an

excellent review of WCET estimation techniques. Their
work is also the basis for AbsInt [5], a company that offers

tools related to advanced compiler technology for embed-

ded systems.

C. Mapping
The problem of mapping a functional description to a

platform instance (architecture) is the core of the PBD

design-by-refinement paradigm. I recall that the PBD
process begins with a description of the functionality that

the system must implement, a set of constraints that must

be satisfied, and a library (platform) of architectural

components that the designer can use to implement the

functionality. The functionality specifies what the system

does by using a set of services. The architectural platform

captures the cost of the same set of services. Mapping binds

the services used with the services offered and selects the
components to be used in the implementation and the

assignment of functionality to each component.

The problem, in general, is the mismatch between the

models of computation of the functionality and the one of

the implementation. For example, when a functional

design expressed with a synchronous language is mapped

to an architecture that is asynchronous, the behavior of the

design may be substantially changed. If we wish to
maintain a formal relationship between mapped design

and the original functional design, we need to guarantee

that the mapped design does not introduce behaviors that

are incompatible with the assumptions made at the

functional level. Most of the approaches followed today

try to maintain the same models of computation for

functionality and platform instance but this may overly

restrict the design space. For example, synchronous
languages mostly map to synchronous implementation

platforms.

If we allow more general implementation architec-

tures, since mapping is mostly done manually at higher

levels of abstraction for the lack of a precise mathematical

formulation of the problem or of an efficient automatic

procedure, there is a nonnegligible chance that the final

implementation will not behave as expected. Very active
research is on the mapping of synchronous descriptions

into functionally equivalent asynchronous implementations

(see e.g., [4]).

The most traditional problem to be faced is mapping a

concurrent functional model into a sequential implemen-

tation platform, for example, when we map a set of con-

current processes to a single processor. In this case,

concurrent tasks must be scheduled for execution. If there
are timing constraints on the execution of the concurrent

processes, then we are faced with an interesting mathe-

matical problem with great practical relevance: scheduling.

1) Scheduling: The literature on scheduling and

schedulability analysis for real-time systems is very rich

and it will take many pages to do justice to it. Here, I

summarize the main points and their relevance to the
problem of embedded system design. References [38] and

[39] are excellent books on the topic.

The RT scheduling problem can be classified along

three axes:

1) Input characteristic: time-driven: continuous (syn-

chronous) inputs; event-driven: discontinuous

(asynchronous) inputs;
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2) Criticality of timing constraints: Hard RT systems:
response of the system within the timing con-

straints is crucial for correct behavior; Soft RT

systems: response of the system within the timing

constraints increases the value of the system;

3) Nature of the RT load: Static: predefined, constant

and deterministic load; Dynamic: variable (non-

deterministic) load.

The load is represented by a set of processes called
tasks. Tasks are given priorities to indicate their relative

importance. The rules according to which tasks are

executed at any time on the limited resource is called a

scheduling algorithm. Dynamic scheduling algorithms

compute schedules at run time based on tasks that are

executing. Static scheduling algorithms determine sche-

dules at compile time for all possible tasks.

In general, dynamic scheduling yields better processor
utilization and overall performance at the cost of longer

run time used to decide the schedule and of lack of

determinism if tasks are event triggered. Preemptive

scheduling permits one task to preempt another one of

lower priority.

Real-time scheduling theory [38] provides a number of

Bschedulability tests[ for proving whether a set of

concurrent tasks will always meet its deadlines or not.
Major improvements have been made to scheduling theory

in recent years. The original classic Rate Monotonic

Analysis [139] and the newer Deadline Monotonic

Analysis [84] have both been absorbed into the general

theory of fixed-priority scheduling [83].

Real-time scheduling theories have historically found

limited success in industry. However, there is a renewed

interest in scheduling theory as real-time embedded
software systems experienced serious problems due to

scheduling failures (see for example the Mars PathFinder

malfunctioning due to a problem of priority inversion in its

scheduling policy). Ways of transferring scheduling theory

from academia to industrial practice have been investigat-

ed for more than ten years in [78].

2) Correct-by-Construction MappingVGiotto: The idea is
to avoid solving the scheduling problem by forcing the

models of computation of functionality and architecture to

match. The time-triggered architecture [131] offers a view

of an implementation platform that matches the view of

synchronous languages. Giotto [94], [110] is a bridge

towards the PBD paradigm and the more traditional

embedded software approaches. Giotto’s view of the

typical activities of a software engineer includes decom-
posing the necessary computational activities obtained by

the application engineer who determines the functionality

of the design and captures it at a high level of abstraction

with an informal mathematical description or with

algorithmic languages, into periodic tasks, assigning tasks

to CPUs and setting task priorities to meet the desired hard

real-time constraints under the given scheduling mecha-

nism and hardware performance. The software engineer
has final authority over putting the implementation

together through an often iterative process of code

integration, testing, and optimization. Giotto [94], [110]

provides an intermediate level of abstraction, which:

1) permits the software engineer to communicate

more effectively with the control engineer;

2) keeps the implementation and its properties more

closely aligned with the mathematical model of
the control design.

Specifically, Giotto defines a software architecture of the

implementation which specifies its functionality and

timing. Functionality and timing are sufficient and

necessary for ensuring that the implementation is consis-

tent with the mathematical model. On the other hand,

Giotto abstracts away from the realization of the software

architecture on a specific platform and frees the software
engineer from worrying about issues such as hardware

performance and scheduling mechanism while communi-

cating with the control engineer. After writing, a Giotto

provides an abstract programmer’s model for the imple-

mentation of embedded control systems with hard real-

time constraints.

A typical control application consists of periodic

software tasks together with a mode-switching logic for
enabling and disabling tasks. Giotto specifies time-

triggered sensor readings, task invocations, actuator

updates, and mode switches independent of any imple-

mentation platform. In this respect, Giotto is related to

synchronous languages since it limits the semantics of the

designs to the synchronous assumption.

Giotto can be annotated with platform constraints such

as task-to-host mappings and task and communication
schedules. The annotations are directives for the Giotto

compiler, but they do not alter the functionality and timing

of a Giotto program.

The Giotto compiler is based on the virtual machine
concept. In general-purpose computing, the virtual ma-

chine concept has been effective at permitting software

developers to focus on problem-level design rather than

platform-specific idiosyncrasies. The Giotto E-machine is a
virtual machine that abstracts away from the idiosyncrasies

of the RTOS, shifting the burden of ensuring time

correctness from the programmer to the compiler.

By separating the platform-independent from the

platform-dependent concerns, Giotto enables a great deal

of flexibility in choosing control platforms as well as a

great deal of automation in the validation and synthesis of

control software. The time-triggered nature of Giotto
achieves timing predictability, which makes Giotto partic-

ularly suitable for safety-critical applications.

3) Automatic Mapping With Heterogeneous Domains: As

the PBD methodology solidifies and design environments

such as Metropolis [21] are built to support it, there is a

clear need for automatic optimized mapping processes to
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increase productivity and quality. To automate the
mapping process, we need to formulate the optimization

problem in rigorous mathematical terms.

This is an on-going research topic that can be framed in

the general algebraic theory of heterogeneous models of

computation [163]. We are taking inspiration from the

classic logic synthesis flow [33] viewed as an instance of

the general PBD methodology. In this flow, the behavioral

portion of the design is captured in terms of Boolean
equations. The architecture is represented by a gate library

which contains different types of logical gates. The

mapping process selects a set of gates from the gate

library such that the functionality remains the same. To

optimize the gate selection process, both the Boolean

equations and the gate library are transformed into netlists

consisting of a primitive logical gate, such as a two-input

NAND gate (NAND2). The mapping stage, known as tech-
nology mapping, is then reduced to a covering problem.

Each covering has a certain cost, and the synthesis process

reduces the overall cost according to metrics such as delay

or power consumption.

This synthesis flow is based on a common primitiveV
the NAND2 gateVand mathematical rules for defining the

behavior of a set of interconnected primitivesVBoolean

logic. Boolean logic is appropriate for synthesizing com-
binational logic between registers in a synchronous hard-

ware design. Hence, the flow can be restated in three

steps: restriction of the functional domain to synchronous

circuits, choosing a common mathematical representation,

and representing the functionality and platform library in

terms of primitives.

In this research, we use these same three aspects at the

system level. The first problem to solve is to find a
common mathematical language between functionality

and platform. The selection of a common mathematical

language depends on critical decisions involving expres-

siveness, ease of use, and manipulation. In selecting the

common mathematical domain, we must realize that some

of the properties of the original models of computation are

inevitably lost. What to leave on the table is of paramount

importance and cannot be done automatically. The second
step is to identify primitive elements in the common

language that can be used to perform optimal mapping.

The selection of the primitive elements to use involves a

tradeoff between granularity and optimality: coarser

granularity allows the use of exhaustive search techniques

that may guarantee optimality, while finer granularity

allows the possibility of exploring, albeit nonoptimally, a

much larger search space.
This research is still in its infancy, but I believe it will

have an important role in making PBD a mainstay of

system level design.

D. Final Remarks
The approaches in this section all fit in the PBD scheme

addressing the various components of the methodology:

functionality and architecture capture and analysis, re-
finement to implementation. The PBD methodology can

be implemented Bmanually[ by linking together the

various tools and models presented above to describe

functionality and architectural libraries and to perform

mapping to go down one level in the refinement chain.

This approach has been followed in a number of in-

dustrial experiments. In particular, Magneti-Marelli

Powertrain with the help of PARADES formed a pro-
prietary PBD flow out of existing industrial tools achiev-

ing significant savings in design effort and excellent

quality improvements [80]. The tools used and their

relationships to PBD are shown in Fig. 6 (courtesy of

A. Ferrari, PARADES). For the capture of the functionality

of the design (control algorithms for power train manage-

ment) Magneti-Marelli engineers used either Simulink/

StateFlow or ASCET-SD by ETAS, a Bosch company
providing tools for automotive design. The architecture of

the implementation was captured at PARADES using VCC

and UML/ADL. Mapping was performed manually via

textual binding of the functionality to the architecture and

with VCC. The RTDruid tool-set, developed by the Scuola

Superiore di Sant’Anna, Pisa, in cooperation with Magneti

Marelli Powertrain, was used to validate the scheduling

properties of automotive real-time applications. The final
implementation was carried out generating code with

TargetLink that supported the OSEK/VDX operating

system configured manually with OIL to complete the

implementation of the functionality on the chosen

architecture.

The benefits of PBD can be amplified if the Bglue[ that

allows us to pick the flow that best fits a particular

application is automatically generated. The glue should
serve as an integration framework not only for the design

flow and for the supply chain but also for the various

application-specific languages, tools, and methods. This

underlines the need for a different kind of framework.

Fig. 6. PBD in Magneti-Marelli.
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V. METROPOLIS FRAMEWORK

Metropolis [19], [21] was designed with the requirements

of Section II in mind. In its design, there is a determination
to learn from previous mistakes and to include the best

ideas that were previously developed. In addition,

Metropolis design representation has foundations that

can be shared across different models of computation and

different layers of abstraction. Architectures are also

represented as computation and communication

Bservices[ to the functionality. Metropolis can then

analyze statically and dynamically functional designs with
models that have no notion of physical quantities and

mapped designs where the association of functionality to

architectural services allows us to evaluate the character-

istics (such as latency, throughput, power, and energy) of

an implementation of a particular functionality with a

particular platform instance. The mechanism used to

derive the performance of the overall design given an

estimate of the quantities of the components of the design.
These are kept separate because they represent the result

of implementation choices and as such, they derive from a

specific architectural mapping of the behavior. Metropolis

also allows us to enter constraints separately from

functionality thus providing a mixed denotational and

operational specification. Constraints are expressed as

equalities and inequalities over the performance indexes

and as formulas in a temporal logic.

A. Introduction to Metropolis
Metropolis10 has been designed to support platform-

based design in a unified framework. However, given the

generality of the framework, it could be used to support

other design approaches. A schematic representation of

the Metropolis framework is shown in Fig. 7: the

infrastructure consists of:
1) an internal representation mechanism, called the

Metropolis Meta-Model (MMM);

2) design methodology;

3) base tools for simulation and design imports.

The MMM is a model with formal semantics that:

1) is powerful enough, so that the most commonly

used abstract models of computation (MOCs) and

concrete formal languages could be translated into
it, so as not to constrain the application designer

to a specific language choice11;

2) can be used to capture and analyze the desired

functionality as well as to describe an architecture

and the associated mapping of the functionality

onto the architectural elements.

Since the model has formal semantics, it could be used to

support a number of synthesis and formal analysis

techniques in addition to simulation.

The meta-model uses different classes of objects to

represent a design.
1) Processes, communication media, and netlists

describe the functional requirements, in terms of

input–output relations first and of more detailed

algorithms later.

2) A mechanism of refinement allows one to replace

processes and media with subnetlists representing

more detailed behavior.

3) Temporal and propositional logic can be used to
describe constraints over quantities such as time

or energy [20].

Functional Model: A functional model in the

Metropolis Metamodel is represented using a functional

netlist. A functional netlist consists of a network of

processes, linked using media. A process communicates

using ports, which have associated interfaces. Media that

implement these interfaces can be connected to ports. The
behavior of the network is described as a set of executions,

which themselves consist of a sequence of events. Events

are atomic and can be associated with the starting and

ending points of actions.

The functional model utilizes services, which are just

methods bundled into interfaces, to carry out computation

and communication. These services can be thought of as

system calls. The functional model also specifies in which
order services are utilized. However, it does not represent

the concurrency with which these services are carried out,

nor does it specify the cost of utilizing these services. To

obtain this additional information, we turn to the

architectural model.

Architectural Model: An architectural model is

realized using an architectural netlist in the Metropolis

Metamodel. An architectural netlist is an interconnection

10Metropolis is a public domain package that can be downloaded from
http://embedded.eecs.berkeley.edu/metropolis/forum/2.html.

11At least in principle. Of course, time may limit in practice the
number of available translators.

Fig. 7. Metropolis framework.
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of computational and communication components char-
acterized by some services and costs, i.e., quantities. An

architectural model provides services to the functional

model by defining mapping processes. A mapping process

is similar to a device driver in that it sits between the

hardware platform and the application. The services in an

architecture are also annotated with costs by using

quantity managers and their associated algorithms.

In Metropolis, an architecture model is in general
divided into two netlists: a scheduled netlist and a

scheduling netlist. The scheduled netlist contains all the

architectural components, while the scheduling netlist

contains the quantity managers [22]. Each process and

medium in the scheduled netlist has a state-medium (e.g.,

CPU, bus, memory) associated with it. These state-media

belong to the scheduling netlist. The scheduling netlist

also contains all the quantity managers.
The distinction between the scheduled netlist and

scheduling netlist is based on the implementation of a

scheduling interface. Each component in the architecture

has some resources or physical quantities that characterize

the services it can provide, i.e., what it can do, and how

much it will cost. For instance, the CPU clock cycle is a

quantity associated with the CPU component. Normally,

the scheduling netlist will implement two methods:
resolve() and postcond(), which we use to model the

scheduling of the resource or physical quantity the

corresponding quantity manager will perform.

Mapping: In Metropolis, the architecture provides

certain services at a particular cost and concurrency while

the functional model utilizes these services. Mapping adds

explicit synchronization constraints to coordinate the

interface functions that characterize these services. In
this manner, it eliminates some of the nondeterminism

present in the functional and architectural models by

intersecting their possible behaviors. After mapping, a

mapped implementation is created.

Mapping involves the creation of a new mapping

netlist. This netlist instantiates both the functional and

architectural netlists without modification. Then, synchro-

nization constraints are added to the mapping netlist that
coordinate the beginning and end events of the interface

function calls. These constraints force the functional

model to inherit the concurrency and latency defined by

the architecture while forcing the architectural model to

inherit the sequence of calls specified for each functional

process.

Constraints: Constraints:

1) initially describe constraints over yet undefined
quantities (e.g., latency constraints when describ-

ing processes at the untimed functional level using

Kahn process networks);

2) then specify properties that must be satisfied by

more detailed implementations (e.g., while a

Kahn process network is being scheduled on a

processor);

3) finally, define assumptions that must be checked
for validity (e.g., using a cycle-accurate instruc-

tion set simulator to run the scheduled processes

in software).

Constraints allow different types of formal properties to be

either specified or checked. Linear temporal logic (LTL)

[184] constraints restrict the possible behavior of the

system during execution. Behaviors which violate the

constraint are not legal behaviors of the system. In most
cases, to specify a set of properties is much easier than to

implement a piece of code with those properties.

Synchronization constraints used in mapping are an

example of LTL constraints.

Logic of constraints (LOC) is the second way in which

constraints can be represented in the Metropolis Meta-

model [212]. LOC constraints are checked during an

execution trace, they are not enforced. Metropolis
currently has several backends that allow the checking of

traces both online and offline. Since only the traces are

checked, not the system itself, LOC checking is relatively

cheap. Full-blown model checking makes much stronger

claims about system properties, but its PSPACE complexity

rules out evaluating industrial-size designs.

B. Tool Support
The Metropolis framework contains a front end that

parses the input metamodel language and creates an

abstract syntax tree. Then, the abstract syntax tree can be

passed to different back-end tools for analysis. One of the

most important back-end tools is the simulator [211],

which preserves the metamodel semantics while translat-

ing a metamodel specification into the executable SystemC

language. LTL and a set of built-in LOC constraints can be
enforced during the simulation [212]. Also, based on

simulation traces, the LOC checker [49] can examine

whether the system satisfies the LOC properties. Another

formal verification back-end uses SPIN [117] to verify LTL

and a subset of LOC properties against a metamodel

specification [49]. The refinement verification tool [64]

compares two models based on event traces and

determines whether a refinement relationship holds
between them. The synthesis back-end tool is based on

UCLA xPilot [1] system, and it works on a synthesizable

subset of the metamodel. All the front-end and back-end

tools can be invoked interactively by using the Metropolis

Interactive Shell.

Remarks on Metropolis Use: Metropolis is not aimed

at providing algorithms and tools for all possible design

activities. Instead, it offers syntactic and semantic
mechanisms to store and communicate all the relevant

design information, and it can be used to Bplug in[ the

required algorithms for a given application domain or

design flow. This unified mechanism makes it easy to

incorporate external tools and thus addresses the problem

of design chain integration by providing a common

semantic infrastructure.
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Another fundamental aspect that we considered
throughout the design of Metropolis is the ability to

specify rather than implement, execute reasonably detailed

but still fairly abstract specifications, and finally use the
best synthesis algorithms for a given application domain and

implementation architecture. For these reasons, we

represented explicitly the concurrency available at the

specification level, in the form of multiple communicating

processes. We used an executable representation for the
computation processes and the communication media, in

order to allow both simulation and formal and semiformal

verification techniques to be used. Finally, we restricted

that representation, with respect to a full-fledged program-

ming language such as C, C++ or Java, to improve both

analyzability and synthesizability.

Unfortunately, we were not able to fully remain within

the decidable domain (or, maybe even worse, within the
efficiently analyzable domain), because this goal is achie-

vable only with extreme abstraction (i.e., only at the very

beginning of a design), or for very simple applications, or

in very specialized domains. However, we defined at least

a meta-model for which the task of identifying sufficient
conditions that allow analysis or synthesis algorithms to be

applied or speeded up, could be simple enough. Hence, our

meta-model can be translated relatively easily, under
checkable conditions or using formally defined abstrac-

tions, into a variety of abstract synthesis- or analysis-

oriented models, such as Petri nets, or static dataflow

networks, or synchronous extended finite-state machines.

C. Related Work
Metropolis is the result of the evolution of our work on

system-level design that began in the late 1980s. Metrop-
olis is strongly related to the Polis System [17] of Berkeley

and to the VCC of Cadence Design Systems. The Artemis

Work-bench [166], [167], Mescal [79], [149], and Co-

Fluent Studio are the most related design systems as far as

methodology and tool flow are concerned.

The most used system level design flows in industry

today are based on Simulink. These flows are mostly

related to design capture and rapid prototyping even
though they can also be used to generate efficient code for

some industrial domain of application. They are not geared

towards architecture design space exploration.

The Polis, VCC, Artemis, Mescal, and CoFluent Studio

approaches are the closest to the ideal of a framework for

full support of PBD but none addresses all the require-

ments that we set forth in the previous sections. In

particular, the separation of function and architecture, the
capability of representing in the same framework both

function and architecture as well as different layers of

abstraction, of handling heterogeneous models of compu-

tation, of mixing denotational and operational specifica-

tions, of representing the design process as successive

refinement via mapping of function to architecture are not

all present at the same time.

1) Polis System: The Polis System was developed in the
early 1990s at Berkeley [17]. It focused on a particular

application domain, automotive, since the industrial

supporters of the approach were mostly in the automotive

supply chain, from car manufacturers (BMW and Mer-

cedes) to Tier 1 suppliers (Magneti-Marelli) and Tier 2

suppliers (ST). While developing Polis, the foundations for

PBD were laid as the separation of concern principle was

set for architecture and function, communication, and
computation.

Polis supported one model of computation, Co-design

finite-state machines (CFSMs), a Globally Asynchronous

Locally Synchronous (GALS) model where concurrent

FSMs communicated via asynchronous channels with

size 1 buffers. The architecture supported were based on a

single microprocessor and peripherals including FPGAs

and other custom hardware blocks.
The supported tools were simulation, architectural

exploration with accurate and very fast code execution

time evaluation. This was possible because the software

was automatically generated from the CFSMs model. The

code generation technique was novel as its optimization

approach was based on restructuring of the model as it was

done in hardware logic synthesis [18]. Esterel compilers

were built based on the same principle as the synchro-
nously communicating finite-state machines, cor-

responding to the semantics of the synchronous

languages were mapped into C instructions using MIS

[33], a logic synthesis tool. The estimation was based on a

simplified model of the architecture of the processor

similar to the VPM method presented above [194].

The hardware–software interfaces were automatically

generated and the software tasks scheduled according to a
scheduling policy decided by the user. The design was

partitioned in software and hardware parts by assigning

CFSMs to the microprocessor to execute or to the

hardware blocks. The back end was targeted for an Aptix

rapid prototyping board that was used by some of the

industrial partners to verify the control algorithms on the

car early in the design cycle.

Polis drawbacks were in the limitations of the targeted
architecture and of the model of computation used that

were constraining the application domain. However, it did

have several strengths as the separation of concerns in the

supported methodology allowed some of the industrial

partners to eliminate errors, shorten design time, and

reduce the number of embedded software designers

maintaining intact the overall productivity of the team.

2) VCC: The VCC of Cadence Design Systems [145] (no

longer commercially available) inherited several of the

Polis principles including the methodology, the separation

of concerns, the processor modeling approach for execu-

tion time estimation, and the model of computation, but it

took them to another level. In particular, the idea of

architecture as service to the functionality via the
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architecture service concept and the communication
refinement mechanisms were real advances to bring the

basic concepts of PBD and design-space exploration to the

forefront.

However, VCC shared also some of the drawbacks of

Polis: it used a fixed computation model and an

architecture can be constructed from a predefined set of

components, but it cannot handle a recursive layering of

platform models. In addition, VCC used C and C++ to
define the behavior of processes, which ruled out formal

process analysis or optimization techniques beyond those

that standard software compilers use.

The VisualSim [65] offered by the start-up Mirabilis

Design resembles in many respects VCC and promises a

similar functionality.

3) Artemis Workbench: The Artemis workbench [166],
[167] was designed in the early 2000s following a design

methodology that espoused the PBD paradigm in a similar

way to Polis as it emphasized one particular domain of

application, multimedia, and it exploited the character-

istics of the domain to determine the model of computa-

tion and the supported architecture.

The supported design flow is patterned after Fig. 5 and

begins with a Simulink representation of the functionality
of the design that is converted in a language based on a

mathematically rigorous model, Kahn Process Networks.

This translation is carried out with the Compaan tool

[190]. The architecture is based on a set of virtual

processors. This is also captured using Kahn Process

Networks so that functionality can be mapped easily to the

architecture [190]. The mapping generates actual VHDL

code that can be synthesized to obtain an FPGA im-
plementation. The workbench includes modeling and

verification tools collected in Sesame [77].

4) Mescal: The Modern Embedded Systems, Compilers,

Architectures, and Languages (Mescal) project introduced

a disciplined approach to the production of reusable

architectural platforms that can be easily programmed to

handle various applications within a domain. In particular,
Mescal’s focus is on thorough design-space exploration for

network-processing applications.

The targeted architectures are application-specific

instruction processor networks. Mescal allows the

representation of behavior via Ptolemy II. The architec-

ture description allows multiple levels of abstraction and

mapping is performed from behavior to architecture

generating code for the ASIPs. The mapping process
consists of matching components of the behavior to the

ASIPs and communication among the components of

the behavior to the communication resources in the

architecture.

5) CoFluent Studio: The environment supports the

MCSE methodology (Méthodologie de Conception des

Systémes Electroniques, also known as CoMESVCo-
design Methodology for Electronic Systems) [40] that is

based on a top-down design process. At the functional

level, CoMES supports Model Driven Design. Going

towards implementation, it follows the mapping of

function to architecture paradigm in the Y-chart organi-

zation that was also a cornerstone of Polis, VCC, Artemis,

Mescal, and Metropolis. As for the other tools, there is a

dual use of the approach: one for the system developer to
capture his requirements and functional specifications and

one for the architecture designer to to develop multi-

board, single board, or SoC architectures to support the

functionality of the system. The system targets multimedia

applications in the consumer and telecommunication

domains.

6) Simulink-Based Flows: The role of Simulink (and
Stateflow) in advancing industrial model-based design

cannot be overemphasized. In several industrial domains,

Simulink has become a de facto standard. I argued that one

of the strengths of model-based design is the transforma-

tion aspects and the corresponding potential of automatic

generation of production code. Simulink semantics is

based on its execution engine. However, it is possible to

generate automatically efficient code. Two tool sets have
been used in industry for this purpose.

1) Real-Time Workshop (RTW) of the Mathworks

[148]: Real-Time Workshop generates and exe-

cutes stand-alone C code for developing and

testing algorithms modeled in Simulink. The

generated code using Simulink blocks and built-

in analysis capabilities can be interactively tuned

and monitored, or run and interact with code
outside the MATLAB and Simulink environment.

In addition to standard compiler optimization

techniques such as code reuse, expression fold-

ing, dead path elimination, and parameters

inlining that are used to optimize code genera-

tion, RTW offers

a) Single Tasking: In single-tasking mode, a

simple scheduler invokes the generated code
as a single thread of execution, preventing

preemption between rates.

b) Multitasking: In multitasking mode, a deter-

ministic rate monotonic scheduler invokes

the generated code, enabling preemption

between rates. In a bare-board environment,

you preempt the code with nested interrupts.

In an RTOS environment, you use task
priorities and task preemption.

c) Asynchronous: In asynchronous mode, non-

periodic, or asynchronous, rates are specified

using Simulink S-functions. Real-Time

Workshop translates these rates into target-

specific code based on the execution envi-

ronment. Code for events, such as hardware
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interrupts, are modeled and generated.
Subsystems can be triggered as independent

tasks. An asynchronous block library is

provided for the VxWorks RTOS offered by

WindRiver [206] that can be used as a tem-

plate for creating a library appropriate for a

particular environment.

2) TargetLink of dSpace [71]: TargetLink’s code

generation strength lies in its target awareness.
Target awareness means generating code for a

specific compiler/processor combination and run-

ning it on an evaluation board during simulation.

Most processors for embedded applications,

especially in the automotive field, are supported

by TargetLink.

Simulink and Stateflow can also be transformed in

Verilog and VHDL to generate hardware. However,
optimization in this case is still lacking and this feature

is mainly useful to generate quickly an input for an FPGA

prototype implementation.

D. Design Examples Using Metropolis
In this section, the applications of Metropolis and of

PBD to two relevant industrial examples are presented.

The examples have been selected to express the gen-
erality of the approach and come from two of the

industrial sponsors of this approach: Intel and General

Motors. We are fortunate to have a number of other

interested industrial sponsors such as United Technolo-

gies Corporation, Pirelli, Telecom Italia, ST, and Cadence

who have supported this activity with funding and design

examples.

The first example is about mapping an application to a
heterogeneous single-chip computing platform. The sec-

ond is about the design of a distributed architecture for

supervisory control in a car. These two examples cannot

expose all potential use cases of Metropolis. In particular,

the goal of the exercise is to show how the paradigms

exposed above can be applied at the micro system level as

well as to the macro system level to perform architectural

design exploration and design analysis. The examples do
not address the use of formal analysis nor of the support

for the design chain. However, the fact that the two

examples are so different in terms of the level of

abstraction should demonstrate that the supply chain

could be fairly easily accommodated.

1) JPEG Encoder Design: A JPEG encoder [203] is

required in many types of multimedia systems, from digital
cameras to high-end scanners. A JPEG encoder compresses

raw image data and emits a compressed bitstream. A block

diagram of this application is shown in Fig. 8.

The goal of the design exercise is to map this

algorithm efficiently to a heterogeneous architecture,

the Intel MXP5800. For more details on the design

see [58].

Intel MXP5800 Platform: The Intel MXP5800 digital

media processor is a heterogeneous, programmable
processor optimized for document image processing

applications. It implements a data-driven, shared register

architecture with a 16-bit data path and a core running

frequency of 266 MHz. The MXP5800 provides special-

ized hardware to accelerate frequently repeated image

processing functions along with a large number of

customized programmable processing elements.

The basic MXP5800 architecture, shown in Fig. 9,
consists of eight Image Signal Processors (ISP1 to ISP8)

connected with a toroidal mesh.

Each ISP consists of five programmable processing

elements (PEs), instruction/data memory, 16 16-bit general

purpose registers (GPRs) for passing data between PEs, and

up to two hardware accelerators for key image processing

functions. The major characteristic of this architecture

platform is the extremely high degree of parallelism and
heterogeneity. Harnessing the flexibility of the PEs to

extract high performance is the main design challenge.

Modeling and Design Space Exploration: Starting from

both a sequential C++ implementation and the concurrent

assembly language implementation provided in the Intel

MXP5800 development kit, we assembled an architecture-

independent model of the JPEG encoder in Metropolis

expressed in a statically schedulable dataflow model. A
total of 20 FIFO channels and 18 separate processes are

used in the application model. Characteristics of the

original C++, assembly, and Metamodel designs are

provided in Table 1.

The MXP5800 architecture platform can be modeled

in Metropolis by using processes, media, and quantity

managers in the Metropolis Metamodel. A single ISP is

modeled as shown in Fig. 10. The rectangles in the diagram
represent tasks, the ovals represent media, while the

diamonds are the quantity managers.

To model running time, a global time quantity manager

is used. Every PE, every global register, and the local

memory are connected to it. Both computation and

communication costs can be modeled by sending requests

to this global time quantity manager and obtaining time

annotations.

Fig. 8. JPEG encoder block diagram.
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Design Space Exploration and Results: Given the

application and architectural models in Metropolis, the

design space can be explored by attempting different

mappings. Each mapping scenario is specified in Metrop-
olis with two types of information. The first is a specific set

of synchronization constraints between the events in both

models corresponding to the services that constitute the

MoC. Along with these eventsVwhich represent the read,

write, and execution services defined in our MoCVthe

parameters such as register location or local memory

address can also be configured. The second is the set of

schedules for the PEs that determine the execution order
between the tasks. Both of these are relatively compact,

meaning that new mapping scenarios can be created

quickly and without modifying either the application or

the architectural models.

The application is a total of 2695 lines as shown

previously in Table 1. The architectural model is 2804

lines, while the mapping code is 633 lines. Each additional

mapping scenario can be described with approximately

100 lines of additional code and without modifying any of

the other code.

To show the fidelity of our modeling methodology and

mapping framework, we initially abstracted two mapping
scenarios from the implementations provided in Intel

MXP5800 algorithm library and carried out simulation in

the Metropolis environment. We also tried an additional

two scenarios which did not have a corresponding

assembly language implementation. For all of the scenar-

ios, only the mapping of the fine granularity 1D-DCT

processes was varied.

For each scenario, the number of clock cycles required
to encode an 8 � 8 sub-block of a test image was recorded

through simulation in Metropolis. For the first two

scenarios, implementations from the MXP5800 library

are available and were compared by running the code on a

development board. The results are shown in Fig. 11. The

cycle counts reported with the Metropolis simulation are

approximately 1% higher than the actual implementation

since we did not support the entire instruction set for the

Fig. 9. Block diagram of MXP5800.

Table 1 JPEG Encoder Models
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processing elements. The latter two scenarios provide

reasonable relative performance, but assembly implemen-

tations were not available for comparison.

2) Distributed Automotive Design: The distributed system
under consideration is a limited-by-wire system that

implements a supervisory control layer over the steering,

braking, and suspension system. The objective is to

integrate active vehicle control subsystems to provide

enhanced riding and vehicle performance capabilities.

The high-level view of the functional architecture of

this control system is defined in Fig. 12. Using sensors to

collect data on the environment, the supervisor plays a
command augmentation role on braking, suspension and

steering. This supervisory two-tier control architecture

enables a flexible and scalable design where new chassis

control features could be easily added into the system by

only changing the supervisory logic.

The goal of the design exercise is to show how a virtual

integration and exploration environment based upon

formal semantics (Metropolis) can be effectively used to

uncover design errors and correct them. In particular, the
error discovered was a priority inversion issue in the

present implementation of the software and hardware

stack for the supervisory control. This problem was

addressed by exploring different CAN Controller hardware

setups. The Metropolis simulation environment enabled us

to trade off buffer size and access policy with the amount

of latency incurred by the different signals. For more

details on this design see [215].
Automotive CAN Platform: For this case study, the

typical baseline physical-architecture consists of 6 ECUs

including two CAN-based smart sensors connected over a

high-speed CAN communication bus, one ECU per sub-

system in Fig. 12. Within each ECU, the platform instance

consists of software tasks, a Middleware, a CPU/RTOS, an

interrupt handler, a CAN Driver, and a CAN Controller, as

shown in Fig. 13.
The middleware layer handles the transfer of data

between tasks. The CPU/RTOS implements a priority-

based preemptive scheduling algorithm as specified in

the OSEK specification for BCC1 type tasks [100]. The

CAN Driver transfers the messages between the middle-

ware and the CAN Controller. The CAN Controller im-

plements the CAN communication protocol as specified

in [41].
Tradeoff Analysis: The problem considered here is the

priority inversion problem [181] that may occur between

messages of different priority originating from the same

ECU, when transmit buffers are shared among them and

the message holding the buffer cannot be aborted. In the

fairly common case, a single transmit buffer is shared in

mutual exclusion by all transmitted messages from the

same ECU.

Fig. 10. MXP5800 ISP modeling in metropolis.

Fig. 11. Performance comparisons. Fig. 12. Functional architecture of supervisory control system.
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We analyzed three different configurations of the CAN

Controller and CAN Driver in the Supervisor module. In

this ECU there are 11 messages to be transmitted in total,

and five of them have message ID � 0 � 400:

1) one transmit buffer, shared;

2) two transmit buffers, shared;

3) two transmit buffers, one of which is shared and

the other is dedicated to high priority messages
with message ID � 0 � 400.

In the third configuration, the first buffer can transmit
any message, including high-priority ones, but the second

buffer cannot transmit the six lowest priority messages

from the Supervisor.

The architectural model was annotated with the

following numbers:

1) The ECU system clock operates at 40 MHz.

2) The CAN Controller operates at 20 MHz.

3) The WCET of a functional process is estimated to
be 200 microseconds.

4) The CAN bus transmits data at the rate of

500 kb/s.

We will focus our attention on the following Supervisor

signals and on the messages that contain them:

1) Be_r_StrgRatOverrdF_orw[, in message 0 � 0D0;

2) Be_w_VehYawRateCntrd_orw[, in message

0 � 700;

3) Be_transmit_id_isg[, in message 0 � 7C0.

Due to the specific offsets, messages 0 � 700 and 0 �
7C0 are enabled before message 0 � 0D0, respectively, at

times 1 ms, 1 ms, and 2 ms.

Fig. 14 shows the GANTT charts for the three messages
above (columns) for each of the three CAN configurations

(rows).

Each chart illustrates the times when the signal is

posted to the middleware buffer, to the CAN Controller

transmit buffer, to the CAN Controller receive buffer (on

the receiver node), and to the middleware buffer (on the

receiver node).

Since the CAN Driver receives messages based on

interrupt, signals stay in the CAN Controller receive buffer

for a very short time.

In this exploration we are interested in highlighting

priority inversion, so the latency of the first (highest

priority) signal, within message 0 � 0D0 is the most

Fig. 14. Rows correspond to three CAN configurations: one transmit buffer, two transmit buffers, and two transmit buffers with priority

threshold, respectively.

Fig. 13. ECU model.
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interesting metric. In other explorations the designer may
be interested in other metrics, like the timing of other

events or the loss of signals due to overwrites.

In the first and second CAN configurations, the two

low priority messages 0 � 700 and 0 � 7C0 Block[ the

transmit buffer(s) for a long stretch of time, and, al-

though enabled at time 2 ms, the high-priority message

0 � 0D0 needs to wait in the middleware due to

priority inversion.
It is interesting to note that in the second CAN

configuration the additional transmit buffer does not

mitigate the priority inversion problem. In fact, in the

second rows of Fig. 14 message 0 � 0D0 is transmitted

after message 0 � 7C0. More precisely, the start-of-

transmission times in the second row of Fig. 14 are

4.2801 ms for message 0 � 7C0 and 4.5321 ms for

message 0 � 0D0.
In principle, after message 0 � 700 is transmitted,

there is a transmit buffer available for message 0 � 0D0,

but in practice it takes time for the CAN Driver to copy

the message into the transmit buffer, and message 0 �
7C0 starts the arbitration and the following transmission

before then.

In the third CAN configuration, because one of the

buffers is dedicated to messages with ID � 0 � 400,
although both message 0 � 700 and 0 � 7C0) are enabled

at time 1 ms only message 0 � 700 is allowed to occupy a

transmit buffer.

Clearly, when at time 2 ms message 0 � 0D0 is

enabled, it will be queued quickly in the vacant transmit

buffer, thus avoiding priority inversion.

VI. CONCLUSION

I discussed the trends and challenges of system design

from a broad perspective that covers both semiconductor

and industrial segments that use embedded systems. In

particular, I presented the dynamics of the mobile

terminal and automotive segments and how the different

players interact. Existing approaches to hardware design

above RTL and embedded system design have been
presented. I then argued about the need for a unified

way of thinking about system design as the basis for a

novel system science. One approach was presented, PBD,

that aims at achieving that unifying role. I discussed

some of the most promising approaches for chip and

embedded system design in the PBD perspective. The

Metropolis framework and some examples of its appli-

cation to different industrial domains were then
described.

While I believe we are making significant in-roads,

much work remains to be done to transfer the ideas and

approaches that are flourishing today in research and in

advanced companies to the generality of IC and embedded

system designers. To be able to do so, we need the

following.

1) We need to advance further the understanding of
the relationships among parts of an heterogeneous

design and its interaction with the physical

environment.

2) The efficiency of the algorithms and of the tools

must be improved to offer a solid foundation to

the users.

3) Models and use cases have to be developed.

4) The scope of system level design must be extended
to include fault-tolerance, security, and resiliency.

5) The EDA industry has to embrace the new

paradigms and venture into uncharted waters to

grow beyond where it is today. It must create the

necessary tools to help engineers to apply the new

paradigms.

6) Academia must develop new curricula (for

example, see the special issue on education of
the ACM Transactions on Embedded Systems [37])

that favor a broader approach to engineering

while stressing the importance of foundational

disciplines such as mathematics and physics;

embedded system designers require a broad view

and the capability of mastering heterogeneous

technologies.

7) The system and semiconductor industry must
recognize the importance of investing in training

and tools for their engineers to be able to bring to

market the new products and services that are

described in exciting scenarios.

I believe that in the next few years we will witness a

new renaissance in design technology and science. The

winners in this arena are unclear as several players are

eyeing system level design and design chain support as a
promising area for them to engage. It is an exciting

moment for the people involved! h
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