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Chapter 1

Preamble

The guiding principle in the teaching and research agenda related to embedded
systems is bringing system theory and computer science closer together. These
two fields have drifted apart for years while we believe that the core of embedded
systems intended as an engineering discipline lies in the marriage of the two ap-
proaches. While computer science traditionally deals with abstractions where the
physical world has been carefully and artfully hidden to facilitate the development
of application software, system theory deals with the physical foundations of engi-
neering where quantities such as time, power and size play a fundamental role in
the models upon which this theory is based. The issue then is how to harmonize
the physical view of systems with the abstractions that have been so useful in de-
veloping the computer science intellectual agenda. We argue that a novel system
theory that is both computational and physical is needed. The basis of this theory
must be a set of novel abstractions that partially expose the physical reality to the
higher levels as well as methods to manipulate these abstractions and link them
in a coherent whole. The research community is indeed developing some of the
necessary results to build this novel system theory. We believe it is time to inject
these findings into the teaching infrastructure so that students can be exposed to
this new way of thinking. By the same token, practitioners should also be exposed
to these results that advance the state of embedded system design to a point where
reliable and secure distributed systems can be designed quickly, inexpensively and
with no errors.

This book is intended to cover the fundamentals of embedded system design as
they have been developed over the years by the research and industrial community.
Being exhaustive is certainly impossible given the many important contributions
and the many industrial and scientific domains the field includes. We chose to
follow an organization for the contents of the book that stems out of a methodology,
Platform-Based Design, that has been proposed in various forms by several people
and that seems to apply well to a wide variety of design problems.

The organization of the book reflects the organization of a graduate course,
EE249, Embedded System Design: Modeling, Analysis and Synthesis at UC Berke-
ley. In US Universities, bottom-up aggregation of interests and approaches to educa-
tion is more common than top-down planning. Hence, education initiatives in novel
areas almost always start with advanced graduate course offerings which migrate
toward coordinated graduate programs and eventually into undergraduate courses.
Thus, it is no wonder that course offerings at UC Berkeley on embedded systems
have been strong for years in the advanced course series (the EE and CS 290 series)
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6 CHAPTER 1. PREAMBLE

that are related to faculty research activities. EE249 indeed started more than ten
years ago as an advanced course and then migrated in 1998 to a regular offering in
the graduate program. In these past ten years, the research area and the course
contents have solidified to an extent where we feel confident that they can be used
at both the graduate and junior/senior levels. For this reason, we mark sections
that in our opinion would be best covered in a graduate course and left out in an
undergraduate course.

While the book has been designed having in mind its adoption as a textbook,
we feel that it could be used as a reference book for practicing engineers as well.

We would like to acknowledge the support of our families, friends and colleagues
during the writing of this book. A special thank you goes to the students who took
EE249 and to the ones who helped teach the course.



Chapter 2

Introduction

This book is about the principles of system level design. System-Level Design (SLD)
means many different things to many different people. In our view, system-level
design is about the design of a whole by assembling components where specifications
are given in terms of functionality (what the system is supposed to do; for example,
a brake-by-wire automotive controller must actuate the braking action activated by
the driver so that the wheels never lock) with:

• constraints on the properties the design has to satisfy, (for the brake-by-wire
controller, the braking action must be stable), and on the components, (for
the same example, the embedded micro-controller used in the implementation
must be more reliable than a given threshold) and

• objective functions that express the desirable features of the design when
completed (for example, low overall manufacturing cost of the controller).

This definition is general since it relates to many different application domains, from
semiconductors to systems such as cars and airplanes, buildings, telecommunication
and biological systems. In this book, we focus on a particular, but very wide area,
embedded system design.

With the term embedded systems we refer to the electronic components (which
almost always include one or more software programmable parts) of a wide variety
of personal or broad-use devices, e.g., a mechanical system such as an automobile,
a train, a plane, an electrical system such as an electrical motor or generator, a
chemical system such as a distillation plant, a health-care equipment such as a
pace-maker. Hence, an embedded system is a special-purpose system in which the
computing element is completely encapsulated by the device it controls. “Unlike a
general-purpose computer, an embedded system performs one or a few pre-defined
tasks, usually with very specific requirements” [?]. In technical terms, an embedded
system interacts with the surrounding environment in a controlled way satisfying a
set of requirements on responsiveness in terms of quality and timeliness. Typically it
has to satisfy implementation requirements such as cost, power consumed, and use
of limited physical resources. Ideally its interaction with the environment should
be continuously available for the entire life of the artifact.

Design tools have been important to deliver exponential increase in integrated
circuit complexity with much improved designers’ productivity. An entire industry,
the Electronic Design Automation (EDA) industry, reached maturity in the 1980s.
EDA today offers a rich tool set and flows for IC and board design. The same
level of maturity has not been reached in the embedded system design tool domain.
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There are some notable companies in the space, e.g., the Mathworks, but an agreed
upon flow and tool set has not emerged as yet. Also the EDA industry has not yet
entered in force in this adjacent market.

It is no wonder that EDA experts have stayed away from system-level design:
in fact, EDA experts are essentially tied to the semiconductor industry needs in
the implementation flow with little or no expertise in the intricacies of embedded
systems that include a large amount of software and system integration concerns.
The motivation for EDA experts to learn system design has not been there as yet
since

• IC companies are still struggling with the understanding of higher levels of
abstraction and,

• system companies have not perceived as yet design methodology nor tools to
be on their critical path and hence they have not been willing to invest in
“expensive” tools.

Clearly as we are hitting a wall in the development of the next generation systems,
this situation is rapidly changing. Major productivity gains are needed and better
verification and validation is a necessity as the safety and reliability requirements
of embedded systems become more stringent and the complexity of chips is hitting
an all-time high.

However, our view is that the issue to address is not developing new tools, albeit
essential to advance the state of the art in design, rather it is the understanding of
the principles of system design, the necessary change to design methodologies and
the dynamics of the supply chain. Developing this understanding is necessary to
define a sound approach to the needs of the system and component industry as
they try to serve their customers better, to develop their products faster and with
higher quality.

We share with a number of colleagues [?, ?, ?, ?, ?, ?, ?] (this list also provides
an excellent set of references for state-of-the-art and directions for embedded system
design) the strong belief that a new design science must be developed to address the
challenges listed above where the physical is married to the abstract, where the world
of analog signals is coupled with the one of digital processors, where ubiquitous
sensing and actuation make our entire environment safer and more responsive to
our needs. System Level Design (SLD) should be based on the new design science
to address our needs in a fundamental way. However, the present directions are
not completely clear as the new paradigm has not yet fully emerged in the design
community with the strength necessary to change the EDA and Design Technology
landscape albeit the papers quoted in this paragraph have chartered the field with
increasing clarity.

Support for the development of this design science is given in the US by the tra-
ditional research funding organizations in collaboration with industrial associations.
The Gigascale System Research Center (GSRC) [?] of the MARCO program (a joint
initiative of DARPA and the Semiconductor Industry Association (SIA)) and NSF
with the Center for Hybrid and Embedded Software Systems (CHESS) ITR [?] are
two examples of this effort. However, a much stronger effort is afoot in Europe,
where the European Community has been supporting embedded system research
and novel methodologies for chip design for years with large Integrated Projects
(e.g., SPEEDS) and Networks of Excellence (e.g., Artist 2 [?] and HYCON [?]) and
is planning an increased effort for the VII Framework. In addition, a Technology
Platform, Artemis [?], was formed three years ago by the leading European in-
dustrial companies (the initial founding group included Nokia, Ericsson, ST, ABB,



2.1. SETTING THE STAGE: CHALLENGES OF SYSTEM LEVEL DESIGN 9

Airbus, Infineon, British Telecom, Siemens, Bosch, Contiteves, Daimler-Chrysler,
Thales, FIAT, Finmeccanica, Philips, COMAU, Symbian, Telenor, and PARADES
with the support of research organizations such as IMEC, Verimag and the Tech-
nical University of Vienna, a healthy combination of Academia, service providers,
software companies, system, subsystem and semiconductor manufacturers). The
companies have recently formed the Artemis Industrial Association (ARTEMISIA),
while the European community decided in 2008 to make Artemis a Joint Technology
Initiative, an instrument to funnel substantial resources of the member States. In
a meeting of the European Community Prime Ministers on October 2006, Artemis
was quoted by some of the participants (in particular, the Finnish Prime Minister)
as an example of agenda setting initiative for the industrial future of Europe.

In the following Section, we focus on the pressing concerns of system level design
together with the strategic and business concerns in the supply chains of the mobile
terminal and automotive vertical domains as examples of the issues to be taken into
consideration when we think about expanding the reach of design methodology and
tools.

2.1 Setting the Stage: Challenges of System Level
Design

In the present technology environment and industrial structure, SLD has to ad-
dress concerns of individual players in the industrial domain that are facing seri-
ous problems in bringing their products to market in time and with the required
functionality. I do believe that SLD also needs to be concerned about the entire
industrial supply chain that span from customer-facing companies to subsystem and
component suppliers, since the health of an industrial sector depends on the smooth
interaction among the players of the chain as if they were part of the same company.
In this section, I present a view on both challenges that underlines commonalities
that allow a unified approach to SLD.

2.1.1 Managing Complexity and Integration

The ability of integrating an exponentially raising number of transistors within a
chip, the ever-expanding use of electronic embedded systems to control increasingly
many aspects of the “real world”, and the trend to interconnect more and more such
systems (often from different manufacturers) into a global network, are creating a
challenging scenario for embedded system designers. Complexity and scope are
exploding into the three inter-related but independently growing directions, while
teams are even shrinking in size to further reduce costs. In this scenario the three
challenges that are taking center stage are:

Heterogeneity and Complexity of the Hardware Platform

The trends mentioned above result in exponential complexity growth of the features
that can be implemented in hardware. The integration capabilities make it possible
to build real complex system on a chip including analog and RF components, Gen-
eral Purpose Processors (GPP) and Application Specific Instruction-set Processors
(ASIP). The decision of what goes on a chip is no longer dictated by the amount
of circuitry that can be placed there, but by reliability, yield, power consumption,
performance and ultimately cost (it is well known that analog and RF components
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force the use of more conservative manufacturing lines with more processing steps
than pure digital ICs). Even if manufacturing concerns suggest to implement hard-
ware in separate chips, the resulting package may still be very small given the
advances in packaging technology yielding the concept of System-in-Package (SiP).
Pure digital chips are also featuring an increasing number of components. Design
time, cost and manufacturing unpredictability for deep sub-micron technology make
the use of custom hardware implementations appealing only for products that are
addressing a very large market and for experienced and financially rich companies.
Even for these companies, the present design methodologies are not yielding the
necessary productivity forcing them to increase beyond reason the size of design
and verification teams. These IC companies (for example Intel, Freescale, ST and
TI) are looking increasingly to system design methods to allow them to assemble
large chips out of pre-designed components and to reduce validation costs (design
re-use). In this context, the adoption of design models above RTL and of commu-
nication mechanism among components with guaranteed properties and standard
interfaces is only a matter of time.

Embedded Software Complexity

Given the cost and risks associated to developing hardware solutions, an increasing
number of companies is selecting hardware platforms that can be customized by
reconfiguration and/or by software programmability. In particular, software is tak-
ing the lion’s share of the implementation budgets and cost. In cell phones, more
than 1 Million lines of code is standard today, while in automobiles the estimated
number of lines by 2010 is in the order of hundreds of Millions [?]. The number of

Figure 2.1: Software Growth in Avionics.

lines of source code of embedded software required for defense avionics systems is
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also growing exponentially as reported on Figure 2.1 (made available by R. Gold,
Robert Gold Associate Director, Software and Embedded Systems, Office of the
Deputy Under Secretary of Defense (Science and Technology)). However, as this
happens, the complexity explosion of the software component causes serious con-
cerns for the final quality of the products and the productivity of the engineering
teams. In transportation, the productivity of embedded software writers using the
traditional methods of software development ranges in the few tens of lines per day.
The reasons for such a low productivity are in the time needed for verification of the
system and long redesign cycles that come from the need of developing full system
prototypes for the lack of appropriate virtual engineering methods and tools for
embedded software. Embedded software is substantially different from traditional
software for commercial and corporate applications: by virtue of being embedded in
a surrounding system, the software must be able to continuously react to stimuli in
the desired way, i.e., within bounds on timing, power consumed and cost. Verifying
the correctness of the system requires that the model of the software be transformed
to include information that involve physical quantities to retain only what is rele-
vant to the task at hand. In traditional software systems, the abstraction process
leaves out all the physical aspects of the systems as only the functional aspects of
the code matter.

Given the impact that embedded software has on the safety of embedded sys-
tem devices and on the quality of the final artifact, there is an increasingly strong
interest in having high assurance that embedded software is correct. Software cer-
tification demonstrates the reliability and safety of software systems in such a way
that it can be checked by an independent authority with minimal trust in the
techniques and tools used in the certification process itself. It builds on existing
software assurance, validation, and verification techniques but introduces the notion
of explicit software certificates, which contain all the information necessary for an
independent assessment of the properties. Software certification has been required
by military applications for years and has been recently extended to the US aviation
sector: the FAA accepted the DO-178B regulations as the means of certifying all
new aviation software. A joint committee with the European authorities has been
recently empowered to “promote safe implementation of aeronautical software, to
provide clear and consistent ties with the systems and safety processes, to address
emerging software trends and technologies, and to implement an approach that can
change with the technology”[?, ?]. We believe that certification will expand into
new safety-critical domains and will create an additional, serious, burden on the
embedded software design process not only for the aviation industry but for an in-
creasingly large number of companies worldwide. Note that today, the main scope
of the certification process relates to the process followed to develop software. We
believe it will be of extreme importance to link the certification process with the
content of the software and not only with the development process. This approach
will have to include formal verification techniques as we believe this is the only way
to increase the confidence in the correctness of the software.

Integration Complexity

A standard technique to deal with complexity is decomposing “top-down” the sys-
tem into subsystems. This approach, which has been customarily adopted by the
semiconductor industry for years, has limitation as a designer or a group of designers
has to fully comprehend the entire system and to partition appropriately its various
parts, a difficult task given the enormous complexity of today’s systems. Hence,
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the future is one of developing systems by composing pieces that all or in part have
already been pre-designed or designed independently by other design groups or even
companies. This has been done routinely in vertical design chains for example in
the avionics and automotive verticals, albeit in a heuristic and ad hoc way. The
resulting lack of an overall understanding of the interplay of the sub-systems and of
the difficulties encountered in integrating very complex parts causes system integra-
tion to become a nightmare in the system industry. For example, Jurgen Hubbert,
then in charge of the Mercedes-Benz passenger car division, publicly stated in 2003:
“The industry is fighting to solve problems that are coming from electronics. Com-
panies that introduce new technologies face additional risks. We have experienced
blackouts on our cockpit management and navigation command system and there
have been problems with telephone connections and seat heating.”

I believe that in today’s environment this state is the rule rather than the ex-
ception for the leading system Original Equipment Manufacturers (OEMs)1 in all
industrial sectors [?]. The source of these problems is clearly the increased complex-
ity but also the difficulty of the OEMs in managing the integration and maintenance
process with subsystems that come from different suppliers who use different de-
sign methods, different software architecture, different hardware platforms, different
(and often proprietary) Real-Time Operating Systems. Therefore, there is a need
for standards in the software and hardware domains that will allow plug-and-play
of sub-systems and their implementation. The ability to integrate subsystems will
then become a commodity item, available to all OEMs. The competitive advantage
of an OEM will increasingly reside on novel and compelling functionalities.

There is also the need of improving the interaction among all the players in the
supply chain to improve the integration challenges in a substantial way as I argue
in the next section.

2.2 The Industrial Supply Chain Landscape

The Design and Supply chains are the backbone for any industrial sector. Their
health and efficiency are essential for economic viability. While tools for Supply
Chain management have been around for quite some time, support for the Design
Chain has not been pursued nearly as vigorously. There are great opportunities for
improving the situation substantially at least in the safety-driven industrial sector,
which includes the transportation as well as industrial automation domain, with a
combination of tools and methodologies. We are just at the beginning.

Integration of electronic and mechanical design tools and frameworks will be
essential in the near future. Integration of chemical, electronic and biology tools
will also be essential in the further future for nano-systems. Data integration and
information flow among the companies forming the chain have to be supported.
In other words, it is essential that the fundamental steps of system design (func-
tional partitioning, allocation on computational resources, integration, and verifi-
cation) be supported across the entire design development cycle. Thus, whether
the integrations pertains to SW-SW integration on a distributed network, HW-SW
integration on a single Electronic Control Unit (ECU), electronics and mechanical
integration for a sub-system, tools and models have to be integrated seamlessly from
a static point of view (e.g., data dictionaries and off-line model transformations)

1In this paper, OEM is used to refer to the companies that acquire a product or component and
reuse or incorporate it into a new product with their own brand names. Examples are Mercedes,
GM and Toyota, Boeing and Airbus.
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and dynamic point of view (e.g., co-simulation, HW-in-the-loop simulations and
emulation).

Assuming the design methodology and the infrastructure for design chain inte-
gration are all in place, what will be the implication on the industrial structure?

The dynamics of the system industry is similar across the vertical domains but
certainly there are important differences among them. For example, for embed-
ded controllers in industrial engineering applications, automotive, avionics, energy
production and health related equipment, safety considerations and hence hard real-
time constraints, are of paramount importance. In the case of consumer electronics,
including entertainment subsystems in cars and airplanes, cell phones, cameras and
games, the concerns are on sound, video and recording quality and on the look and
feel of the devices in presence of severe cost constraints. I will briefly discuss the
cell phone design chain and the automotive design chain as the representatives of
the embedded system market dynamics.

The Mobile Communication Design Chain

The cell phone industrial segment is a complex ecosystem in continuous evolution
with the following actors:

Application developers who offer products such as gaming, ring tones and
video . These companies sell their products directly to the end customer except in
cases where these applications come bundled either with standard services like voice
offered by service providers such as Cingular, Verizone or Telecom Italia, or with the
device itself offered by makers such as Nokia, Motorola, Samsung or Ericsson. Their
designs are in general implemented in software running on the platform provided
by the device manufacturers who choose also the OS.

Service providers who offer the access to the network infrastructure for voice
and data. These providers also offer other services such as news, weather infor-
mation, and traffic. The GSM standard introduced (and mandated) the use of
the Subscriber Identity Module (SIM), a smart card that securely stores the key
identifying a mobile phone service subscriber, as well as subscription information,
saved telephone numbers, preferences, text messages and other information. The
use of the SIM card is important in the dynamics of the vertical segment as it is
under control of the service providers. The service provider technology relates to
the management of the infrastructure and of the service delivery. They worry, for
example, about communication hand-offs when cell boundaries are traversed and
base-station location.

Device makers who manufacture the mobile terminal, e.g., the cell phone.
Device makers must master a number of different technologies as they manufacture
systems with significant software content (more than 1 million lines of code today)
and hardware content including computing and communication circuitry involving
analog and RF. In most cases, the IC content is obtained by chip manufacturers
such as Qualcomm, TI, Freescale and ST, but it may also be designed by captive
teams. One of the many challenges of a mobile terminal manufacturer is integrating
heterogeneous semiconductors manufactured by different companies (for example,
DSPs and microcontrollers for the digital part, base-band and RF circuitry) whose
interaction must be accurately predicted and controlled to provide the functionality
with no errors. There is a significant IP content acquired by middleware software
providers such as the Symbian OS, an operating system designed for mobile devices,
with associated libraries, user interface frameworks and reference implementations
of common tools, produced by Symbian Ltd. In addition, styling, ergonomics and
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user-friendliness are major attractions for the end customer.
IC providers who offer semiconductors and other IPs that implement a variety

of a mobile terminal functions. Semiconductor technology has had a major impact
in the diffusion of mobile terminals as it is responsible for the dimension, power
consumption, performance, functionality and cost of the terminal. Because of the
complexity of the design and of the need of interfacing with other vendors, IC
manufacturers have turned to a particular design style that is the major content
of this paper, platform-based design. The TI OMAP [?] platform together with
the Nexperia Philips platform for digital video are the first examples of complex
semiconductors designed in this style. Given the sale volumes of mobile terminals,
IC manufacturers are competing fiercely and to provide the features needed by
the device manufacturers, they had to enter into system level design and into the
development of significant software components including device drivers and other
middleware. The semiconductor manufacturers are themselves integrating third
party IPs.

IP providers who provide components to the rest of the design chain. Symbian
(with its OS for cell phones), Microsoft (with Windows CE), and ARM (with its
processors) are examples of IP providers. These components are integrated in the
semiconductors or in the terminal to perform an important function. They are
instrumental to the functioning of the devices but cannot be sold to the end customer
per se.

Outsourcing companies who provide design and manufacturing services to
the rest of the chain. For example, Flextronics provides manufacturing services
to a large variety of companies in the system domain including mobile terminal
manufacturers. E-silicon [?] in US, Accent [?] in Europe and Faraday [?] in Taiwan
offer design services to semiconductor and device manufacturers for part or entire
chips as well as brokerage services to manage the interactions with silicon foundries.
Finally, semiconductor foundries such as TSMC [?], IBM [?] and UMC [?] provide
IC manufacturing services

Today, there is a great deal of competition and turf battles to determine where
the added value is inserted. For example, the boundary between service providers
and device makers as well as the one between device and IC makers is under stress.
Service providers favored the SIM card as a way of capturing value in their products
and defend it against the device makers. The standard that limits the communica-
tion bandwidth between SIM cards and the cell phone electronics defends the device
makers turf against the intrusion of the service providers. The device makers de-
fend their added value against IC manufacturers by avoiding being locked into a
single provider situation, farming out different components to different companies.
In addition, they force whenever possible the IC providers to use standards that
favor the possibility of using different IPs as they see fit. The use of the Open Core
Protocol [?] standard in the TI OMAP [?] platform is a case where the interest
of the device makers and the one of the IC provider aligned since it was also the
interest of the IC provider to be able to incorporate quickly external and internal
IPs. My opinion is that providing a unified methodology and framework, we will
favor the balance of the chain where everyone reaches an equilibrium point that
maximizes the welfare of the system.

The Automotive Design Chain

The need of integrating widely different subsystems such as safety, propulsion, com-
munication and entertainment, makes this vertical very interesting for our purposes.
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Today, the roles of car makers and their suppliers are relatively stable but they are
undergoing a period of stress due to the increased importance of electronics and its
added value. The Automotive supply chain includes

Car manufacturers (OEMs) such as GM, Ford, Daimler-Chrysler and Toy-
ota, who provide the final product to the consumer market.

Tier 1 suppliers such as Bosch, Contiteves, Siemens, Nippon Denso, Delphi
and Magneti-Marelli, who provide subsystems such as powertrain management,
suspension control and brake-by-wire devices to OEMs,

Tier 2 suppliers e.g., chip manufacturers such as Freescale, Infineon, ST, and
Renesas, IP providers e.g.,ARM and RTOS suppliers such as WindRiver and ETAS,
who serve OEMs and more likely Tier 1 suppliers.

Manufacturing suppliers such as Flextronics and TSMC who provide man-
ufacturing services. Opposite to verticals that are not safety critical, liability issues
make the recourse to outside manufacturing not as common. However, there are
signs that manufacturing for Tier 1 suppliers is increasingly considered for outsourc-
ing.

Car makers express the desire of gaining a stronger grip on the integration pro-
cess and on the critical parts of the electronics subsystems. At the same time, there
is evidence that sharing IPs among car makers and Tier 1 suppliers could improve
substantially time-to-market, development and maintenance costs. The essential
technical problem to solve for this vision is the establishment of standards for in-
teroperability among IPs and tools. AUTOSAR [?], a world-wide consortium of
almost all players in the automotive domain electronics supply chain, has this goal
very clear in mind. However, there are technical and business challenges to over-
come. In particular, from the technical point of view, while sharing algorithms and
functional designs seems feasible at this time, the sharing of hard real-time software
is difficult even assuming substantial improvements in design methods and technol-
ogy, if run-time efficiency has to be retained. The issues are related to the interplay
that different tasks can have at the RTOS level. The timing of the software tasks
depend on the presence or absence of other tasks. A scheduling policy that could
prevent timing variability in presence of dynamical changing task characteristics
can be conceived (for example, timing isolation or resource reservation policies) but
it will carry overhead, albeit potentially not prohibitive; further, this kind of pol-
icy is not supported by any of the commercially available RTOS. This situation is
the standard trade-off between efficiency and reliability but it has more important
business implications than usual. In fact, if software from different sources has to
be integrated on a common hardware platform, in absence of composition rules and
formal verification of the properties of composed systems, who will be responsible
for the correct functioning of the final product?

Whoever will take on this responsibility would need a very strong methodology
and an iron fist to make suppliers and partners comply with it. This may not be
enough, in the sense that software characteristics are hard to pin down and with
the best intentions of this world, one may not be able to guarantee functional and
timing behavior in the presence of foreign components. The constant growth of com-
plexity of the embedded systems designed today makes manual analysis and design
impractical and error prone. The ideal approach would be a tool that could map au-
tomatically the set of tasks onto the platform guaranteeing the correct functionality
and timing with optimal resource utilization [?]. This tool should take the design
description at the pure functional level with performance and other constraints and
the architecture of the platform and produce correct settings for the RTOS and
optimized code. We are still far from this ideal situation. It is likely, then, that the
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responsibility for subsystem integration will still rest with the car manufacturers but
the responsibility for integrating software components onto ECUs will be assigned
to Tier 1 suppliers. In this case, the burden of Tier 1 suppliers will be increased at a
possibly reduced premium because of the perceived reduction in added value. This
is likely to be an unstable model and major attention should be devoted to find a
common ground where both car makers and suppliers find their economic return.

If the strategy followed by car makers in AUTOSAR succeeds, then it is likely
that a global restructuring of the industry will take place by creating an environment
where Tier 1 players with small market share will find themselves in a difficult
position unless they find a way of competing on a more leveled ground with the
major stake holders. In this scenario, Tier 2 suppliers including IP providers may
find themselves in a better position to entertain business relations directly with the
car manufacturer. Tool providers will be in a more strategic position as providers of
mapping tools that make the business model feasible. Hence, it is likely that a shift
of recognized value will take place from Tier 1 suppliers towards tool providers and
Tier 2 suppliers. The redistribution of wealth in the design chain may or may not be
a positive outcome for the health of the industrial sector. If the discontinuities are
sharp, then there may be a period of instability where much effort will be required
to keep the products coming out with quality and reliability problems that may
be larger than the ones observed lately. However, if it is well managed, then a
natural shake-up with stronger players emerging will have a double positive: more
quality in the products at lower cost. An additional benefit from a real plug-and-
play environment will be the acceleration of the rate of innovation. Today, the
automotive sector is considered conservative and the innovations in design methods
and electronic components are slow to come. For example, if a well-oiled mechanism
existed to migrate from one hardware platform to another, the “optimal” solutions
would be selected instead of the ones that have been traditionally used. In this
case, the Tier 2 market place will also be rationalized and the rate of innovation
will likely be increased.

As a final consequence, the introduction of new functionalities will be a matter
of algorithm and architecture rather than detailed software and hardware selection.
The trend in electronics for automotive (but for other verticals as well) is clear: less
customization, more standardization. For a subsystem supplier, the choice will be
richer in terms of platforms but it will not require heavy investment in IC design
or RTOS development. For car manufacturers, the granularity of the choices will
be also richer because of interoperability. They will have the choice of selecting
entire macro systems or components that could be integrated in a large automotive
platform. The choice will be guided by cost, quality and product innovation.

The final goal of the strategy is rather clear. The way of getting there is not
as clear and the road has many bumps and turns that are difficult to negotiate. A
positive outcome will have to come from a process of deep business and technical
cooperation among all players in the design chain as well as the research community.
It is a unique opportunity and a great challenge.

Remarks on the Needs of the Supply Chains

The design chains should connect seamlessly to minimize design errors and time-
to-market delays. Yet, the boundaries among companies are often not as clean as
needed and design specs move from one company to the next in non executable and
often imprecise form thus yielding misinterpretations and consequent design errors.
In addition, errors are often caught only at the final integration step as the spec-



2.3. ORGANIZATION OF THE BOOK 17

ifications were not complete and imprecise; further, non functional specifications
(e.g., timing, power consumption, size) are difficult to trace. I believe also that
since the design process is fragmented, product optimization is rarely carried out
across more than one company boundary. If the design process were carried out
as in a unique “virtual” company including all the players shown above, the over-
all ecosystem would greatly benefit. We have seen that many of the design chain
problems are typical of two very diverse verticals, the difference between the two
being in the importance given to time-to-market and to the customer appeal of the
products versus safety and hard-time constraints. Similar considerations could be
drawn also for the consumer electronic market at large that shares many of its char-
acteristics with the wireless communication market. This consideration motivates
the view that the unified methodology and framework could be used in several (if
not all) industrial vertical domains.

2.3 Organization of the Book

We present our view on how to form a unified approach to embedded system design,
Platform-Based Design, that could provide a solution to the challenges presented
in the previous sections (Section ??). In Section.....

In Section ??, we draw conclusions and indicate future directions for research
and industrial developments.

Notably missing from this paper is testing. The topic is extremely important
for SLD but to do justice to it, an entire new book would be needed.
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Chapter 3

The Principles of a Unified
Design Methodology

3.1 Introduction

Most of the present approaches to SLD used in industry have the drawback of
primarily addressing either hardware or software but not both at the same time.
Hardware/software co-design has been a topic of interest for years, but the proposed
methodologies have still treated the two aspects essentially in a segregated way.
Software approaches miss time and concurrency in their semantics making it pretty
much impossible to describe, synthesize and verify hardware. Hardware approaches
are too specific to the hardware semantics to work well for software designers. We
also believe that the levels of abstraction available in these approaches are not rich
enough to allow the supply chain to exchange design data in a seamless fashion.

These drawbacks cause the presently available approaches to address some of the
challenges presented in Section 2.1 but not all, failing especially in the integration
and supply chain-support domain. A more powerful approach would be to use an
all-encompassing methodology and the supporting tools that:

• would include both hardware and embedded-software design as two faces of
the same coin;

• favor the use of high levels of abstraction for the initial design description;

• offer effective architectural design exploration and

• achieves detailed implementation by synthesis or manual refinement.

In this chapter, we present the Platform-Based Design (PBD) methodology, and
argue that it meets these requirements.

3.2 Platforms

The concept of “platform” has been around for years. The main idea of a platform
is one of re-use and of facilitating the work of adapting a common design to a
variety of different applications. Several papers and books have appeared in the
literature discussing platforms and their use in embedded system design (see for
example, [?, ?, ?, ?, ?, ?, ?, ?, ?].
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In this section, we first introduce the use of the platform concept in industry,
then we present a distilled way of considering platforms as the building blocks for
a general design methodology that could be used across different boundaries.

3.2.1 Conventional Use of the Platform Concept

There are many definitions of “platform” that depend on the domain of application.
IC domain: a platform is considered a flexible integrated circuit where cus-

tomization for a particular application is achieved by programming one or more of
the components of the chip. Programming may imply metal customization (gate
arrays), electrical modification (FPGA personalization), or software to run on a
microprocessor or a DSP. For example, a platform may be based on a fixed micro-
architecture to minimize mask-making costs, but flexible enough to warrant its use
for a set of applications so that production volume will be high over an extended
chip lifetime. Micro-controllers designed for automotive applications such as the
Freescale PowerPC are examples of this approach. The problem with this approach
is the potential lack of optimization that in some applications, may make perfor-
mance too low and size too large.

An extension of this concept is a “family” of similar chips that differ for one or
more components but that are based on the same microprocessor(s). Freescale devel-
oped the Oak Family [?] of PowerPC-based micro-controllers that cover the market
more efficiently, by differing in flash memory size and peripherals. The TI OMAP
platform [?] for wireless communication1 was indeed developed with the platform
concept well in mind. Jean-Marc Chateau of ST Microelectronics commenting on
its division commitment to platform-based design defines it “as the creation of a
stable microprocessor-based architecture that can be rapidly extended, customized
for a range of applications, and delivered to customers for quick deployment.” .

The use of the platform-based design concept actually started with the Phillips
Nexperia Digital Video Platform (DVP). The concept of platform-based design for
IC design has not been without its critics. Gary Smith, the former Gartner Data
Quest Analyst for CAD, pointed out a number of shortcomings [?] that make, in
his words, platform-based design work well in an embedded software development
context as advocated in [?] but not so for chip design. However, not a month later,
in an interview [?, ?], McGregor, former CEO of Philips semiconductors was quoted:
“ .. we redoubled the company’s efforts in platform-based design. Philips embraced
the idea early in the mid-’90s, The recommitment to the platform approach under
my watch is among my most notable accomplishments”. In another important
quote: “ST’s Geyres attributed ST’s continued success in the set-top business to
its migration from systems-on-chip to application platforms.” [?]. At this time,
there is little doubt that platform-based design has made significant inroads in any
semiconductor application domain. The Xilinx Virtex II [?] family is a platform
rich in flexibility offered by an extensive FPGA fabric coupled with hard software
programmable IPs (up to four PowerPC cores and a variety of peripherals. The
FPGA fabric is enriched by a set of “soft” library elements such as the micro-blaze
processor and a variety of smaller granularity functional blocks such as adders and
multipliers.

We believe there will be a converging path towards the platform of the future,

1From the TI home page: “ TIs OMAP Platform is comprised of market proven, high-
performance, power efficient processors, a robust software infrastructure and comprehensive sup-
port network for the rapid development of differentiated internet appliances, 2.5G and 3G wireless
handsets and PDAs, portable data terminals and other multimedia-enhanced devices.”
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where traditional semiconductor companies will increase the flexibility of their plat-
forms by possibly adding FPGA-like blocks and heterogeneous programmable pro-
cessors, while the FPGA-based companies will make their platforms more cost and
performance efficient by adding hard macros thus differentiating their offerings ac-
cording to the markets of interest. The more heterogeneity is added to the platform,
the more potential for optimizing an application at the price of a more complex de-
sign process for the application engineers who have to allocate functionality to the
various components and develop code for the programmable parts. In this context,
the interaction among the various components has problems similar to those faced
by the system companies in an inherently distributed implementation domain (e.g.,
cars, airplanes, industrial plants). The “right” balance among the various compo-
nents is difficult to strike and the methodology we will describe later is an attempt
to give the appropriate weapons to fight this battle.

PC Domain: PC makers and application software designers have been able to
develop their products quickly and efficiently around a standard “platform” that
emerged over the years. The “architecture” platform standards can be summarized
in the following list:

• The x86 instruction set architecture (ISA) that makes it possible to re-use the
operating system and the software application at the binary level3.

• A fully specified set of busses (ISA, USB, PCI) that make it possible to use
the same expansion boards or IC’s for different products.

• A full specification of a set of I/O devices, such as keyboard, mouse, audio
and video devices.

All PCs should satisfy this set of constraints. Both the application developers and
the hardware designers benefited from the existence of a standard layer of abstrac-
tion. Software designers have long used well-defined interfaces that are largely in-
dependent from the details of the hardware architecture. IC designers could invent
new micro-architectures and circuits as long as their designs satisfied the standard.
If we examine carefully the structure of a PC platform, we note that it is not the
detailed hardware micro-architecture that is standardized, but rather an abstrac-
tion characterized by a set of constraints on the architecture. The platform is an
abstraction of a “family” of micro-architectures. In this case, IC design time is
certainly minimized since the essential components of the architecture are fixed and
the remaining degrees of freedom allow some optimization of performance and cost.
Software can also be developed independently of the new hardware availability, thus
offering a real hardware-software co-design approach.

System Domain: The definition of a platform is very loose. This quote from
an Ericsson press release is a good example: “Ericsson’s Internet Services Platform
is a new tool for helping CDMA operators and service providers deploy Mobile
Internet applications rapidly, efficiently and cost-effectively.” The essential concept
outlined here is the aspect of the capabilities a platform offers to develop quickly
new applications. It is similar to the application software view of a PC platform, but
it is clearly at a higher level of abstraction. The term platform has been also used
by car makers to indicate the common features shared between different models.
For automobiles, platforms are characterized by common mechanical features such
as engines, chassis, and entire powertrains. It is not infrequent to see a number
of different models even across brands share many mechanical parts, addressing
different markets with optimized interior and styling. Here the focus on subsystem
commonality allows for faster time-to-market and less expensive development.
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There are clearly common elements in the platform approaches across industrial
domains. to make platforms a general framework for system design, a distillation
of the principles is needed so that a rigorous methodology can be developed and
profitably used across different design domains.

3.3 The Platform-Based Design Methodology

The principles at the basis of platform-based design consist of starting at the highest
level of abstraction, hiding unnecessary details of an implementation, summarizing
the important parameters of the implementation in an abstract model, limiting the
design space exploration to a set of available components and carrying out the design
as a sequence of “refinement” steps that go from the initial specification towards
the final implementation using platforms at various level of abstraction [?, ?, ?, ?].

3.3.1 Platform Definition

A platform is defined to be a library of components that can be assembled to generate
a design at that level of abstraction.

Example 3.3.1 (Libraries) Hardware designers are familiar with the notion of
libraries. Figure 3.4 shows the hardware design flow applied to a simple exam-
ple. The specification of the logic function to implement is captured using a high
level description language such as VHDL. This description is then translated into a
boolean network. For the sake of this example, we selected a combinational function
but the same design flow is used for sequential functions. The boolean function is
minimized to reduce the number of gates necessary for its implementation. At this
point, the original description looks like a set of interconnected gates. These gates
are covered using a library of standard gates called standard cells. Each foundry
provides its own library of standard cells. Each cell is characterized by metrics such
as area, power, input and output capacitance. Together with the library, a set of
rules are also provided to interconnect the cells together. For example, there are
specific rules that establish the maximum number of cells that can be connected to
the output of one given cell of a give size. The standard cell library, together with
the rules to compose them, define the class of logic functions that can be imple-
mented. Also, the same function can be implemented in multiple ways for different
area-timing-power trade-offs.

Software designers also rely on a platform. An operating system comes with
a rich set of libraries that include scheduling policies, inter-task communication,
timing and power management, network access and security. At a higher level of
abstraction, the operating system can be seen as one component of a library of
software modules. Depending on the application domain, other components are
available to software designers such as algorithms for signal and image processing
and application level protocols.

This library not only contains computational blocks that carry out the appropri-
ate computation but also communication components that are used to interconnect
the computational components.

Example 3.3.2 (Communication components) We discuss here a few exam-
ple of communication components. The interconnection of functional components
using communication elements is also referred to as network. At the algorithmic
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description level, communication is usually point-to-point or through shared vari-
ables. In Chapter ?? we present several formal ways of capturing the behavior of a
system, called models of computation. Each model defines computational elements
and the way in which they can be composed. In fact, the definition of a model of
computation also includes the definition of the communication semantics. A simple
example is the model used for signal processing applications. In this model, com-
putation blocks perform sub-functions of an algorithm and exchange intermediate
results by communicating over First-Input-First-Output (FIFO) queues. According
to our framework, this corresponds to having a library of two types of elements:
functional blocks and FIFO queues.

At a lower abstraction level, data networks are used to exchange data among
components. Point-to-point communication is till possible at this level and it is in-
deed very common in hardware design. However, the adoption of networked solution
offers many advantages by providing flexible connectivity at a lower cost. This is
achieved by sharing communication media. In bus-based communication, the same
physical connection is accessed by a number of bus participant that, to get the
ownership of the bus, must go thorough an arbitration phase. In packet-switched
networks, components send packets that are routed in the network by routers and
switches. Together with all these components come a set of rules for their composi-
tion that span all levels of the protocol stack, from the physical communication to
the application layer.

One example of communication platform for System-on-Chips is the AMBA bus
defined by ARM. The AMBA specification defines four different components:

• the Advanced eXtensible Interface (AXI) protocol suitable for high-bandwidth
and low latency designs;

• the Advanced High Performance Bus (AHB) to interconnect high-performance,
high clock frequency components;

• the Advanced System Bus (ASB) also for high-performance components but
with limited features compared to the AHB;

• and the Avanced Peripheral Bus (APB) to interconnect low power peripheral
with simple interfaces.

The interface of AMBA compliant components is defined by the standard as a list
of bit typed signals. The high-performance bus and the peripheral bus can be
composed through bridges.

It is important to keep communication and computation elements well separated
as we may want to use different methods for representing and refining these blocks.
For example, communication plays a fundamental role in determining the properties
of models of computation. In addition, designing by aggregation of components
requires a great care in defining the communication mechanisms as they may help or
hurt design re-use. In design methodologies based on IP assembly, communication is
the most important aspect. Unexpected behavior of the composition is often due to
negligence in defining the interfaces and the communication among the components.

Example 3.3.3 (Orthogonalization of Computation and Communication)
In Example ?? we already discussed the importance of the communication semantics
as an integral part of the definition of the meaning of a model. For the same
semantics of the computation blocks, the communication semantics can change the
properties of a model quite radically. This concept is very important to be able to
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re-use components and it is also exploited in tools that support heterogeneous design
such as Ptolemy and Metropolis. To give a concrete example, consider processes
running on their own threads that communicate using two services:

• out.write(token t) that is used to write an atomic piece of data t of a
generic type token on an output port out, and

• token in.read() that reads a token from an input port in.

The implementation of the read and write functions are not defined by the processes.
A process simply assumes that these services are provided by the components at-
tached to its ports.

Figure 3.1 shows a network of processes communicating over point-to-point chan-
nels. The left side of the figure shows some details of implementation of execution
semantics of the processes. Each process runs a thread that is an infinite loop.
Consider process P1. Within its loop, this process reads one token from its input,
does some computation, and writes four token on port out1 and one token on port
out2. The behavior of the other processes is very similar: they will read tokens from
their inputs, do some computation, and write the results to their output ports. The
consumption and production rate of each process are written next to their input
and output ports. The two branches of the network of processes are unbalanced
because P4 reads one token from each port, making the rate of the upper branch too
high for P4 to keep the buffers empty. However, assuming that the buffers on the
point-to-point connections are unbounded (i.e. they can hold an infinite number of
tokens), each process can run forever.

Consider the same network of processes but with finite buffers on the commu-
nication channels. The communication semantics is now different. Because the
buffers are finite, a process attempting to write on a buffer will be blocked if there
is not enough space to complete the writing operation. The right side of Figure 3.1
shows an execution of the same network of processes with finite buffers of length
four. At each iteration, all the processes that can proceed will do so. However,
after the fifth iteration, no process can make any progress because P4 is waiting for
tokens on input in2 but P1 cannot execute its writing operation and, consequently,
it cannot feed any more token to the lower branch of the network.

The separation of computation and communication allows for instance several
different applications on a computer to access the network. Moreover, the type of
access, either wired through an Ethernet cable or wireless through a WiFi connec-
tion, does not affect the application.

Each element of the library has a characterization in terms of performance pa-
rameters together with the functionality it can support.

Example 3.3.4 (Quantities) A given service, or functionality, can be provided,
or implemented, in many ways. Thus, the same functional specification of a system
can be implemented by different interconnections of the components of a library.
First, each implementation need to provide the required functionality but it also
need to satisfy performance constraints. Second, each implementation has a cost.
We generalize performance and cost metrics into quantities that characterize a com-
ponent. The quantities are used to explore the trade-off among different solutions.

For example, the same standard cell library (e.g. a OR gate) can be implemented
with different power-area trade-offs. Larger cells can provide higher output current
decreasing the switching time and ultimately leading to faster circuits. On the
other hand, larger cells consume more power which is of primary concern for battery
powered devices.
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while(true){
  ...
  d = in.read();
  ...
  out1.write(d1[4]);
  out2.write(d2[1]);
}
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Figure 3.1: Two processes communicating on two different channels.
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The library is in some sense a parametrization of the space of possible solutions.
Not all elements in the library are pre-existing components. Some may be “place
holders” to indicate the flexibility of “customizing” a part of the design that is
offered to the designer . For example, in a Xilinx Virtex II Field Programmable
Gate Array (FPGA) platform, part of the design may be mapped to a set of virtual
gates using logic synthesis and place-and-route tools. For this part, we do not have
a complete characterization of the element since its performance parameters depend
upon a lower level of abstraction.

Example 3.3.5 Figure 3.2 shows an example of a system mapped on a pro-
grammable platform. The system is an abstract example of a device that provides
a set of applications and network connectivity. For example, one of the applications
sends a video stream captured by a camera on a communication channel. To send
data over the network, an application writes the data in the input queue of a func-
tion that implements the higher levels of the network protocol stack. The data is
encapsulated in a protocol frame that is sent to another function implementing the
baseband processing (i.e. the signal processing that transforms a stream of bits into
a signal ready to be sent to a digital-to-analog converter and then to the radio).

The Virtex II platform is an FPGA with an embedded processor. The embedded
processor can be programmed using standard software development tools. Hard-
ware blocks can be implemented on the FPGA using a hardware design flow. In our
example, the MPEG decoder and the baseband processing blocks may be too com-
plex to be executed by the microprocessor. These two blocks will be implemented in
hardware. Xilinx also provide a large set of hardware blocks that are optimized for
FPGA implementation. This library also contains an MPEG decoder that is well
characterized in terms of performance, power consumption and area. The base-
band processing block has to be implemented in a custom way in hardware. At
this abstraction level, we do not know what will be the performance of such block.
Therefore, we define a virtual component and assign the performance metrics that
will make our system work correctly. For instance, if we want to transmit at a
rate of 2 Mb/s, the total processing time per bit of the virtual component must be
half millisecond. The performance assigned to the virtual component becomes the
constraint that must be satisfied by the hardware implementation of the baseband
block.

A platform instance is a set of components that are selected from the library
(the platform) and whose parameters are set. In the case of a virtual component,
the parameters are set by the requirements rather than by the implementation. In
this case, they have to be considered as constraints for the next level of refinement.

Example 3.3.6 In Example 3.3.2 we described the AMBA platform as a set of
busses that can be instantiated to connect the cores of a system-on-chip. A partic-
ular instantiation and composition of AMBA busses, together with an assignment
of their parameters is a platform instance.

Figure 3.3 shows a SoC based on the AMBA platform. The CPU core and the on-
chip memory are connected to a AHB. The external memory interface and a Direct
Access Memory controller are also cores that require high performance and they are
also connected to the AHB. The peripheral cores are instead connected to a APB.
The two busses communicate via a bus bridge. The platform instance is not only a
particular composition of library elements, but also these components are configured
to serve the particular application that is mapped on the platform instance. For
example, the width of the data bus in number of bits and the clock speed are
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Virtex-II Pro(1) Array Functional Description

This module describes the following Virtex™-II Pro func-
tional components, as shown in Figure 1: 
• Embedded RocketIO™ (up to 3.125 Gb/s) or 

RocketIO X (up to 6.25 Gb/s) Multi-Gigabit 
Transceivers (MGTs)

• Processor blocks with embedded IBM PowerPC™ 405 
RISC CPU core (PPC405) and integration circuitry.

• FPGA fabric based on Virtex-II architecture.

Virtex-II Pro User Guides
Virtex-II Pro User Guides cover theory of operation in more
detail, and include implementation details, primitives and
attributes, command/instruction sets, and many HDL code
examples where appropriate. All parameter specifications
are given only in Module 3 of this Data Sheet. 

These User Guides are available:

• For detailed descriptions of PPC405 embedded core 
programming models and internal core operations, see 
PowerPC Processor Reference Guide and PowerPC 
405 Processor Block Reference Guide. 

• For detailed RocketIO transceiver digital/analog design 
considerations, see RocketIO Transceiver User Guide. 

• For detailed RocketIO X transceiver digital/analog 
design considerations, see RocketIO X Transceiver 
User Guide, 

• For detailed descriptions of the FPGA fabric (CLB, IOB, 
DCM, etc.), see Virtex-II Pro Platform FPGA User 
Guide.

All of the documents above, as well as a complete listing
and description of Xilinx-developed Intellectual Property
cores for Virtex-II Pro, are available on the Xilinx website.

Contents of This Module
• Functional Description: RocketIO X Multi-Gigabit 

Transceiver (MGT)
• Functional Description: RocketIO Multi-Gigabit 

Transceiver (MGT)
• Functional Description: Processor Block
• Functional Description: Embedded PowerPC 405 Core
• Functional Description: FPGA
• Revision History

Virtex-II Pro Compared to Virtex-II Devices
Virtex-II Pro devices are built on the Virtex-II FPGA archi-
tecture. Most FPGA features are identical to Virtex-II
devices. Major differences are described below:

• The Virtex-II Pro FPGA family is the first to incorporate 
embedded PPC405 and RocketIO/RocketIO X cores.

• VCCAUX, the auxiliary supply voltage, is 2.5V instead of 
3.3V as for Virtex-II devices. Advanced processing at 
0.13 !m has resulted in a smaller die, faster speed, 
and lower power consumption.

• Virtex-II Pro devices are neither bitstream-compatible nor 
pin-compatible with Virtex-II devices. However, Virtex-II 
designs can be compiled into Virtex-II Pro devices.

• On-chip input LVDS differential termination is available.
• SSTL3, AGP-2X/AGP, LVPECL_33, LVDS_33, and 

LVDSEXT_33 standards are not supported.
• The open-drain output pin TDO does not have an 

internal pull-up resistor.

6
0 Virtex-II Pro and Virtex-II Pro X Platform FPGAs:

Functional Description
DS083 (v4.7) November 5, 2007 Product Specification

1. Unless otherwise noted, "Virtex-II Pro" refers to members of the Virtex-II Pro and/or Virtex-II Pro X families.
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Figure 1:  Virtex-II Pro Generic Architecture Overview
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Figure 3.2: Example of an application mapped in software and hardware on a
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parameters that are decided when the components are instantiated. Notice that,
the selection of these parameters translates into design constraints for the lower
abstraction levels. For instance, the clock speed will drive the hardware design and
synthesis of the bus arbiter, address decoder, multiplexers and the floor-plan of the
SoC.

This concept of platform encapsulates the notion of re-use as a family of solutions
that share a set of common features (the elements of the platform). Since we
associate the notion of platform to a set of potential solutions to a design problem,
we need to capture the process of mapping a functionality (what the system is
supposed to do) with the platform elements that will be used to build a platform
instance or an “architecture” (how the system does what is supposed to do). This
process is the essential step for refinement and provides a mechanism to proceed
towards implementation in a structured way.

We strongly believe that function and architecture should be kept separate as
functionality and architectures are often defined independently, by different groups
(e.g., video encoding and decoding experts versus hardware/software designers in
multi-media applications). Too often we have seen designs being difficult to un-
derstand and to debug because the two aspects are intermingled at the design
capture stage. If the functional aspects are indistinguishable from the implemen-
tation aspects, then it is very difficult to evolve the design over multiple hardware
generations.

3.3.2 The Design Process

Design is a transformation process that takes specifications and turns them into a
product. The way in which this process is organized is called a methodology. A sound
and rigorous methodology has been considered essential in achieving designs with
few errors in a relatively short time and better performance. There are designers
who consider a methodology as an impediment to creativity as it specifies steps and
checks that may slow down the creation of new concepts and distract the designer
from the pursue of his/her ideas. However, if the methodology is supported by
theoretical results about properties of the intermediate steps in the design process
and by tools that carry out some of the transformations automatically and optimally,
then instead of being an impediment to creativity, the methodology allows a designer
to focus on the concepts rather than on the details.

Traditional Design Processes

In hardware design, the advent of optimized automatic layout generation from
schematics followed by the advent of automatic logic synthesis of gates from higher
level of abstractions has demonstrably increased design productivity by orders of
magnitude allowing the design of circuits of complexity that would not have been
possible without these tools and the supported methodology.

In software design, tools of this sort are still in their early stage albeit compilers
of high-level languages do share some of the benefits of the design methodology and
tools of hardware design. One of the problems of software as it is intended today,
is the the expressivity of its mathematical model that being very general does not
allow formal analysis and synthesis approaches. In particular, as we shall see later,
synchronous reactive languages have rigorous synchronous semantics that allows
applying some of the logic synthesis tools to software code generation. However,
much work has been done to make the software design process controlled and tightly
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entity OR is
  port (A, B: in std_logic;

            Z: out std_logic);
     end OR;
     architecture rtl of OR is

begin 
 Z <= A or B ;

     end rtl;

entity F1 is
  port (a, b, c, d: in std_logic;

            z: out std_logic);
     end F1;
     architecture rtl of F1 is

begin 
 z <= b and c and (a or d) ;

     end rtl;

entity FUNC is
  port (a,b,c,d: in std_logic;

             f: out std_logic);
     end FUNC;
      architecture structural of FUNC is
        component OR
          port (A, B: in std_logic;
                Z: out std_logic);
        end component;
        component F1
          port (a,b,c,d: in std_logic;
                z: out std_logic);
        end component;
        component F2
          port (a,b,c,d: in std_logic;
                z: out std_logic);
        end component;
        signal F1_out,F2_out : std_logic;
      begin
        U0: F1 port map (a,b,c,d,F1_out);
        U1: F2 port map (a,b,c,d,F2_out);
        U2: OR port map (F1_out,F2_out,f);
     end structural;

entity F2 is
  port (a, b, c, d: in std_logic;

            z: out std_logic);
     end F2;
     architecture rtl of F2 is

begin 
 z <= a and c and (not b or b and d)  ;

     end rtl;
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Figure 3.4: An example of hardware design flow from the high level specification to
layout.
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Figure 3.5: The waterfall software development model.

organized in phases with gates that must be passed to continue on. As we mentioned
in the introduction, software certification is about the process followed to design
the software rather than its contents. Two basic approaches have been followed in
the past to organize software design:

• The waterfall model shown in Figure 3.5 where the basic steps of the software
design process are separated by gates where reviews are carefully organized.
Every step and every gate has its own precise set of rules. This model was
probably the first approach to a rigorous methodology and was in use in the
defense industry where code quality and certification play an essential role and
where additional costs are affordable. It has the drawbacks that only at the
end one can see the design in its entirety and errors may be discovered too late
in the design process in addition to being somewhat rigid and cumbersome
(large documents are often generated to legislate the process). In addition,
the design team that is responsible for a phase moves on to a new project
once its review gate has been passed, so that the personal knowledge of the
design may be irreparably lost. This kind of methodology needs streamlining
to gain flexibility and speed.

• The spiral model shown in Figure 3.6 is a more modern approach where early
feedback can be given to the designers on the quality of their design by using
rapid prototyping and producing the final design as a “refinement” process of a
working but incomplete system. In this case, the initial design team must have
a clear understanding of the requirements and of their relative importance
as the decision of the refinement steps is crucial to the final quality of the
design. In this approach, the design team starts small and remains involved
throughout the design process to maintain the knowledge base of the early
stage of the design.

The Software Engineering Institute at Carnegie Mellon in Pittsburgh estab-
lished standards and guidance for developing software engineering disciplines and
management known as Capability Maturity Model Integration (CMMI), “a process
improvement approach that provides organizations with the essential elements of
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Figure 3.6: Spiral software development model.

effective processes. It can be used to guide process improvement across a project,
a division, or an entire organization. CMMI helps integrate traditionally separate
organizational functions, set process improvement goals and priorities, provide guid-
ance for quality processes, and provide a point of reference for appraising current
processes.” [?]. CMMI is widely followed in many companies world-wide that must
develop large amount of software in their business. CMMI is not explicitly targeted
to the embedded software world.

The waterfall and spiral models are also followed for system design that has
significant hardware content. They have a strong top-down flavor as the design is
conceived as a progression from start to end with no mention of legacy or of pre-
designed component assembly. Bottom-up design methodologies in the embedded
system domain generate their solutions by starting with pre-existing designs that
are then adjusted and incremented to respond to a set of new requirements. This
process reduces implementation risks since working systems are taken as the initial
step but it has severe optimality and requirement satisfaction problems.

The Platform-Based Design Process

The PBD design process is neither a fully top-down nor a fully bottom-up approach
in the traditional sense: rather it is a meet-in-the-middle process (see Figure 3.7)
as it can be seen as the combination of two efforts:

• top-down: map an instance of the functionality of the design into an instance
of the platform and propagate constraints;

• bottom-up: build a platform by choosing the components of the library that
characterizes it and an associated performance abstraction (e.g., timing of the
execution of the instruction set for a processor, power consumed in performing
an atomic action, number of literals for technology independent optimization
at the logic synthesis level, area and propagation delay for a cell in a standard
cell library).
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Figure 3.7: Platform-Based Design Triangles.

The “middle” is where functionality meets the platform. Given the original “se-
mantic” difference between the two, the meeting place must be described with a
common semantic domain so that the “mapping” of functionality to elements of the
platform to yield an implementation can be formalized and automated.

To represent better the refinement process and to stress that platforms may pre-
exist the functionality of the system to be designed, we turn the triangles on the
side and represent the “middle” as the mapped functionality. Then the refinement
process takes place on the mapped functionality that becomes the “function” at
the lower level of the refinement. Another platform is then considered side-by-side
with the mapped instance and the process is iterated until all the components are
implemented in their final form. This process is applied at all levels of abstraction,
thus exposing what we call the “fractal nature of design”. Note that some of the
components may have reached their final implementation early in the refinement
stage if these elements are fully detailed in the platform.

The resulting Figure 3.8 exemplifies this aspect of the methodology. It is rem-
iniscent of the Y-chart of Gajski ?? albeit it has a different meaning since for us
architecture and functionality are peers and architecture is not necessarily derived
from functionality but may exist independently2. It was used as the basis for the de-
velopment of Polis [?] and of VCC [?]. The concept of architecture is well captured
by the platform concept presented above.

The result of the mapping process from functionality to architecture can be
interpreted as functionality at a lower level of abstraction where a new set of com-
ponents, interconnects and composition rules are identified. To progress in the
design, we have to map the new functionality to the new set of architectural com-
ponents. In case the previous step used an architectural component that was fully
instantiated, then that part of the design is considered concluded and the mapping
process involves only the parts that have not been fully specified as yet.

2This diagram together with its associated design methodology was presented independently
by Bart Kienhuis and colleagues(see e.g., [?])
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Figure 3.8: The PBD process

While it is rather easy to grasp the notion of a programmable hardware platform,
the concept is completely general and should be exploited through the entire design
flow to solve the design problem. For example, the functional side of Figure 3.8
can be as high level as a denotational specification (find x such that f(x) = 0)
and the corresponding platform can be a set of algorithms for operationalizing
the specification (e.g., a Newton-Raphson algorithm and a nonlinear successive
over relaxation scheme) together with their performance (e.g., quadratic or linear
convergence). The choice of a platform instance would be in this case the selection
of the algorithm to use together with the constraints that this choice requires (e.g.,
differentiability of f , non singularity of the Jacobian at the solution for Newton-
Raphson). Assuming Newton-Raphson to be the choice, then this platform instance
becomes the functional specification for the next layer. In this case, a library of
linear equation solvers to be used in the Newton-Raphson algorithm is then the
next layer platform. We can continue along this line of reasoning until we decide to
use a particular computing platform for the implementation of the fully specified
algorithm that is available.

3.4 An Example of Platform-Based Design

In this section we show an example of application of the platform-based design
methodology to building automation systems. There are a number of quantities
that need to be monitored and controlled inside a building. Temperature, pressure,
humidity and pollutants are example of physical quantities that determine the in-
door air quality. Depending on the building usage, the indoor air quality must be
maintained within precise bounds that are specified by regulations. The building
automation system comprises also the intrusion detection system, the control of ele-
vator cars, the secondary power generation system and the fire and security system.
Today, these sub-systems are not integrated by there is a common agreement that
their cooperation can provide higher comfort, safety and energy efficiency than it
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Figure 3.9: Top-down design of building automation systems.

is achieved in current buildings.
The design flow that has been developed over the years is shows in Figure 3.9.

First, the building envelope is designed. The geometry and exposure of the building
is decided depending on architectural constraints and total thermal loads. Typi-
cally, simulation is used to determine the thermal loads. Once the envelope has
been designed, the building needs to be instrumented with an automation systems.
The control algorithms that are needed to guarantee the desired level of comfort
have been developed over the years and standardized. Depending on the type of
building (e.g. a commercial or residential building), there are standard sequences of
operation that must be implemented. There standard sequences are written in plain
English language. They simply define schedules to turn on and off the heat venti-
lation and air conditioning (HVAC) system, alarm conditions, temperature ranges
and even the way in which this variables must be controlled.

The standard sequence of operation is considered the specification of the controls
of the building automation system. The next step is indicated as network design
in Figure 3.9. In practice, there are companies that provide hardware and software
platform solutions that can readily adopted and installed throughout the building
to interconnect sensors and actuators to computation units (i.e. controllers) and
to the main server. Finally, the hardware platform and the controls specification is
taken by control contractors that need to implement the standard sequences on the
given platform.

This design flow is purely top-down in the send that the specification is passed
to the next abstraction level where it is refined and passed to the subsequent one.
For instance, the building envelope is designed without any knowledge of the per-
formance of the control algorithms, and the standard sequences are defined without
any knowledge of the underlying implementation platform.

Figure 3.10 shows the same design flow where we added the performance abstrac-
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Figure 3.10: Platform-based design of building automation systems.

tion that flows in the opposite direction of the constraints. In this view, the design
of the envelope is done by matching the architectural and thermal constraints with a
notion of what the HVAC system and the control algorithm can achieve in terms of
performance. Similarly, the control algorithms are defined taking into account the
comfort constraints but also an abstraction of the network and hardware resources
available at the lower level of abstraction. The result of this design flow is that the
final implementation is potentially more cost effective since the entire system is ob-
tained by matching the requirements with the available resources. Moreover, taking
into account the restrictions imposed by the available hardware early in the design
process avoids design error that are typically discovered in the final implementation
like network bottleneck.

A more detailed description of the platform-based design applied to distributed
control system is shown in Figure 3.11. The design flow consists of the following
steps:

Step 1: Decentralizing Control. The control algorithm is initially described in a cen-
tralized manner assuming an ideal implementation, i.e. infinite computation
and communication resources. This separation, which is consistent with the
basic tenets of PBD, is essential to analyze the functionality of the control
strategy independently from resource sharing, so that that any misbehavior
detected in later stages of the design can be isolated.

Centralized control, especially for complex distributed systems, may not be
the optimal choice and, in fact, may not even be implementable. A design
option to explore in this step is to distribute the control over a set of smaller
cooperating controllers to reduce the size of the state space and consequently
the computational requirements. Given a centralized description, there are
many techniques that can be used to derive an equivalent distributed algo-
rithm. Among all the distributed controllers, one has to be selected in an
optimized way.

To do this, the problem is formulated as mapping of the centralized con-
troller onto a platform instance that combines local controllers sharing some
state variables. The local controllers form a library of components that must
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Figure 3.11: Platform-based design of distributed control systems.

be characterized by performance and cost indexes. For instance, each local
controller may be attributed with a maximum size for its state variables (cap-
turing memory constraints) and a maximum number of multiplications (cap-
turing computational limitations). Also, each shared variable may be limited
in size, implicitly capturing a limitation on the communication capabilities at
lower levels of abstraction. The mapping process can be cast an optimization
problem whose solution gives the best control architecture that performs the
given function originally captured as centralized control.

Step2: Communication/computation trade-off. The distributed control algorithm is
characterized at this level by constraints on the eigenvalues to guarantee con-
vergence, and by an interacting set of local controllers obtained as the solution
to the mapping problem of Step 1. Given this constraints, the computa-
tion/communication design space exploration is about finding an allocation
of computational resources (where to compute the control laws) and commu-
nication requirements (the amount of data to transfer between controller and
the end-to-end quality of services) such that the overall cost of the system is
minimized.

The library of components here contains computation and communication
resources. The communication resource is a single monolithic agent that ab-
stracts any network by providing a cost metric that depends on the number of
end-to-end connections and their quality of service requirements. The design
space exploration consists of balancing the computation and communication
cost. In fact, partitioning the computation could be convenient when small
and simple units are less costly than a central server. At the same time,
breaking down the computation introduces inter-module communication that
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may require an expensive high-performance network.

Step 3: Communication Design. The end-to-end communication requirements and
the constraints on the position of computational units, sensors, and actua-
tors obtained by Step 2 are given as inputs (function) to the communication
design step. The components of the platform library that are available for im-
plementing the communication network are routers, gateways, protocols and
links. First the interconnect topology and the per-link quality of service must
be chosen. Given the required routing of messages and the per-link perfor-
mance requirements, the parameters of the MAC layer and of the physical
layer must then be optimally computed in this Step.

Step 4: HW/SW co-design and architecture optimization. Once the communication
network has been designed, the next step of the design flow is Hardware/Software
Co-Design. For each computational resource and communication node, an op-
timal architecture made of processors and custom hardware must be selected
and code must be generated. Here the platform library components are the
available hardware modules and microprocessors decorated with their Oper-
ating Systems and compilers.

This is just one example of design flow for these types of systems. Other flow
may also be appropriate depending on the specific application.

3.4.1 Considerations on the Use of PBD

In PBD, the partitioning of the design into hardware and software is not the essence
of system design as many think, rather it is a consequence of decisions taken at a
higher level of abstraction. Critical decisions are about the architecture of the sys-
tem, e.g., processors, buses, hardware accelerators, and memories, that will carry on
the computation and communication tasks associated with the overall specification
of the design.

In the PBD refinement-based design process, platforms should be defined to elimi-
nate large loop iterations for affordable designs: they should restrict the design space
via new forms of regularity and structure that surrender some design potential for
lower cost and first-pass success. The library of functional and communication com-
ponents is the design space that we are allowed to explore at the appropriate level
of abstraction.

Establishing the number, location, and components of intermediate “platforms”
is the essence of PBD. In fact, designs with different requirements and specifica-
tions may use different intermediate platforms, hence different layers of regularity
and design-space constraints. The trade-offs involved in the selection of the number
and characteristics of platforms relate to the size of the design space to be explored
and the accuracy of the estimation of the characteristics of the solution adopted.
Naturally, the larger the step across platforms, the more difficult is predicting per-
formance, optimizing at the higher levels of abstraction, and providing a tight lower
bound. In fact, the design space for this approach may actually be smaller than
the one obtained with smaller steps because it becomes harder to explore meaning-
ful design alternatives and the restriction on search impedes complete design-space
exploration. Ultimately, predictions/abstractions may be so inaccurate that design
optimizations are misguided and the lower bounds are incorrect.

The identification of precisely defined layers where the mapping processes take
place is an important design decision and should be agreed upon at the top design
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management level. Each layer supports a design stage where the performance indices
that characterize the architectural components provide an opaque abstraction of
lower layers that allows accurate performance estimations used to guide the mapping
process.

This approach results in better re-use, because it decouples independent aspects,
that would otherwise be tied, e.g., a given functional specification to low-level im-
plementation details, or to a specific communication paradigm, or to a scheduling
algorithm. It is very important to define only as many aspects as needed at every
level of abstraction, in the interest of flexibility and rapid design-space exploration.

3.5 Concluding Remarks on Platform-Based De-
sign

The notion of PBD presented in this section is being adopted rather widely by the
EDA companies who are active in the system space or that are eyeing that market.
CoWare [?] and Mentor Graphics [?] use platforms in their architectural design
and design-space exploration tools pretty much in the sense we introduced here.
Cadence and National Instruments use the concepts of platforms in the description
of their tools and approaches using diagrams similar to Figure 3.7.

We believe PBD serves well the purpose of the supply chain as the layers of
abstraction represented by the platforms can be used to define the hand-off points of
complex designs. In addition, the performance and cost characteristics associated to
the platforms represent a “contract” between two players of the design chain. If the
platform has been fully specified with performance and cost given by the supplier,
then the client can design at his/her level of abstraction with the assumption that
the “contract” will be satisfied [?, ?]. If the supplier has done well his/her homework,
the design cycles are considerably shortened. If one or more of the components of
the platform instance chosen by the client is not made available by the supplier,
but it has to be designed anew, the performance assumed by the client can serve
as a specification for the supplier. In both cases, the “contract” is expressed in
executable form and prevents misunderstandings and long design cycles.

The platform concept is also ideal to raise the level of abstraction since it does
not distinguish between hardware and software but between functionality and ar-
chitecture. Hence, the design-space exploration can take place with a more degrees
of freedom than in the traditional flows. In addition, the partitioning between
hardware and software components can be done in an intelligent and optimized
way.

On the other hand, PBD does require a specific training of designers to guide
them in the definition of the “right” levels of abstraction and of the relationships
among them. It does benefit from the presence of supporting tools for analysis,
simulation and synthesis organized in a well-structured design flow that reflects the
relationships among the platforms at the different layers of abstraction. Designers
have to be careful in extracting implementation aspects they want to analyze from
behavior of their design. In my experience of interaction with industry on importing
PBD, this has possibly been the most difficult step to implement. However, once
it is well understood, it gave strong benefits not only in terms of design time and
quality, but also in terms of documentation of the design.

As we mentioned several times, the methodology, framework and tools presented
above can serve as an integration framework to leverage the many years of important
work of several researchers. As done in [?], we use the diagram of Figure 3.12, a
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simplification of Figure 3.8, to place in context system-level design approaches.
This classification is not only for taxonomy purposes. It also shows how to combine
existing approaches into the unified view offered by PBD to build optimized flows
that can be customized for particular applications.

Figure 3.12: Function-Architecture-Mapping.

3.6 To Probe Further: Model-Driven Software De-
velopment

The paradigm that most closely resembles PBD is Model-Driven (Software) De-
velopment (MDD). MDD is subject of intense research and investigation in the
software development community as it bears much promise to improve the quality
of software. For an excellent review of the state of the art and of challenges that
MDD poses to the software community, we recommend the March 2006 issue of the
IBM Systems Journal [?] and in particular, the paper “Model-Driven Development:
the good, the bad and the ugly” by B. Hailpern and P. Tarr, for a deep analysis of
the pros and cons of the approach.

MDD is based on the concept of Model-Driven Architecture. The OMG defines
the term Model-Driven Architecture(MDA) to be as follows: “MDA is based on
a Platform-Independent Model (PIM) of the application or specifications business
functionality and behavior. A complete MDA specification consists of a defini-
tive platform-independent base model, plus one or more Platform-Specific Models
(PSMs) and sets of interface definitions, each describing how the base model is
implemented on a different middleware platform. A complete MDA application
consists of a definitive PIM, plus one or more PSMs and complete implementations,
one on each platform that the application developer decides to support. MDA
begins with a model concerned with the (business-level) functionality of the sys-
tem, independent of the underlying technologies (processors, protocols, etc.). MDA
tools then support the mapping of the PIM to the PSMs as new technologies become
available or implementation decisions change.” [?]

The concept of separation of concerns between function and platform is clearly
stated. The use of the mapping of functionality to platforms as a mean to move to-
wards the final implementation is also expressed. However, the similarities between
the two approaches ends here as the definition of platform is not fully described nor
the semantics to be used for embedded software design.
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The University of Vanderbilt group [?] has evolved an embedded software de-
sign methodology and a set of tools based on MDD. In their approach, models
explicitly represent the embedded software and the environment it operates in, and
capture the requirements and the design of the application, simultaneously. Models
are descriptive, in the sense that they allow the formal analysis, verification, and
validation of the embedded system at design time. Models are also generative, in
the sense that they carry enough information for automatically generating embed-
ded software using the techniques of program generators. Because of the widely
varying nature of embedded systems, the Vanderbilt researchers emphasize that a
single modeling language may not be suitable for all domains; thus, modeling lan-
guages should be domain-specific (DSL). These languages have significant impact
on the design process [?] for complex software systems. In embedded systems, where
computation and communication interact with the physical world, DSLs offer an
effective way to structure information about the system to be designed along the
“natural dimensions” of the application [?] . We take the position that DSLs for
embedded systems should have a mathematically manipulable representation.

This view goes against the use of a general language for embedded systems and
favors customization to obtain better optimization and easier adoption. However,
customization carries obvious drawbacks in terms of development costs and support
efforts. To decrease the cost of defining and integrating domain-specific modeling
languages and corresponding analysis and synthesis tools, the Model-Integrated
Computing (MIC) [?] approach is applied in an architecture, where formal mod-
els of domain-specific modeling languages, called metamodels play a key role in
customizing and connecting components of tool chains. The Generic Modeling En-
vironment (GME) [?] provides a framework for model transformations enabling easy
exchange of models between tools and offers sophisticated ways to support syntactic
(but not semantic) heterogeneity. The KerMeta metamodeling workbench [?, ?] is
similar in scope.

In synthesis, MDD emphasizes design by (whenever possible automatic) model
transformations. Model-based approaches have been applied for years in the hard-
ware domain where one can argue that since the introduction of logic synthesis, this
approach has had great success. Most of the formal approaches to hardware design
are indeed model driven in the sense that a design model is successively transformed
into hardware. In embedded software, the approach has still to be fully exploited as
using a model-driven method requires the description of the software with mathe-
matical models, a step that for most software designers is not easy. Domain-specific
languages will probably help in pushing for the adoption of MDD in the embedded
software community since it is possible to design these languages to meet the specific
needs of a homogeneous group of designers thus allowing them to be more effective
in expressing their designs. However, if indeed each design group is going to have
its specific language, the problem will be how to interface the various parts of the
design so that the composition can be analyzed and verified. We believe that this
issue can be resolved only if the semantics of the languages are well understood and
the interaction among parts described with different languages is mathematically
well characterized. The Vanderbilt group is addressing some of these issues with
semantic anchoring of DSLs using abstract semantics based on Abstract State Ma-
chines [?, ?]. In addition, the MILAN framework [?] offers a number of simulation,
analysis and synthesis tools that leverage the MIC framework. A recent approach
to “gluing” parts described by different languages consists of using higher-level pro-
gramming models and languages for distributed programming, called coordination
models and languages [?, ?]. In the coordination model approach, one can build
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a complete programming model out of two separate pieces-the computation model
and the coordination model. The computation model allows programmers to build a
single computational activity: a single-threaded, step-at-a-time computation. The
coordination model is the glue that binds separate activities into an ensemble. The
similarity with the separation between computation and communication in PBD is
strong.

A coordination language is “the linguistic embodiment of a coordination model”[?].
The most famous example of a coordination model is the Tuple Space in Linda, a
language introduced in the mid-1980s, that was the first commercial product to
implement a virtual shared memory (VSM), now popularly known as tuples-pace
technology for supercomputers and large workstation clusters. It is used at hundreds
of sites worldwide [?]. Linda can be seen as a sort of assembly level coordination
language since it offers:

• very simple coordination entities, namely, active and passive tuples, which
represent processes and messages, respectively;

• a unique coordination medium, the Tuple Space, in which all tuples reside;

• a small number of coordination laws embedded in four primitives only.

Coordination languages can be built on Linda to offer higher-level of abstraction
construct to simplify the synchronization and message passing among the compo-
nents. Many coordination languages have been built over the years. An excellent
review of Linda derivatives and coordination languages such as Laura and Shade
can be found in [?]).

Once more, we advocate the add a strong mathematically-sound semantics to
the linguistic approach to composition. This is indeed the contribution of some of
the environments for heterogeneous models of computation such as Ptolemy II and
Metropolis.
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Chapter 4

Capturing the Design:
Requirements and
Specifications

4.1 Introduction

Any system design and development activity should always begin with a phase where
requirements and technical specifications are collected and captured. Requirements
engineering is a key problem area in the development of complex, software-intensive
Systems. As stated in [?]: ”‘The hardest single part of building a software system
is deciding what to build. No other part of the work so cripples the resulting system
if done wrong. No other part is more difficult to rectify later.”

System requirements should clarify what the system is supposed to do, what
properties and constraints it should satisfy (what is its behavior) and also environ-
mental and regulatory conditions. The product of this process is a model, from
which a document is produced. As such, requirements may be the technical annex
to a contract specifying what system part needs to be provided by a supplier in
an integrator-supplier relationship, or they may be part of the internal company
documentation. In the latter case, they describe the (sub)system acting as a refer-
ence point shared between those who investigate the customer’s needs, those who
implement systems and programs to satisfy those needs, those who test the results,
those who write instruction manuals and providing a reference for maintenance and
extensions.

Traditionally, requirements have been given informally with many pages of nat-
ural language descriptions, sometimes flanked with manually derived diagrams that
represent the structure of the design. In the documents, a lengthy elaboration of
what is expected of the design is accompanied by a set of properties the design
has to satisfy and a set of requirements on the implementation, possibly including
indications on the components to be used. For example, in the automotive domain,
when a subsystem is specified by a car maker for a Tier 1 supplier, e.g., an engine
controller, the characteristics of the subsystems included the prescription of what
microprocessor platform to use, e.g., the part number of an IC supplier.

We argue that this approach amounts to far-from-optimal designs since the
choice of the implementation platform should be best decided by the Tier 1 supplier
who can optimize with respect to his own business criteria while delivering a product
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that satisfies its function definition and the performance constraints. In addition,
requirements and specifications often change during the lifetime of the design project
and keeping track of these variation is a constant nightmare. Not unexpectedly,
the informality of the description also leads to misunderstandings, delays and cost
overrun.

The issues of specification capture and management is considered today as a
crucial aspect of system design and one that needs much research and tool devel-
opment. There is evidence that a ratio of 15 to 1 in design quality and efficiency
can be credited to a good specification entry and analysis process. The DoD Soft-
ware Technology Plan [?] states that ”early defect fixes are typically two orders of
magnitude cheaper than late defect fixes, and the early requirements and design
defects typically leave more serious operational consequences.” In this chapter, we
briefly outline the main issues and approaches to the problem and then present
some general principles that are typical of the embedded system world.

4.2 Requirements Engineering

Software engineering is a discipline born out of the need to streamline and formalize
wherever possible the software design process. In this domain, two approaches
have had significant impact on the way software has been specified (and designed):
Requirements Engineering (RE) and Object Oriented Analysis (OOA). The two
came remarkably together on several principles, but were independently derived by
separate communities. These efforts have not been widely used in the embedded
system design community due to a cultural and a practical mismatch between the
languages and the needs of the two communities, albeit recently there have been
great efforts in deriving specialized extensions (or profiles) for system design out of
object oriented formalisms such as UML (see Chapter ??).

RE is indeed most relevant to our discussion in this chapter. It can be decom-
posed into the activities of requirements elicitation, specification, and validation.

• Requirements elicitation is the stage in which, by several means, includ-
ing interviews, focused groups, product analysis, the requirements are agreed
among the stakeholders. Success of the elicitation stage depends on the use of
a language that promotes communication and understanding between (among
others) developers, marketing analysts, application domain experts, customers
and users.

• Requirements specification is the stage in which requirements and the
information in them are examined, assimilated and then represented, either
formally or informally, in a document and/or a set of diagrams or any other
means.

• Requirements validation amounts to checking that requirements allow for
a feasible solution (i.e. are not inconsistent and allow for an implementation)
and subsume the properties of interest for the system. The specifications doc-
ument should be validated and verified to ensure that it is complete, consistent
and correct.

The process is seldom a simple cascade among these three steps. Quite often,
designers proceed iteratively and, at the end of each iteration, test whether enough
information has been gathered and all requirements identified. The process almost
invariably starts as informal in the elicitation stage, but it can be formalized in
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the specification step assuming availability of languages, methods and tools for
describing the identified requirements. Indeed, the majority of research work focuses
on the validation stage, assuming availability of requirements written in some formal
language.

While this is seldom the case in practice, a formal language with a well-defined
semantics provides several advantages, including the possibility of automatic pars-
ing and removal of ambiguity. Further, formal languages offer a basis for vari-
ous ways of reasoning with models, either through consistency checking or simula-
tion/prototyping. Research focused on the verification problem, that is, to deter-
mine whether the expressed requirements are implementable, typically using formal
methods based on model checking, theorem proving or other automatic logical in-
ference. In addition, a formal specification language can be executable and allow
for early prototyping and simulation of behavior or property verification.

RML [?] was one of the first attempt at providing a formal foundation to re-
quirement engineering, together with a number of other formal languages, including
(among others) Z [?] and VDM [?], but most models of computation, as outlined
in the following chapters, including Finite State Machines (or FSMs), Petri Nets
and their timed variants, like the Timed Automata, Timed Petri Nets or even Hy-
brid Automata can be used to formally express the desired behavior of the system.
First order- or timed-logic predicates can be used to express desired properties and
constraints.

On the other hand, the appeal and usability of some techniques may be largely
due to their relative simplicity and flexibility derived from informality. We note
that the use of a formal requirements modeling language does not preclude the
concurrent use of informal notations. In fact, the original RML proposal envisioned
early use of an informal notation and a transformation process from the informal
model into a formal RML one.

While requirement engineering is indeed a most interesting approach to software
design, we are still far from using these concepts in system design. There are
efforts afoot in the UML community to improve the specification process by offering
a system description language that include requirement capture features (SysML
described in Chapter ??).

4.3 System Specification Principles

The PBD principles described in Chapter 3 imply that functionality and architec-
ture may be considered as independent inputs to the design process, albeit any
experienced designer would consider the reciprocal influence of the two arms of
the Y chart when capturing his/her design. Indeed, when dealing with a system-
level design problem, we must consider not only what the system is supposed to
do but also what are the restrictions placed on the space of feasible solutions ei-
ther by constraints posed by the application, by the need to cope with complexity,
i.e., the “size” of the design space to be explored, or by constraints posed on cost,
power, reliability and availability of the architectural components to be considered
for implementation. Thus, a specification, S, consists of a description of the func-
tionality the system, F , together with a set of constraints, C, that is partitioned
into constraints on the behavior of the system, CF , and on the characteristics of the
implementation, CI :

S = {F , C}, C = {CF , CI}. (4.1)
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For example, if we are designing a communication protocol, then we may have
constraints on the functionality (e.g., absence of deadlock) and on the implemen-
tation (e.g., a bound on the power consumed that the implemented system should
not exceed).

The question is now how to capture the initial specification of the system. We
argue that the functionality of the design should be captured at highest level of
abstraction, i.e., at the level we “enter” the design, in an unambiguous way: given
an input, the behavior of the system should have a unique response, i.e., it should be
deterministic (or determinate). If the functional description is non deterministic,
then we argue that either the specification is incomplete, i.e., the designer has
forgotten to specify the behavior of the system for a particular input or that the
designer is not interested in the output of the system for that particular value of
the input. For example, assume we consider a sequential system whose input set
has three elements. If we implement that system in digital forms then we have
to encode each symbol corresponding to the input set a Boolean representation.
Given three objects, we need at least two bits to encode them. However, since there
are four distinct elements in the Boolean space corresponding to two bits (e.g.,
{0, 0}, {1, 0}, {0, 1}, {1, 1}) there will be one combination that does not correspond
to any input. The implemented digital system will have a behavior corresponding
to the “meaningless” bit combination but the output value does not matter to the
designer since, in the absence of faulty behaviors, that combination will never occur.

The constraints on the behavior of the system CF should be formalized as a set
of input-output relationships. In this case then, the system is said to satisfy the
requirements if all its behaviors are contained in the set of constraints. The re-
quirements on the implemented system CI can also be called reaction requirements
and are expressed in terms of “physical” quantities such as power or timing. These
may be expressed in terms of equalities or inequalities involving the variables of
the design and characteristics of the implementation. A common reaction require-
ment is response time, which bounds the worst-case or average-case delay between
an external stimulus (input) of the system and its response (output). These re-
quirements guide the selection of the architecture (platform instance) so that when
we substitute for the free parameters of the requirements the actual values of the
corresponding parameters of the architecture, we can verify whether the selected
implementation is a feasible one.

We consider constraints (sometimes called execution requirements) such as lim-
its on available machine cycles, memory space, battery capacity, and channel band-
width as characteristics of the elements of the implementation platform, conse-
quently, they will be discussed in Chapter ??.

We argued for deterministic behavior in the specification, yet we showed that
nondeterminism has some important aspects in system design that we want to
keep in our framework. Nondeterminism in system design refers to two different
phenomena.

One that we discussed briefly above is about don’t-care values in the output be-
havior of a system. Let u and y be vectors of input and output variables respectively
in an appropriate domain. In most cases, u and y take values in the space of real
numbers, integer or Boolean but it is not infrequent to think of u and y as mem-
bers of a functional space, for example when we deal with continuous time systems
where the inputs and outputs are related by ordinary differential equations. Then
the behavior of the system can be given as an explicit function, i.e., F : y = f(u)
or as an implicit function F : g(x, u) = 0. Given an input u a deterministic system
has a unique y that satisfies the behavior equations. However, if for a given u, the
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corresponding y is not specified uniquely, then we argue that we should augment
the output space with a special element called the don’t care value so that when
the input variable is in the don’t care set, the output takes that special value. In
this augmented space then, the behavior is indeed unique. This approach has been
followed for years in the domain of logic design and has allowed the development
of powerful optimization techniques that can take advantage of the knowledge of
the “don’t care” set. In fact, a don’t care does not mean a multiplicity of correct
responses of the system with respect to a single input; it simply says that for a
particular set of inputs, the response can be selected at will, and we can use this
freedom to optimize the implementation of the design. In fact, after an implemen-
tation is chosen, the intended behavior of the system is indeed deterministic; given
an input, the output is uniquely defined and satisfies all the equations describing
the behavior of the system except for the set of don’t cares where it always satisfies
the equations.

The other form is about the environment of the system, which is in general
free to behave in many different ways and we cannot predict which behavior is
going to exhibit at any given time. This nondeterminism is associated with the
specification of the environment as seen by the system under design and so it is
not a property of the design. Therefore, when we refer to a reactive system as
deterministic in this context, what we mean is not that there is a unique stream of
input and output values, but that for every stream of input values that is provided
by the environment, the stream of output values that is computed by the system is
unique.

For embedded systems, it is often the case that the input and output streams
include “time stamps”. More precisely, a timed input stream is a sequence of
time-stamped input values, such as sensor readings or user commands; and a timed
output stream is a sequence of time-stamped output values, such as actuator updates
and other generated events that are observable by the environment. We say that an
embedded system is time-deterministic if for every timed input stream, the timed
output stream that is computed by the system is unique [?, ?]. Note that time-
determinism refers not only to input and output values, but also to the times at
which input values are given to the system and the times at which output values
are made available to the environment. If an embedded system computes a unique
output value, but may make the value available to the environment (say, by updating
an actuator) at different time instants, then the system is not time-deterministic.
Obviously, time determinism is essential for safety-critical real-time systems such
as those deployed to control automobiles or aircraft.

4.4 From Informal to Formal Requirements

The general framework outlined with the previous principles needs to be instantiated
by an actual language that defines the system functionality F and the constraints
acting on it.

In the early stage of requirements elicitation, informal, natural language (plain
English) descriptions are often used. They are necessary to communicate with
people with a non-engineering background such as those providing input to this
stage and can be effective if properly structured and organized. As already stated,
natural language is subject to misinterpretation due to ambiguity, inconsistencies,
omissions and redundancy and it is therefore desirable that requirements are refined
or translated, until they eventually find an equivalent form in a formal language.
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Several proposals exist for how to conduct this translation and also on the formal
requirements language that is the final destination of this activity. An example is
the methodology developed by Nancy Leveson at MIT and based on Intent speci-
fications [Leveson00a] and the SpecTRM language [Leveson00b]. An approach to
requirements collection and analysis requires a methodology, tools, requirements
documents formats and requirements writing rules. A possible transition from elic-
itation to specification consists of the following:

• Elicit requirements in ”structured” natural language, enforcing a writing style
that identifies states or working modes, assumptions and assertions using a
contract-based approach or, alternatively an explicit identification of pre-
requisites, post-conditions and invariants to lower the probability of ambi-
guities and inconsistencies. This structure eases the transition from English
language towards an FSM description.

• Enforce the definition of tests associated to each requirement item

• Enforce the early use of a data dictionary to minimize the chance of inconsis-
tencies in the definition of the system names and system variables, including:
I/O variable names, system parameters, and system states.

• Use of simple rules to avoid redundancy/inconsistency in the definition of the
system reactions.

• The use of semi-formal of formal diagrams (context diagrams, sequence dia-
grams and state diagrams) to complement/refine the text description.

At all levels, contract-based definitions should be used. According to design-by-
contract [Meyerxx], system (subsystem) functioning may be considered as a contract
between the system (subsystem) and the environment (other subsystems). In the
definition based on Assumptions/Assertions pairs, the contract consists of a set of
”assumptions” on the environment or the other subsystems (what the ”users” of the
subsystem promise to be or to behave). If the environment and/or the subsystems
satisfy the assumptions, the system (subsystem) under specification will have the
duty to keep its side of the contract, that is, a set of assertions (what it promises
to provide/how it promises to behave) Assumptions and assertions can be specified
formally or informally using several languages.

Starting from the set of descriptions in the previously listed sections, a refine-
ment in more formal languages and diagrams will have to be produced resulting in
a set of semi-formal or even formal diagrams including.

• State Chart Diagrams - depict the required behavior of the feature with the
states, triggers, conditions and transitions (base for the definition del system
behaviour for refinement)

• Functional Context Diagrams - listing all of the external I/O signals in &
out of this feature. The input signals on the left side of the drawing and the
output signals on the right side of the drawing. La descrizione deve essere
puramente funzionale!. (base per la definizione dell’architettura di sistema e
la scomposizione in sottosistemi)

• Sequence diagrams, scenarios - list the sequence of actions/events identified
for several typical working cases of the system (base per la definition of the
test cases)
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Possible formal languages for expressing requirements including finite state ma-
chines (FSMs), LTL or CTL (for constraints description) the Z language, and many
others.

4.4.1 Z

Z (pronounced Zed), is a specification language that works at a a high level of
abstraction to describe formally complex behaviors. It is based on set theory and
first-order predicate logic and was originally developed at the Oxford University
Computing Laboratory (OUCL) in the late 70s, and used in non-trivial ”real world”
projects. Z is now defined by an ISO standard and is public domain.

In Z, a specification is decomposed in sections called schemas. Each schema
can be linked with a commentary which explains informally the significance of the
formal mathematics. Synctactically, a Z schema is represented as a named box
partitioned into two parts, variable declarations and optional predicates relating
the variables. Schemas are used to describe both static and dynamic aspects of a
system. The static aspects include:

• the states it can occupy;

• the invariant relationships that are maintained as the system moves from state
to state.

The dynamic aspects include:

• the operations that are possible;

• the relationship between their inputs and outputs;

• the changes of state that happen.

A mathematical framework describes both the state space of the system and
the operations that can be performed on it. The data objects in the system are
described in terms of mathematical data types such as sets and functions. The
description of the state space included an invariant relationship between the parts
of the state.

The notation of predicate logic is used to describe abstractly the effect of each
operation.The effects of the operations are described in terms of the relationship
which must hold between the input and the output, abstracting from implementa-
tion details.

As an example of Z specifications, Andy [Andy1994] shows an elevator operation
model together with proofs on liveness and safety properties. It is particularly suited
to non-constructive requirements specifications. Semantics-preserving refinement
techniques allow formal translation of Z specifications to executable code (e.g.,
King, 1990), and formal proof techniques are described in [Diller1990].

4.4.2 UML/SysML with OCL

The Object Constraint Language (OCL), developed by IBM, is a declarative lan-
guage for describing rules that apply to UML models, initially as a formal spec-
ification language extension to UML. It is a precise text language that provides
constraint and object query expressions on any MOF model or meta-model that
cannot be expressed by diagrammatic notation without OCL. Unified Modeling
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Language (UML) is a standardized general-purpose modeling language for software
engineering. UML includes a set of graphical notation techniques to create abstract
models of specific systems. UML has succeeded the concepts of the Booch method,
the Object-modeling technique (OMT) and Object-oriented software engineering
(OOSE) and combine them under one framework. It can model concurrent and
distributed systems, and targets to be a standard in software engineering.

The SysML (Systems Modeling Language) is a is defined as a dialect (Profile) of
UML 2. It supports the specification, analysis, design, verification and validation of
a broad range of systems and systems-of-systems. The reason why SysML was de-
veloped is that systems engineers are seeking a domain-specific modeling language
to specify complex systems that include non-software components (e.g., hardware,
information, processes, personnel, and facilities). UML cannot satisfy this need
because of its software bias. SysML also reduces UML’s size while extending its se-
mantics to model requirements and parametric constraints. These latter capabilities
are essential to support requirements engineering and performance analysis.

4.5 Requirements in the Development Process

Requirements are ”alive” and ”volatile”. Very often they are not completely known
at the start of a system’s development, but rather evolve during the analysis phases
of a project and beyond. Users, developers, and customers, all learn and grow dur-
ing the system’s development and maintenance. During the lifetime of a product,
function updates, additions and possibly removal are quite common. For example,
in response to the rapid changes and strong competition in markets, products are
often requested to change or be customized in order to meet customers’ needs. As
for any other type of document or model that is subject to change and updates, it is
important that requirements are managed by a tool that provides for change man-
agement, concurrent access control and versioning, access rights control, together
with standard features like the association of metadata to requirements documents,
ownership management and indexing.

In addition, requirements live in the context of a development process where any
change in them prompts a chain of updates in the design documents and models
as well as in the hardware or code implementation of the functions. Also, testing
procedures are clearly affected by changes in the requirements. There are at least
two sets of references that should be maintained from requirements items. One
set of references/links should follow the refinement of the requirements into the
design elements that are generated in response to the requirements, down to the
code implementation. Another set of links should connect each requirements item
to the corresponding set of (system-level or component-level) tests, that must be
performed to verify satisfaction of the requirement by the system (or one of its
subsystems/components).

4.5.1 Tracking Requirements into Design and Further Re-
finements

Being able to track requirements to design and implementation is necessary for
several reasons.

• In case of requirements changes/updates suck links allows to locate quickly
the part of the design and implementation that needs to be changed/modified,
without the need of going through heavy documentation.
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Figure 4.1: Requirements are subject to change management
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• In case updates are performed on the code, because of bug fixes or up-
dates/adjustments at test time, reverse links from code to the requirement
that originated the code allow to locate the requirement that can possibly be
modified.

• When system tests show failure to meet requirements, such capability rapidly
provide the indication of the requirements that are affected.

When the requirement document is extensive, performing these tasks manually
without the tracking between requirement and implementation become very difficult
if not impossible.

4.5.2 Requirements and Testing

A different set of references should be maintained between the requirement items
and the tests that are defined to verify those requirements on the final product.
These links should not only be defined and maintained, but it is also important
that they are defined early, at the same time requirements are produced. Follow-
ing well established practices (European Space Agency process guidelines, Extreme
programming, to name a few), white box or functional tests should be defined to-
gether with the requirement they are supposed to test. The enforcement of such a
process and the maintenance of such links ensures the following.

1. The definition of one of more tests contextually with the definition of a re-
quirement item helps write better requirements, ensures that they are testable
and the definition of the test procedure helps clarify the meaning of the re-
quirement (if needed).

2. Provides a measure of the coverage of the functional tests with respect to
requirements. If the procedure is followed, 100% requirements coverage should
be automatically achieved.

3. The existence of links between requirement items and tests allows to quickly
identify and change a test or set of tests for a requirement in case the require-
ment is modified or updated.

4. Such links are also useful to identify the affected requirement whenever a test
fails during the functional testing stage

Finally, a fundamental part of requirements management include tools and meth-
ods for change management and versioning. Even if requirements evolve, keeping
track of requirement changes and how different versions of the requirements relate to
different products or versions of a product or its software is necessary for building
the correct tracking management system between requirements and implementa-
tions (Figure 3) Hence, a fundamental part of the project is the selection and use
of a set of tools that enables requirements tracking, both with respect to design
models and code implementations, and with respect to functional test descriptions.
Also, these tools should provide content management and versioning of require-
ments, design models and code. Examples of use that can be use for this purpose
are, of course DOORS (from IBM), Reqtify (from TNI), but also Word documents
or HTMl-based documents, possibly maintained by a content management platform
(open-source solutions exist), or stored and managed as a set of wiki pages. The
generation of links to and from requirements and code implementations is possible
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Figure 4.2: Tracking requirements
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in Simulink models using the ”Report Generator” package of Mathworks. Similarly,
for versioning, there are several options, including open source packages like svn or
cvs or commercial solutions like ClearCase, Visual SourceSafe, Synergy.

4.6 Tools and Methods for Requirements Engineer-
ing

Among tools for the creation, management, tracking and versioning of requirements,
IBM Rational (formerly Telelogic) DOORS is probably today the most popular in
the industry. DOORS helps capture, track and manage user requirements. It is
strongly oriented towards informal specification handling. It does not promote,
provide or directly support any formal language for specification, but provides a
framework in which formal definitions and propositions can be linked to specification
objects and possibly handled by external tools.

DOORS manages a database in which information about Projects is stored and
managed. Each Project has Folders, Formal Modules, Link Modules and Descrip-
tive Modules. Folders are provided for organization of Modules, which are used to
organize requirements and specifications according to a user-defined taxonomy. For
example, in Figure 4.3 the project Training car project consists of several Formal
Modules, containing the requirements, but also user profiles, the definition of tests,
and architecture design documents.

Each Module consists of Sections and each Section, in turn, contains Objects.
Each Object is an element of the specification, consisting of an Header or Text
(possibly both, although it is not recommended), or a picture or a table. Each
Object is characterized by a set of default attributes, including:

• A unique identifier, assigned by the Tool

• Information on who created the object and when, as well as the creation mode

• When it was last modified and by who

• The Heading, short text and Text information

• Picture info, in case the object is a picture

• Table attributes, in case it is a table

Further, users can customize objects by adding attributes. Each attribute is
assigned a type. DOORS provides predefined types, but allows the user to derive
custom types from them. Availability of a type checking feature helps enforcing
the consistency of the value declarations for specification objects with respect to
types. Figure 4.5 shows the objects that make the Formal Module Car User Reqts of
Figure 4.3. The first column shows the identifier associated to each object. Some of
them consist only of the header. Others contain text. Two attributes for Cost and
Priority are also associated to Objects. Requirements objects contain requirements
items expressed (in this case) in plain English. This is often the case. However, it
is in principle possible to use the text field for formal formulas, to be parsed and
analyzed by external tools.

In DOORS, access to objects can be controlled in several ways:
access rights
concurrent access control and versioning
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Figure 4.3: DOORS screenshot showing Formal Modules
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Figure 4.4: Objects inside a Formal Module
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However, the most notable feature of DOORS is probably the capability of
managing the links among objects as well as between objects and external models
or even code.

4.7 Concluding Remarks

Specifying a system is today an art more than a science but it does have an essential
role in the final quality of the design both in terms of quality and performance.
Several attempts have been done in the past in the area of software system design
to formalize specification or requirement capture but these efforts have not made
their way through to system level design. We have reviewed briefly some of the
approaches to requirement engineering and we have derived some principles that
can be used to understand the issues surrounding the topic and that may yield to
a novel way of capturing and analyzing requirements and specifications.
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Figure 4.5: Link to (simulink) models
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