
Chapter 5

Functional Design

In this book, we chose to given particular emphasis to functionality because it
exposes some of the most interesting aspects of a rigorous design methodology and
because a deep analysis of the representation of the functionality of the design can
expose design errors early. We will show that the mathematical foundations used
in this chapter can be of use also in the representation of platforms and of their
instances.

The use of documents written in natural languages, such as English, has been
traditionally adopted to hand over system specification from customers to devel-
opers. This approach has been the source of a number of problems for the supply
chain because of the ambiguous nature of natural language specifications since they
are not executable and a precise conformal test is impossible.

We argued that for true system level design, we must be able to capture the
functionality of the design at the highest possible level of abstraction without us-
ing implicit assumptions about an implementation choice. Since a most appealing
feature of capturing the functionality of the design is to be able to execute it on a
computer for verification and analysis, it is natural that designers and researchers
cast the problem in terms of design languages.In this chapter, we first give a his-
torical perspective on some of the approaches used in the hardware and software
embedded system community to specify in executable forms complex designs. While
this approach is certainly a step forward, we believe that specifying and handling
concurrency and heterogeneous behaviors needs a more abstract point of view. The
rest of the chapter is dedicated to abstract system behavior formalisms called Models
of computation. A precise definition of these concepts is still open for debate.

We simply say that a model of computation provides two essential features: a
syntax to write structurally correct models and an associated semantics to given a
meaning to them. A model of computation defines the way in which computation
inside processes, communication among processes and coordination of concurrent
actions are executed. These components define the set of possible behaviors of a
model.
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5.1 Historical Perspective

5.1.1 Languages for Hardware Design

Because of the popularity and the efficiency of C, several approaches for raising
the levels of abstraction for hardware design are based on C and its variants1. C
has been used successfully to represent the high-level functional behavior of hard-
ware systems and to simulate its behavior. A simulation amounts to running the
compiled C code and hence is very fast, limited by the speed of the simulation
host and by the quality of the compiler. The main problem with this approach is
the lack of concurrency and of the concept of time in C. In fact, hardware is in-
herently concurrent and time is essential to represent its behavior accurately. In
addition, C has been designed with standard programming application in mind and
in its constructs, it relies upon standard communication mechanisms through mem-
ory that are inadequate, to say the least, for hardware representation. For these
reasons, a number of derivative languages have been introduced, some with more
success than others. The pioneering work in this field was done by De Micheli and
students [52, 104] who discussed the main problems of using C as a hardware de-
scription language from which a Register Transfer Level (RTL) description could
be synthesized. Commercial offerings such as Mentor CatapultC, Celoxica Handel-
C [31], C2Verilog, Bach [54] defined a subset of ANSI C to do either synthesis or
verification.

More recently, there has been a strong interest in languages that are derived
from C or C++ and that explicitly capture the particular aspects of hardware. In
particular, SystemC [133, 68] and SpecC [46] stand out.

SystemC is a class library of the C++ language while SpecC is a super set of
ANSI C. Both have special constructs to represent hardware concepts, to support
concurrency and a rich set of communication primitives. The resemblance to C of
these languages is then mainly syntactical while their semantics are quite different.

The usefulness to a designer of a language is not only the capability of repre-
senting his/her intent but also the support given in terms of verification, formal
analysis and synthesis. Both SystemC and SpecC are not directly synthesizable nor
formally verifiable. To verify formally or synthesize a design expressed in System
C or SpecC, we need either to subset the language (SystemC) or to go through a
set of manual or automatic transformations to yield a synthesizable representation
(SpecC).

SystemC is used mainly for simulation. Several SystemC simulation engines
are available (one is open source). Of course the performance of the simulation
and the leverage in design representation comes from the level of abstraction of the
models described in these languages. There are a few synthesis tools that generate
RTL from SystemC-like languages. Companies like Mentor, Synopsys and Forte
Design offer tools in this domain. The jury is still out as the degree of acceptance
of hardware designers for this kind of tools as the quality of the results is mixed.
Sometimes the quality is comparable and even better than the one of human designs,
sometimes it is definitely worse.

An alternative approach to raising the level of abstraction is to extend existing
RTLs to cover constructs that help in describing and verifying higher levels of
abstraction. In this context, SystemVerilog [132, 58] has been accepted with interest
by the hardware design community as it builds upon the widely used Hardware

1We recommend to the interested reader the excellent survey paper by Edwards for a critical
review of C-derived languages [50].
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Description Language (HDL) Verilog. While SystemVerilog can be used almost
for everything SystemC can do, the opposers of this approach list as drawbacks the
difficulty of using SystemVerilog for system designers with software background and
the difficulty in expressing some of the concepts important to system design.

An interesting approach to hardware synthesis and verification is offered by
BlueSpec [19]. BlueSpec takes as input a SystemVerilog or a SystemC subset and
manipulates it with technology derived from Term Rewriting Systems (TRS) [10]
initially developed at MIT by Arvind. The idea of term rewriting was developed
in computer science and is the basis of several compiler techniques. It offers a nice
environment to capture successive refinements to an initial high-level design that
are guaranteed correct by the system. The appeal of the approach is that designers
can maintain their intent throughout their design process and control the synthesis
steps. This is a significant deviation from the work on high-level synthesis pioneered
by the CMU school [45] where from a high-level design representation, both archi-
tecture and micro-architecture implementations were automatically generated. The
general consensus today is that the chasm between an algorithmic description and
an implementation is just too wide to be able to obtain a good implementation.

5.1.2 Languages for Embedded Software Design

Traditionally, abstract analysis and design have been divorced from implementation
concerns, helped by the Turing abstraction that has simplified the task of program-
ming by decoupling functionality and the physical world. Because of this dichotomy,
today, embedded software designers use low-level facilities of a real-time operating
system (RTOS), tweaking parameters such as priorities until the system seems to
work. The result is, of course, quite brittle.

The main difficulty faced by embedded software designers are programmer pro-
ductivity and design correctness. This is particularly true when the software is to be
distributed over a network, as in the case of avionics and automotive applications.
In this case, side effects due to the interaction of different tasks implemented on
different elements of the design make the verification of the correct behavior of the
system very difficult since the traditional paradigm of adjusting priorities does not
apply.

Most of the design methodologies in use in the embedded system industry have
been borrowed by standard software design practices and emphasis is placed on
development processes rather than on the content of the design. However, in the
industrial sectors where safety is a primary concern, there has been an interesting
shift towards the use of languages that have intrinsic correctness guarantees and
for which powerful analysis and synthesis methods are possible. Ironically, while in
the case of hardware system design the state-of-the-art is the attempt at adapting
languages like C and C++ typically used for software, the most advanced paradigm
in embedded software design is borrowed from hardware design! In particular,
the most elegant approach is the extension of the synchronous design paradigm to
software design.

Synchronous Languages . The goal of synchronous languages is to offer strong
formal semantics that make the verification and the code generation problem easier
by construction. The work of the French school on Synchronous Languages [15],
and in particular, Esterel [16], Lustre [75], and Signal [72] with their industrial
derivatives (e.g., Esterel Studio and Lustre-SCADE from Esterel Technology and
Signal-RT Builder from TN-Software Division of Valiosys), has been at the forefront
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of a novel way of thinking about embedded software. The synchronous design
languages approach has made some significant in-roads in the safety critical domain
especially in avionics.

The synchronous languages adopt the synchronous hardware design paradigm in
the sense that they assume that computation occurs in two separate phases, compu-
tation and communication, that do not overlap. Often this concept is described as
communication and computation taking zero time, while a better way would be to
say that the actual time taken for communication and computation does not matter
from a functional point of view as they do not overlap. The notion of time is then
one of logical time that relates to phases of behavior and sequencing. In this model,
behavior is predictable and independent of the actual implementation platform.
This is similar to synchronous hardware where as long as the critical path of the
combinational hardware between latches takes less time than the clock cycle, the
behavior of the hardware is independent of the actual delays of the combinational
logic.

The adoption of these languages in the embedded software community has been
limited to safety-critical domains such as aviation and automotive, but I believe
that they could and should have a larger application.

5.2 Examples and Uses

As we will see later in this chapter, there are many formalisms to capture a de-
sign specification. Each formalism bears intrinsic properties that make it suitable
to model only a particular class of systems. In Section 5.3.2 we clarify this state-
ments with two examples of specifications for two different classes of systems: data-
dominated and control-dominated. The choice of the language, or formalism, is very
a very important decision since each language also comes with a set of tools such as
simulation, verification and synthesis, that only depend on the language semantics
and can, therefore, be applied to any specification. To show the advantages of using
a precise formalism, in this section we show two examples of system specifications:
a vending machine and a cell-phone keypad controller. Consider, for instance, a
simple automatic machine that sells coffee. The machine accepts one-dollar bills
up to two dollars, returns change in quarters and sells only two products: a small
coffee for one dollar and a large coffee for $ 1.25.

How do we formally capture the behavior of the vending machine? Natural
languages, like simple documentation written in English, have been traditionally
used as the starting point of the design process. The specification is written together
by the customer (i.e. the person or company that commissions the implementation
of the system) and the developer (i.e. the company that will implement and deliver
the final product). The specification is then given to the design team that proceeds
with the implementation. The behavior of the vending machine can be described
as follows:

If a customer inserts one dollar and asks for a small coffee, then serve
the coffee and wait for the next customer.

If the customer inserts two dollars and asks for a large coffee, then serve
the coffee, return three quarters change and wait for the next customer.

If the customer inserts two dollars and asks for a small coffee, then serve
the coffee, return four quarters change and wait for the next customer.
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The first obvious drawback of this specification is that it is not executable. There
is no way for a designer who receives this document to execute (i.e. simulate) the
specification and have a better understanding of the way in which the system is
supposed to work. To build an executable model, the English document has to be
interpreted by the designer who has to use another language, such as C, to write
a program that can be then executed on a host machine. Having the executable
model allows to test the behavior of the system under different input scenarios and
use the simulation traces as a reference to validate the final implementation.

However, this is only one of the problems with the English specification. For
instance, we may want to make sure that the system satisfies two important prop-
erties:

1. no coffee is served for free,

2. no money is taken without serving coffee.

This two properties are about the correctness of the specification of the system
and should be satisfied by the specification and by all its refinements, meaning
by its final implementation. The only way to check if the description given in
natural language satisfies these two properties is by manual inspection. Checking
the first property is not impossible, even if some misunderstanding may arise. In
fact, the specification does not mention what happens if a coffee is requested without
inserting any money. The designer, driven by her common sense, will make sure
during the implementation that no coffee is served for free. This is an example of
ambiguity that, in this simple example, would cause not harm, but that could be
fatal in complex systems for safety critical applications. The second property is
more difficult to verify. Consider the case where a customer inserts one dollar in
the vending machine but does not ask for any coffee. This scenario is not taken into
account by the specification that only captures the cases where a customer inserts
money and asks for coffee. The customer, who may not be familiar with the vending
machine, may think that the machine is broken and leave, and maybe file a complain
to get his dollar back. A second customer could insert a one dollar bill and ask for
a large coffee making the system violate two properties: money were taken without
serving coffee, and a large coffee was served to a customer who did not paid the full
amount. Of course, avoiding that a customer makes a “gift” to another customer
cannot be avoided. However, the machine could be design in such a way that, if a
customer does not ask for a coffee within a certain amount time from the insertion
of a bill, then the money are returned (and maybe some indications are given to
correctly operate the machine). This example shows that the possible ambiguities in
the specification may be eliminated by describing the behavior of a system under all
possible circumstances, which makes the specification quickly difficult to read and
implement correctly. For complex systems, it is not unusual to find specifications
with thousands of scenarios. In real cases, it is often the case that a designer judges
the specification to be incomplete and asks for more information to be included in
the description of the system. However, the complexity of the specification makes
the process of interpreting the functionality difficult and error-prone.

5.2.1 Finite State Machine Description of the Vending Ma-
chine

To provide a way to capture the vending machine behavior in a formal way we need
to define a language that is based on mathematical rules which do not leave space for
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subject interpretations. A language is defined by two important concepts: its syntax
and its semantics. The syntax defines the symbols used to compose words in the
language, and words are used to compose sentences (or programs in the computer
science jargon.) Moreover, the syntax also defines the valid words and the valid
sentences. The semantics gives a meaning to valid sentences. There are two different
ways of defining the semantics of a language, namely denotational and operational
semantics. A denotational semantics defines the meaning of a program as a function
from its inputs to its outputs. This function can be defined by a relation or more
simply by a table where each column defines the outputs to associate to a given set of
inputs. A pioneering work in this area is the one from Scott and Strachey [130, 125].
An operational semantics provides an algorithm that executes a program belonging
to a certain language. Operational semantics were first defined by Plotkin [115]. In
this section we use Finite State Machines to describe the behaviors of the vending
machine example. This type of description is and operation one as an algorithm
can be given to execute the machine. We will also show how this description can be
used to automatically verify that the two properties defined in the previous section
are satisfied by the specification.

The formal definition of a finite state machine (FSM) is given in Section 5.4.1.
For the sake of this discussion, we define a finite state machine as a labeled graph
where each node represents a state and it is labeled by a name, and each edge
represents a transition between two states and it is labeled by a letter drawn from
a finite set Σ that represents the events that the FSM can generate, or is sensitive
to. The alphabet of the vending machine has six elements:

• d is the event that signals the insertion of a one dollar bill;

• sc is the event that signals the request of a small coffee;

• hc is the command that serves half cup of coffee;

• lc is the event that signals the request of a large coffee;

• fc is the command that serves a full cup of coffee;

• q is the event that signals the issuing of a quarter change;

Figure 5.1 shows the finite state machine capturing all possible behaviors of the
vending machine VM . The semantics of this model is very intuitive. The state
machine has an initial state idle marked by an arrow with no predecessor node.
From any state, the FSM can make a transition to a successor state only if the event
that labels the transition occurs. For instance, if the FSM is in state idle and a one
dollar bill is inserted (i.e. event d occurs), then the FSM makes a transition to state
s1. Notice that when the machine is in state s2, the state transition diagram does
not prescribe any specific transition with a d label. In this informal introduction
to finite state machines we simply assume that such input sequence is not accepted
by the model. Without this assumption, if a third dollar bill were to be inserted
in the machine, nothing is said about how the vending machine would behave.
In Section 5.4.1, we will introduce the notion of incompletely specified finite state
machines where this assumption is not made.

Besides being able to simulate the model by providing events and observing
state transitions, finite state machines are amenable to automatic verification. The
verification problem is reduced to the one of exploring the set of reachable states
of a model. Given a finite state machine, we can in principle compute the set of
all its execution traces, where a trace is a sequence of state transitions. Consider,
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Figure 5.1: A finite state machine encoding the valid sequences of events of the
vending machine.

for instance, the properties of our vending machine. Any correct execution trace
that reaches state srv1 must contain at least one d event, asserting that the user
has inserted one dollar in the vending machine. To check this property, we build
a companion finite state machine that executes synchronously with the vending
machine and that tacks customer credit (i.e. total amount of money that have been
inserted but not used).
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Figure 5.2: The vending machine VM and the the companion FSM M that is used
to count the total amount of money inserted in VM but not used.

Figure 5.2 shows the combined model where VM is the vending machine, and
M is the credit counter. The states of M are labeled with the total user credit. The
set of labels on the arcs of M is a subset of the set of labels on the arcs of VM .
The two finite state machines move synchronously meaning that, upon occurrence
of an event, they change state together. For instance, if M is in state $0, VM is in
state idle and event d occurs, the two finite state machines move together to states
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Figure 5.3: Mealy machine description of the vending machine.

$1 and s1, respectively.
We can now state the property that no coffee is served without the appropriate

amount of money being paid as illegal combinations of states of M and VM as
follows:

P1: For all possible traces of events, the following conditions are always
false:

• VM is in state srv1 and M is in state $0, or

• VM is in state srv2 and M is in state $0, or

• VM is in state srv3 and M is in state $0 or $1

To verify that this property is satisfied, the set of pairs of states that can be
reached by the two state machines must be explored. The reachable states are
encoded in a tree, T , shown in Figure 5.2. Each node in T is labeled with a pair of
states of VM and M , respectively. The root node corresponds to the pair of initial
states of VM and M . If a dollar is inserted in the vending machine, then VM
makes a transition to s1 and M makes a transition to $1. The new state, with label
(s1, $1), is reachable from the initial state and is added to T together with an arrow
denoting the transition. Checking that the vending machine satisfies property P1 is
equivalent to checking that the pairs (srv1, $0), (srv2, $0), (srv3, $0) and (srv3, $1)
are not present in T (i.e. these states are not reachable.)

So far, we have treated the alphabet of an FSM as a set of actions. The al-
phabet can be partitioned in two sets I and O of the input and output events,
respectively. Figure 5.3 shows the input-output representation of the vending ma-
chine. A denotational way of describing the behavior of the state machine with
inputs and outputs is the following. The set of inputs is I = {d, sc, lc} and the
set of outputs is O = {hc, fc, q}. The state space is the one of Figure 5.1, namely
S = {idle, s1, s2, c4, c3, c2, c1}. Now, we define two functions to capture the behavior
of the vending machine:

• a state transition function δ : I × S → S that associates a new state to each
pair of current state and input;

• an output function λ : I × S → O that associates and output to each pair of
current state and input.

For instance, δ(d, idle) = s1 means that if the current state is idle and a one
dollar bill is inserted, the new state becomes s1. Similarly, λ(sc, s1) = hc and
δ(sc, s1) = idle means that if a small coffee is requested while in state s1 (i.e. after
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inserting a one-dollar bill), the machine serves half a cup of coffee and goes back
to the initial state. Since the behavior of the state machine is captured by two
functions that, to each combination of input and state associate one and only one
value for the new state and output, this description is called deterministic. In non-
deterministic descriptions, one pair of an input and a state can have multiple next
states, in which case δ is no longer a function but it is rather a relation (we will
explain this in details in Section 5.4.1).

With the introduction of some additional notation, we can use state transition
diagrams also in the case where the distinction between inputs and outputs is made
explicit. The change is notation is the following. Labels on the edges of the state
transition diagram are of the form i/o where i is an input event and o is an output
event. Two other labels are allowed: /o which means that the transition is taken
without any event occurrence, and i/ which means that no output event is emitted
by the state machine on that transition. Figure 5.3 shows the state transition
diagram of the modified vending machine.

5.2.2 Finite State Machine Description of the User Interface
for a Mobile Phone

In this section we show an example of specification of the user interface of a mobile
phone. A popular interface is the one adopted by Nokia phones. When the phone
is idle, the keypad is locked preventing any unchecked use of the cellphone. To
unlock the phone, the user has to select the “Menu” option and then press the “*”
(star) key. When in unlock mode, the user can again select the “Menu” option and
get access to a number of other functions like browsing contacts and making phone
calls.

Instead of using plain English to describe the functionality of the the user in-
terface, we may attempt to use the C programming language which can then be
compiled into code on a host machine and simulated. Without entering into specific
problems regarding the automatic verification of the properties of a C model, the
main drawback of a C program is its sequential nature. The following program is a
C description of the user interface.

int main(){
enum{LK,UNLK,LK MENU,MENU,CONTACTS,CALL. . .} state ;
state = LK ;
string command ;
while( 1 ) {

read(&command);
switch(state) {
case LK:

if (command == "Menu") {
state = LK MENU ;

}
break ;

case LK MENU:
if (command == "*") {

state = MENU ;
}
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break;

. . .

case MENU:
if (command = "call") {

string number = getnumber() ;

call(number) ;

state = LK ;

}
break;

. . .

}
}

}

The state variable enumerates the set of possible states. The program is an
infinite loop that reads an input command from the user and depending on the actual
state performs an action and computes the next state. For instance, if the current
state is LK and the Menu command is issued, the next state becomes LK MENU. At
this point, if the star command is issued, the phone is unlocked and the user can
select one of the possible options provided by the menu. It is possible, for instance,
to make a phone call. If this options is selected, the user interface program gets a
number to call (also provided by the user either directly or through a selection of
a contact stored on the phone) and runs a service call. When the service returns,
the user interface goes back to the LK state. This model has the undesired behavior
that during a phone call the user interface is inactive because the thread of control is
inside the call function. What if the user is asked to check for the phone number
of a person during a phone call? This feature requires the user interface to run
concurrently with the call service.

A possible solution to this problem is to use different threads for the two func-
tions. The following modification of our model should allow to use the menu options
while in a phone conversation:

case MENU:
if (command = "call") {

string number = getnumber() ;

create thread(&tid,call,number) ;

state = LK ;

}
break;

A new thread is created to run the call function while the user interface can
update its state and continue running. Unfortunately, the use of threads has its
own drawbacks. Threads, differently from processes, share the same memory space.
Therefore, they can potentially use the same memory locations to store data. Since
the execution of each thread depends on the memory content (that holds their
states), subtle side effects can happen that can lead to non-deterministic behavior.
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Set Elements
I menu, star, 1, 2, . . .
O startcall, sendsms, . . .
S lk, nowstar, unlk, contacts ,. . .

Table 5.1: Definition of the inputs, outputs and states of the state machine describ-
ing the keypad controller.

The hard task of a multi-threading programmer is to make sure that side effects are
avoided and that the execution of the program is deterministic.

One question that the reader may ask is whether it is possible to build an
automatic tool that, given a sequential C program is able to extract the parts that
can run concurrently and generate threads automatically, also checking and avoiding
possibly unsafe memory usage. The reality is that this is not possible in the general
case because the problem of verifying that two threads do not interfere (i.e. do not
use the same memory location for storing their data) is undecidable.2 Unfortunately,
many questions, such as if a program will eventually finish, are undecidable in the
context of the C programming language, which makes verification difficult at best.
This is a strong argument in favor of using formal models that can be automatically
“processed” to carry on verification and code generation.

The keypad controller can be modeled as a state machine, although this will not
result in the desirable feature of being able to brown the list of contacts while in a
phone call. In the finite state machine model of computation there is no notion of
“concurrency”, meaning the concurrent execution of two state machines. Luckily,
extensions ot this model exist that allow to define concurrent actions to happen
(see for instance the Statechart model of computation in Section 5.4.1).

The inputs to our controller are all the commands coming from the keypad, while
the outputs are the commands sent to other functions to start specific activities
(such as making a call). For instance, the key 1 represents an input while the
startcall command that starts a phone call is an output. The set of inputs, outputs
and states are described in Table 5.1.

The state diagram of the keypad controller is shown in Figure 5.4. The initial
state is lk. If the user presses the menu button, the state changes to nowstar and,
upon pressing the star key, the keypad controller switches to the unlk state. In
this state the menu can be entered by pressing menu again (state m). A number
of options are available while in this state. For each selection made by the user,
the state machine moves into a new state that represents a position in the tree of
options. This model is monolithic in the sense that the entire controller is described
by one state machine.

Figure 5.5 shows a model where the lock/unlock finite state machine, and the
machines that describe the different menu options are kept separate. Therefore, we
need to define the way in which they interact. For each transition, we use a label e/a
where e is the event that enables the transition and a is the event that is activated,
or emitted, when the transition is taken. Different state machines communicate by
synchronizing on the events that are globally visible. For instance, when the main
controller is in state nowstar and the key star is pressed, an event u is emitted.
This event triggers the transition of the contact service to move from the idle state
to the unlk state. If the menu button is pressed, the main controller switches to the

2An undecidable problem is one for which an algorithm that solves the problem is not guaran-
teed to finish its computation.
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Figure 5.4: State diagram representation of the keypad controller.

m state and the contact service switches to the mainmenu state. Now, if option
3 is selected, the contact service switches to the contacts state, meaning that the
contact menu is entered, and event start is emitted. This event triggers a transition
of the main controller to a state srv indicating that some service has been initiated
by the user. The main controller exits this state when the user finishes to use the
service and event done is emitted.

5.3 Models of Computation

A design process starts with the idea of the services, or functionality, that a system
should provide to the end users. The initial idea, that is in general abstract and
that lacks many of the details of the final implementation, has to be captured in
the form of a design specification. A team of designers will use the specification to
drive the design process toward a satisfying and cost-effective implementation.

Typically, in the early stages of the design process, the specification is not de-
tailed. It is refined in the course of the design by adding details that the engi-
neers request to their customers or to the marketing department. Often times,
clarifications are needed simply because the specification documents may contain
ambiguity that must be resolved before implementation. Ambiguities arise form
the non-objective interpretation of statements written in natural language or to the
interpretation of block diagrams that describe the system or part of it. Block dia-
grams are widely used to exchange information about the partitioning of a system
into sub-systems, each performing a specific piece of the entire functionality. A
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Figure 5.5: State diagram of the keypad controller divided into a main controller
and a set of services. In this figure, an example of part of the contact service is
represented.

block diagram is a model of a system described using a graphical language. Usu-
ally, the syntax of such language contains labeled circles or squares, and arrows
connecting them. The interpretation of its meaning, or better the semantics of the
language, is left to the intuition of the reader: circles or squares represent certain
input/output functions and arrows represent data dependencies among functions.
Because the meaning, even if intuitive, is never precisely defined, questions may
arise: How are data exchanged? How are the functions computed and scheduled?

In this chapter we introduce a set of languages, that we refer to as Models
of Computation (MoC), to capture design specifications. The semantics of these
languages will be formally defined, leaving no ambiguity in their interpretation. We
start with a general definition of a MoC.

Definition 5.3.1 (Model of Computation) A model of computation is a mathe-
matical description that has a syntax and rules for the computation of the behavior
described by the syntax, also referred to as semantics. A model of computation is
used to specify the semantics of computation and concurrency.

The definition is explicit in mentioning two important ingredients of a model of
computation: syntax and semantics. The syntax defines the symbols of the language
and the valid composition of symbols (i.e. the valid programs). The semantics
defines the rules that give a meaning to a program. The rules, for instance, define the
way in which data are exchanged or accessed, and the order in which processes can
be executed. The reader may be familiar with dataflow graphs that are commonly
used in signal processing. The following example shows the use of the dataflow
language to describe a simple Finite Impulse Response (FIR) filter.

Example 5.3.2 (A FIR filter) An Finite impulse response filter is a digital filter
that processes a sequence of input samples of a signal and generates a sequence of
output samples. The general law to compute the output sequence from the input
sequence is the following:

yn =
k−1∑
i=0

xn−ihi
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Figure 5.6: Block diagram of the FIR filter.

where x = {xi} is the input sequence (with xj denoting the j-th element of the
sequence) and h is the discrete-time impulse response. Notice that h is a finite
sequence of length k which is also called the number of taps of the FIR filter.
Consider the case of a simple FIR filter with two taps:

yn = h0xn + h1xn−1

Figure 5.6 shows a block diagram of a system implementing the FIR equation.
Circles represent processes while arrows represent communication channels. Process
X generates the input stream. Processes H0 and H1 multiply the input samples
by a constant (h0 and h1, respectively). Process + adds the input streams and
generates the output.

The block diagram does not define the behavior of the system. Here, we infor-
mally list a set of rules (i.e. the semantics) associated with the block diagram that
define the set of its valid execution. Each arrow is a first-in-first-out (FIFO) queue,
and black diamonds are used to denote the presence of tokens in the queue. For
example, an initial token is placed in the queue between process X and process H1.
This token defines the value of x−1 that is necessary to compute y0. Each process
executes according to the following rule: the process is enabled when there is at
least one token in each of its input queues; if a process is enabled, then it can fire by
reading one token from each input queue and generating one token to all its output
queues. A special attention should be paid to process X. In fact, this process does
not have any input. In this example we neglect this technical detail and we just
assume that process X is always enabled.

Figure 5.7 shows the first few snapshots of a possible execution of the block
diagram that complies with these rules. Figure 5.7a shows the state of the system
after firing process X. Two tokens with value x0 are generated on both its outputs.
Figure 5.7b shows the state of the system after firing both H0 and H1. Notice
that these two processes can be fired together because there are no dependencies
among them. Finally, process + is enabled and fires (Figure 5.7c) generating the
first output y0.

In defining the semantics of the block diagram in Example 5.3.2, we used some
concepts, such as process, enabling and firing, without being too much precise about
them. In Section 5.3, we will present several models of computation to describe
the behavior of systems and we will be very precise in defining their semantics.
However, the definition of a model of computation comprises always three elements:
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Figure 5.7: Snapshots of the execution of the FIR filter

the actions (or computation), the coordination of the actions and the exchange of
data (or communication).

5.3.1 Elements of a Model of Computation

A model of computation is defined by three fundamental constituents: computa-
tion, coordination and communication. Example 5.3.2 already presented all these
elements: The actions, or computations, correspond to firing processes and execut-
ing a function that computes output tokens starting from input tokens; the com-
munication semantics is defined in terms of FIFO queues on the arcs of the block
diagram, and the coordination among processes, i.e. the order in which processes
are fired, depends on the distribution of tokens on the FIFO queues.

Computation is specified by a set of objects that transform data. Such objects
can be functions from the inputs to the outputs of a process, or transitions of a fi-
nite state machine. Coordination rules define “when” actions can be executed. The
coordination rules among actions (e.g execution of a process, or transition from one
state to another in a state machine) are very important to define concurrency in a
model of computation. The Communication semantics specifies how data are ex-
changed among processes (e.g. shared variables, unbounded FIFO queues, blocking
or non-blocking read-write).

5.3.2 How to choose an MoC

In Section ??, we will study a wide variety of models of computation that differ for
their syntax and semantics. The main reason for having such a variety of models is
that each of them offers features that may be well suited to capture specifications
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in one application domain, but that limit the expressiveness of the language and
consequently its suitability to other application domains.

Each MoC allows to expose relevant properties of a class of systems (i.e. the ones
that can be captured using the language provided by the MoC). These properties
can be leveraged to develop analysis and design tools that depend only on the the
MoC and not on the specific system model. The availability of tools is also another
criterion to decide which MoC to adopt in a design process. Before listing all the
criteria that should be considered when comparing MoCs and deciding the most
suitable in a particular application, we give a couple of examples that illustrate
how different application domains demand for different modeling paradigm.

Example 5.3.3 (Control-dominated applications) Generally speaking, a controller
is sensitive to some input events and implements a control law that reacts to the
inputs and, depending on the value of some internal state variables, generates some
output events. For instance, if we want to control the temperature T of a room to
track a desired value T0, we use a temperature sensor and a controller. If the tem-
perature drops below T0, the controller turns the heater on. When the temperature
rises above T0, the controller turns the heater off. Clearly, the input events are
T < T0 and T > T0. It is also clear that the controller needs to know if the heater
is on or off in order to generate the right output event. In fact, the sole input event
T < T0 does not contain enough information to make the decision of whether the
heater should be turned on or off. The state of the controller is an internal variable
used to keep the memory of what has happened previously to the system. Using the
state of the system, we can decide if the heater should be tuned on upon receiving
the T < T0 event.

Protocols are also examples of these class of systems. Figure 5.8 shows as simple
system composed of two nodes equipped with a wireless radio. The sequence of
symbols that are received through the wireless channel are demodulated by the
radio and sent to the upper layer of the protocol stack. The upper layer is composed
of two interfaces. Interface TX is used to send data while RX is used to receive
data. The radio completely hides the presence of the wireless channel. In fact, if
the channel were wired, the interfaces would not behave any differently from the
wireless case.

The UML sequence diagram in Figure 5.8 shows the way in which the interfaces
interact. When the TX interface receives a new data to be sent over the wireless
channel, it issues a request to the RX interface of the other node and waits for
an acknowledgement. If the acknowledgement arrives, the TX interface sends the
data and waits for another acknowledgement. The sequence diagram also shows the
interaction of the TX and RX interfaces with the external world (the upper layer
of the protocol stack). This diagram describes only one possible communication
scenario but may others are possible. For instance, the RX interface may send
back a negative acknowledgement signal to alert the transmitter that the received
data was corrupted and should be sent again.

All these scenarios can be captured by the state machines shown in Figure 5.9.
The FSM description of the two interfaces relies on a graphical language. The syntax
of the language is composed of labelled circles and labelled directed arcs. An arc
must connect two circles. The labels in the circles are strings while the labels on the
arcs have the following syntax: input condition/ output list. The input condition
is any proposition on the inputs while the output list is an assignment of values to
the output.

The semantics these language defines the meaning of the labels, the way in which
different machines interact (i.e. the communication semantics), and the meaning
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Figure 5.10: The classical graphical representation of a Finite Impulse Response
filter.

of the state transitions represented by the arcs, i.e. the conditions that allow a
transition to be executed. We postpone to Sections ?? the formal description of the
semantics of finite state machines. Informally, the FSMs communicate by means
of instantaneous events that are exchanged on memoryless connections. While in
a state, the FSM observes its inputs and continuously checks whether some input
condition on the outgoing arcs is satisfied. When the input condition on an arc is
satisfied, the transition can be taken and the outputs in the output list are emitted
(i.e. instantaneous events are generated on those outputs). It is possible to verify
that the sequence of actions in the sequence diagram of Figure 5.8 complies with
the FSM specification of the two interfaces.

The protocol example shows an important characteristic of control-dominated
applications. For instance, suppose that a data has been sent to the receiver. The
transmitter is waiting for the final acknowledgement. Therefore, the transmitter is
in state d and the receiver is either in state crc or d. Also, suppose that the data has
been correctly transmitted and received so that the CRC test is successful. If the
upper layer sends signal in to the transmitter before the final ack from the receiver
has been sent, such event is lost and the transmitter will simply receive and ack
and sit in the i state. If the in signal arrives after the final ack, the transmitter will
first go to the i state and then starts a new request going to the r state.

The behavior of the system is quite different depending on the relative order of
the input events.

In control-dominated systems, the state plays an important role in deciding the
system’s behavior and should be captured explicitly. The behavior is sensitive to the
relative order of the events in the system.

Example 5.3.4 (Data-dominated systems) Finite Impulse Response filters, like
the one of Example 5.3.2, fall in the brad class of data-dominated applications.
These systems are described by functions operating on streams of data. Tradition-
naly, filters are represented by diagrams like the one shown in Figure 5.10.

This type of diagrams are widely used by designers of digital signal processing
systems to describe their algorithms. The meaning associated to this diagram is
very intuitive. The block with label z−1 is a delay. A delay is implemented as a
buffer with one space only that holds the previous value of a sequence. The other
blocks carry out simple operations. The triangle is a constant scaling that multiplies
each element of the input sequence by a constant factor. The circles are adders that
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sum the two input sequences. If in1 and in2 are the two inputs and out is the
output, then for all indexes i, outi = in1,i + in2,i.

Notice that there are some hidden assumptions that define the meaning to this
model. It is implicitly assumed that when a new element of a sequence arrives
at the input of a block, the tokens held by the delay are shifted from the input
to the output. Moreover, the constant scaling and the adders can perform their
computation before the next element of the sequence appears at the input. Finally,
the black dots are duplication points such that the same value is copied to the
inputs all all the blocks connected to the same point. In Section ?? we will see a
model of computation to capture this kind of systems called data-flow.

These systems have states. In fact, the past n values of the stream x contribute
to the computation of the current value of y. Because the value of the i-th sample
xi is usually discrete (e.g. between 0 and 255), the number of states that of this
system is finite. In principle, a state machine may be defined that describe the
filter. Each state corresponds to one combination of values of the n samples held in
the buffers. However, such representation would be impractical. The state in this
systems is represented directly by the memory elements holding the previous values
of the stream.

Consider the adder element. Independently from the relative arrival time of
in1,i and in2.i, the output is always going to be outi. The result of the computation
does not really depend on the relative timing of the two inputs as long as the i-th
element of both sequences are taken for the computation of the output. In fact,
there is no real time information associated with the streams, but there is only a
ordering relation between the inputs and the outputs.

Example 5.3.3 and example 5.3.4 suggest that depending on the type of systems
that we are trying to capture, one modelling language is more appropriate that
another. The adoption of one MoC rather than another should be guided by the
potential benefits that a modeling language offers. Given the application domain,
an appropriate MoC should have the following properties

Expressiveness It should be possible to model all the systems that pertain to the
application domain of interest.

Simplicity The use of the MoC should not be hardened by unnecessary complica-
tion that would negatively counterbalance its benefits.

Verifiability It should possible to verify that the model is correct with respect to
some properties. In order to perform verification it is sufficient to check that a
malicious behavior does not belong to the model. Notice that, even if defined
in this way verification is always possible, the verification of a properties could
require and exaustive search of the set of all possible behaviors of a model.

Sinthesizability The rules governing the model of computation are known and
can therefore be used at lower level of abstractions to generate models that
include implementation details and that mimic the same behavior of the orig-
inal model. This allows a model to be synthesized on the selected target
platform. Moreover, it is possible to verify that the implementation behavior,
once purified by the added details, is the same as the original model.

Tools availability and development The use and/or development of tools for
synthesis, verification, simulation etc. can be based on the MoC and not on
the specific model. Therefore, their techniques can be applied independently
of the specific design.
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We should make examples
for each one of the properties
using the example just intro-
duced. We should show that
models can have the same ex-
pressiveness but one could be
easier to use for a certain ap-
plication.

Unfortunately there is a trade-off between all this properties. It is very likely
that making an MoC very expressive would make verification very difficult or even
impossible! One way of getting all these benefits together is to mix many simple
MoCs in a rigorous way each dedicated to the specification of small parts of the
same system and keep verification and synthesis separate for each part.

5.4 Models of Computation for Embedded System
Design

5.4.1 FSM

The Finite State Machine (FSM) MoC is widely used both in hardware and software
design. In this MoC, a function is described in terms of states and transitions. When
the system is in a given state, external events force the system to make transitions
from one state to the next. The state can be thought of as a variable that keeps
memory of what as happened so far and decides what can be executed next.

The specification of a function often contains an implicit reference to system
states. For instance, consider the handshaking protocol between a transmitter and
a receiver described in Example 5.3.3. The protocol can be informally specified as
follows:

The transmitter issues a request of sending a packet. If a request has
been sent, and only after an acknowledgement has been received, the
transmitter sends the packet and waits for a notification that the packet
has been correctly received. If a packet has been sent and a notification
does not arrive, the packet has to be retransmitted. If a notification
arrives, the transmitter can start over with a new transmitting cycle.

The specification makes explicit reference to past actions taken by the transmitter.
Thus, the transmitter sub-system must necessarily keep track of its state: idle, a
request has been sent, a request has been acknowledged, a packet has been sent,
a packet has been acknowledged and so on. The definition of the system states
is usually done incrementally during the design of a system. Transitions from one
state to another are triggered by events.

In this chapter we first introduce a classical definition of pure finite state ma-
chine. In this type of model, transitions are triggered by events and events are
emitted when a transition is taken. There is not type associated to the inputs or
outputs of a finite state machine, and no computation can be done when a transi-
tion is taken. A system is typically partitioned into sub-systems that communicate
using inputs and outputs. We will define the composition of finite state machines
and show the semantic problems arising from feedback connections.

The pure finite state machine model may not be expressive enough to model
complex systems where even simple computations, such as incrementing the value
of a variable, are common. The model can be extended to allow computation to
be done when a transition is taken. Other limitations are the inability to express
concurrent activities and hierarchy. Extensions that come with these two features
exists and are nowadays available in commercial tools such as Stateflow from The
Mathworks an Statemate from Telelogic.
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Input/Output/State Description

The conceptual model of a finite state machine is graphically shown in Figure 5.11.
It has a set of inputs, a set of outputs and internal states. The first type of FSM
that is worth studying is usually referred to as conventional or pure. In this type of
FSM, inputs and outputs are simply sets of symbols. Each input is not associated
with a specific type and can be thought of a a boolean value. For instance, the FSM
in Figure 5.11 has the set of inputs I = {i1, . . . , in}. Each input may be a Boolean
value (i.e. can assume value 0 or 1), or it can be an event which is present (if the
event occurred) or absent (if the event did not occur). In practice, however, the
presence or absence of an event will also be encoded by a Boolean variable, making
the distinction of the two case not relevant to our discussion. The formal definition
that we will use is more abstract. It will only consider sets of symbols.

i1

im

o1

on

r
S

Figure 5.11: A graphical representation of the elements of a finite state machine
model.

Definition 5.4.1 (Deterministic Finite State Machine) An FSM is a tuple (I,O, S, r, δ, λ)
where I = {i1, ..., im} is a finite set of inputs, O = {o1, ..., on} is a finite set of out-
puts, S = {s1, ...., sk} is a finite set of states, r ∈ S denotes the initial state,
δ : 2I × S → S is the state transition function and λ : 2I × S → 2O is the output
function.

The operation of an FSM starts from the initial state r. Notice that the initial
state is part of the specification that is different for different values of r. The
transition function determines the sequence of states that an FSM walks through
during an execution. It maps a state and a subset of the inputs to another state.
Semantically, the transition function determines the next state of the FSM starting
from the current state and the inputs. The output function determines the outputs
of the FSM that result from a transition. More specifically, given the current state
of the FSM and depending on the set of “active” inputs, a subset of the output can
be “emitted” (thereby becoming enabled).

This formal description of an FSM does not include any notion of time. Often,
there are preconceived ideas on the execution of an FSM that come from its hard-
ware implementation. When an FSM is implemented in hardware, transitions from
one state to the next are associated with the system clock that naturally establishes
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a relationship between the behaviour of an FSM and time. Definition 5.4.1 makes
no reference to a triggering clock and neither to time.

A finite state machine is completely specified if the two functions δ and λ are
defined for each state s ∈ S and for any subset of the inputs i ∈ 2I . Because λ and
δ are functions, for each combination of current state and inputs there is a uniquely
defined next state and set of outputs. This type of FSMs are called deterministic
as opposed to non-deterministic FSMs where multiple next states may result from
the same combination of current state and inputs (see Definition 5.4.3.

Example 5.4.2 (Seat Belt Controller) We want to specify the behaviour of a seat
belt alarm controller. The informal specification can be given in natural language
as follows:
If the driver turns on the key and does not fasten the seat belt within five seconds,
then an alarm beeps for five seconds or until the driver fastens the seat belt, or until
the driver turns off the key. There are clearly three states in this system. A rest
state where the system remains until the driver turns on the key. An alarm state
that is entered after the key has been turned on. The system return to the rest
state if some countermeasures are taken by the driver: either the driver turns the
key back off or puts the set belt on. If such countermeasures are not taken within
five seconds, the alarm starts beeping. The FSM describing this system is shown in
Figure 5.12.

off

alarm

wait

keyon/starttimer

keyoff or belton/ end5 / alarmon

end10 or belton or keyoff / alarmoff

Figure 5.12: State diagram of the belt controller FSM.

The graphical syntax used in this example has the following meaning. Circles
represent states and are labelled with the state’s name. Arcs represent transitions
between states. Each arc is labelled with a pair < In > / < Out > where In is a
subset of the inputs and Out is a subset of the outputs. Notice that in Figure 5.12
we have used the more convenient keyword or called disjunction. The disjunction
i1 or i2 represents three sets: {i1} , {i2} and {i1, i2}. In the diagram of Figure 5.12
we did not explicitly described what happens under any possible input which would
make the specification of the FSM incomplete. However, we followed the convention
that self transitions from one state to itself are left implicit. For instance, when the
state is off and the driver puts the belt on, the state does not change. The implicit
self transitions occur where there is no condition that is satisfied. Considering the
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implicit transitions, the state machine is completely specified.
Following Definition 5.4.1, the seat belt controller states, inputs, outputs and

initial state are defined by the following sets:

• S = {off, wait, alarm}

• I = {keyon, keyoff, belton, beltoff, end5, end10}

• O = {starttimer, alarmon, alarmoff}

• r = {off}

Consider the transition from off to wait. Its label says that the transition is
enabled, and therefore can be “executed” or “taken”, when the key is turned on.
When this transition is taken, the output starttimer is “emitted”, or is “enabled”.
In terms of the two functions δ and λ, it means the following:

δ({keyon}, off) = wait, λ({keyon}, off) = {starttimer}

Similarly, the transition from wait to off is specified as follows:

δ(keyoff}, wait) = off λ({keyoff}, wait) = ∅
δ(belton}, wait) = off λ({belton}, wait) = ∅
δ({keyOff, belton}, wait) = off λ({keyoff, belton}, wait) = ∅

A few comments should be made on Example 5.4.2. The reader may be mislead
by the specification of the seat belt controller that includes the declaration of a real-
time deadline between the key is turn on and the alarm starts beeping. We made
explicit the existence of an external timer in Figure 5.12 that can be initialized by
the starttimer output of the controller and that provides the end5 input. However,
if the timer is off and the end5 event is emitted after 7.5 seconds, the FSM would
still go through the same sequence of states. This example should convince the
reader that the FSM does not have any notion of time attached to it. We also
point out that for a given state and subset of inputs, the seat belt controller has a
uniquely defined next state. This is the reason why this type of finite state machines
are called deterministic: for the same input sequence, the FSM produces always the
same output sequence.

There are cases where a non-deterministic description of an FSM may be useful.
Two cases are worth mentioning: unknown behaviours and don’t cares. In many
cases, a full characterization of the environment of an embedded system is not avail-
able simply because the phenomena governing the environment evolution are not
fully understood (or difficult to model). Even when the environment behavior may
be perfectly characterized, its description may be very detailed and an abstrac-
tion of it could potentially simplify the verification of correctness of the embedded
system specification. The abstraction may group states together. The abstraction
process may result in two different states be reachable by one state for the same
combination of inputs.

In other cases, assumptions on the possible sequence of inputs to a state machine
may be available to the system modeller. For instance, in Example 5.3.3 we may
know that a new input in will not be present unless ack out is generated. We
implicitly used other assumptions such as the mutual exclusion between the two
inputs nack and ack. What should the next state be when both ack and nack are
present at the input. This condition will never happen and we may define the next
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state to be any of the states in the state machine. This is a degree of freedom that
can be leveraged in during the implementation into hardware or software as the
logic that implement the next state function may be better optimized. At the same
time, it is no longer true that the next state is uniquely defined by the combination
of the inputs. This type of finite state machines are called non-deterministic.

Definition 5.4.3 (Non-Deterministic Finite State Machine) A non-deterministic
FSM is a tuple (I,O, S,R, δ, λ) where I = {i1, ..., im} is a finite set of inputs,
O = {o1, ..., on} is a finite set of outputs, S = {s1, ...., sk} is a finite set of states,
R ⊆ S denotes the set of initial states, δ ⊆ 2I×S×S is the state transition relation
and λ ⊆ 2I × S × 2O is the output relation.

Definition 5.4.3 is very similar to Definition 5.4.1 with the key difference that
λ and δ are relations instead of functions. The other key difference is that the
initial state is not required to be unique. Consider a non-deterministic FSM where
({i}, s, s′) ∈ δ and ({i}, s, s′′) ∈ δ for some input i and some states s,s′,s′′. This
specification contains two valid next states s′ and s′′ for the same combination of
inputs and present state. The next two examples show how non-determinism can
be used.

Example 5.4.4 (Environment Assumptions) In Example 5.4.2, a reasonable as-
sumption to make is that after starttimer has been emitted, the external timer will
emit end5 before emitting end10. Therefore, we could change the δ function into a
relation such that :

({end10}, wait, off) ∈ δ

({end10}, wait, alarm) ∈ δ

Similarly we could change the λ function into a relation such that:

({end10}, wait, {starttimer}) ∈ λ

({end10}, wait, {alarmon}) ∈ λ

({end10}, wait, {alarmoff}) ∈ λ

({end10}, wait, {starttimer, alarmon}) ∈ λ

. . .

Even if the behavior of the entire system is not affected by this new definition of
δ, it is possible to use the new transitions in the hardware and software synthesis
algorithms to generate compact and efficient implementations. Intuitively, if the
input is {end10} we don’t care what the next state is and we don’t care what the
output is either. Thus, we can decide both next state and output in such a way
that the final implementation is simplified.

Similarly, if we knew that after alarmon has been emitted, the external beeper
is no longer sensitive to the alarmoff signal, we could include the alarmon output
in the transition between alarm and wait.

Example 5.4.5 (Unknown Behaviors) Sometimes, the behavior of a state ma-
chine is not known. The seat belt controller of Example 5.4.2 is embedded in an
environment whose behavior is difficult to predict. For instance, to analysize or
simulate the seat belt controller, a model of the driver is needed. However, it is
difficult to predict the sequence of inputs that any driver would provide to the seat
belt controller. Modeling one possible sequence of inputs would lead to an incom-
plete validation of the controller that is supposed to operate correctly under all
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possible driver behaviors. A non-deterministic specificaiton of the driver helps in
this case. It answer to the modeling need where the driver can do either action a1

or action a2 and end up in two different states.
The most general non-deterministic state machine for the driver model has one

state only S = {s}, and a set of outputs O = {keyon, keyoff, belton, beltoff}.
There is only one transition (∅, s, s) ∈ delta and the output relation contains the
following elements:

(∅, s, {keyon}) ∈ λ

(∅, s, {keyoff}) ∈ λ

(∅, s, {belton}) ∈ λ

(∅, s, {beltoff}) ∈ λ

This specificaiotion of the driver behavior allows us to verify correctness of the
set belt controller under all possible inputs rather than relying on a selected subset
of test cases. This is also an example of abstraction in the sense that a model
for any driver has been abstracted and simplified into a one state model with any
actions possible.

Because a function is a particular type of relation, one may think that non-
deterministic FSMs are more expressive than deterministic ones. It has been proven [117]
that this is not the case and that they are equivalent. Given a non-deterministic
FSM, it is possible to construct a deterministic FSM that admits the same set of
behaviors, albeit having a larger set of states.

The popularity of the FSM model among hardware and software designers is due
to the simplicity of specification. The graphical syntax presented in Example 5.4.2
is very intuitive and easy to understand even by designers that are not fully aware
of the rigorous, implicit Definitions 5.4.1 and 5.4.3. Besides the ease of use of this
formalism, many tools are availalbe for verification and synthesis that make the use
of this model very appealing.

Finite State Machine can be automatically verified against properties. A prop-
erty is tipically a proposition expressed in a particular logic (see Section 5.6.2 for
an example of logic). The property identifies a set of states or a computation path
as a sequence of states. More generally, an interesting question is the following:does
it exist a sequence of inputs such that state s can be reached starting from r?. This
is known as the reachability problem which is decidable for FSMs. Being able to
answer this question allows for instance to compute the set of all reachable states
S of an FSM. Another question that can be answer is the safety question. Given
a subset of states B ⊂ S called bad states, the safety verification problem can be
stated as follows: does it exist a sequence of inputs such that one of the states in B
can be reached starting from r?. Typically, safety verification can be turned into a
reachability problem by checking that S ∩ B = ∅. Efficient algorithms for reacha-
bility analysis can be used to solve this problem. Verification is a powerful method
that can check a model against any possible input. It is fundamentally different
from simulation where the model is stimulated by test cases that represent a finite
set of input sequences. The applicability of verification techniques is only limited
by the complexity of the model and of the verification algorithms.

Finite state machines can be automatically synthesized into hardware and soft-
ware. The possibility of applying synthesis techniques is fundamental since the
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equivalence of specification and implementation is guaranteed by construction (pro-
vided that the synthesis algorithm is correct). The verification problem need to
be solved at the specification level only because the implementation is guaranteed
to be ”equivalent”3. Since the implementation contains far more details than the
specification, the other advantage is that the verification problem is easier at the
specification where ”less” conditions need to be checked.

The FSM model has also some limitations. The number of states and transitions
of the system can become unmanageable especially when the input set contains
many elements. Additional constructs such as hierachy and composition can help
making the description of a finite state machine model more compact. Further, the
model that we present does not allow any sophisticated computation to be done
either while in a state or when taking a transition. The Extended Finite State
Machines (EFSM) model of computation extends the basic FSM model to provide
additional features such as typed inputs and outputs, state variables, and aritmetic
computations on them. A model that embodies all these extensions is StateCharts,
originally presented in [76] and summarized in Section 5.4.1.

Composition of Finite State Machines

Complex systems have many states and many transitions among them. Capturing a
system with a single FSM is not practical and not natural. Designers partition the
functionality of a system into sub-systems, each having inputs and outputs. Sub-
systems are then interconnectet to provide the system functionality. Given a set of
FSMs, one for each subsystem, and their interconnection, what is the behavior of
the whole system? The behavior is described again by a FSM resulting from the
composition of the FSMs of each sub-system.

Consider a set of FMs {M1, . . . ,Mn}, where Si is the set of states of Mi. The
state of their composition is the vector of states (s1, . . . , sn) where si ∈ Si. If the
FSMs do not interact, and if each state in Si is reachable, then each state in the
cross product Si× . . .×Sn is a reachable system state. In this case, if each FSM has
k states, then the total number of state resulting from the composition is kn which
is exponential in the number of sub-systems. This explonential dependency of the
number of states from the number of sub-systems is known as the state explosion
problem.

When the sub-systems interact, some states in the cross-product are not rachable
because of the dependencies that exist between inputs and outputs. To precisely
define the behavior of the composition of FSMs, the communication semantics must
be defined. Communication among FSMs is assumed to be synchronous, meaning
that transitions are taken together in lock step. The system proceeds in steps. At
each step, each FSM executes one of the enable transitions.

Example 5.4.6 (Seat Belt Controller and Timer) The seat belt controller has
two inputs end5 and end10 coming from a timer. The timer is another sub-system
shown in Figure 5.13. It is a finite state machine that walks through a chain of
states counting from 1 to 10. It has three inputs: start coming from the seat belt
controller, and sec coming from an external device that emits the sec trigger every
second. We do not model the external device which is part of the environment.

The initial state of the timer FSM is 0. If a start command is received, the
FSM moves through a chain of states, advancing state each time a new sec input is
present. After five steps (corresponding to five seconds of the external timer) from

3We did not formalized the concept of equivalence. The term is used informally here.



5.4. MODELS OF COMPUTATION FOR EMBEDDED SYSTEM DESIGN 77

0 1 2

5

6

10

start sec

sec / sec10 sec / sec5

Figure 5.13: State diagram of the timer FSM.

the last start the output sec5 is emitted. Similarly, after ten seconds from the last
start the output sec10 is emitted. Figure 5.14 shows the interconnection of the seat
bel controlelr and the timer FSMs. Connections are depicted by dashed arrow as
they are mathematical concepts rather than physical connections. We will see later
that connections are constraints between inputs and outputs.
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Figure 5.14: The seat belt controller and the timer together.

The composition of the two FSMs is another FSM (I,O, S, r, δ, lambda). The
elements of the tuple are defined by the two FSM being composed. In this example,
some example are given to build the intuitiont of how composition works. A formal
definition of composition is given later in this section. The state of the composed
system is a pair (sb, st) ∈ {off, wait, alarm} × {0, ..., 10} = S where sb is the state
of the set belt controller and st the the state of the timer. The initial state of the
system r = (off, 0). Assume that the key is turn on. What should the next system
state be? Figure 5.15 shows two possible transistions. Consider the transition from
state (off, 0) to state (wait, 0). The transition is taken when keyon is the only
present input. The output that is emitted is starttimer. This transition violates
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(off, 0) (wait, 0)

(wait, 1)(off, 0)

keyon / starttimer

keyon and start / starttimer

Input-output constraint

Figure 5.15: Examples of system-state transitions in the case of seat belt controller
and timer.

the connection constraints shown in Figure 5.14. According to these constraints
output starttimer must be equal to input Start meaning that they are either both
present or both absent. Consider instead a transition from (off, 0) to (wait, 1). The
transition is taken when both keyon and start are present. The output that is emit-
ted is starttimer. This transition satisfies the constraint that output starttimer
and input start be equal.

Having the reader acquired familiarity with FSMs in other contexts (related
mainly to hardware design), the natural question that might arise is the following:
after the key is turned on, signal StartT imer is emitted by the seat belt controller.
Is such signal immediately used by the conter FSM to make a transition from state
0 to state 1?. In order to answer this question we need to give a precise definition
of composition of finite state machines.

Let M1 = (I1, O1, r1, δ1, λ1) and M2 = (I2, O2, r2, δ2, λ2) be two finite state
machines. A connection constraint is a relation C ⊂ O1∪O2×I1∪I2. For instance,
if output o1 ∈ O1 is connected to input i2 ∈ I2, then (o1, i2) ∈ C. Being C a
relation, an output can be connected to multiple inputs allowing the specification
of multiple fan-out .Should the inputs and out-

puts be disjoints, respec-
tively?

Definition 5.4.7 (Composition of FSMs) Given two FSMs M1 and M2 and a
connection constraint C, their composition denoted as M1||M2 is another state ma-
chine M = (I,O, S, r, δ, λ) such that:

I = I1 ∪ I2
O = O1 ∪O2

S = S1 × S2

r = r1 × r2
δ = {(A1 ∪A2, (s1, s2), (s′1, s

′
2)) : (A1, s1, s

′
1) ∈ δ1 ∧ (A2, s2, s

′
2) ∈ δ2}

λu = {(A1 ∪A2, (s1, s2), B1 ∪B2) : (A1, s1, B1) ∈ λ1 ∧ (A2, s2, B2) ∈ λ2}
λ = {(A1 ∪A2, (s1, s2), B1 ∪B2) ∈ λu : ∀o ∈ B1 ∪B2, ∀i ∈ I1 ∪ I2, (o, i) ∈ C ⇒ i ∈ A1 ∪A2}(5.1)

In Definition 5.4.7, Condition 5.1 imposes that outputs and inputs connected
together behave consistently.
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Definition 5.4.7 can lead to undefined behaviors. Consider a model of a well-
behaved driver as in Figure 5.16.

s0 s1

/ keyon

/ keyoff

alarmon / belton

/ belton

Figure 5.16: Finite state machine modeling a well-behaved driver.

A well-behaved driver either puts the belt on before turning the key on or she
puts the belt on as soon as the alarm starts beeping. Consider the case where the
driver turns the key on before putting the belt on. The system is in state (s1, wait).
For the driver FSM, ({alarmon}, s1, s1) ∈ δ and ({alarmon}, s1, {belton}) ∈ λ.
The only possible next state for the entire system is (s1, alarm). Based on Defini-
tion 5.4.7, the composition should satisfy:

({end5, alarmon, belton}, (s1, wait), (s1, alarm)) ∈ δ

and for the output relation

({end5, alarmon, belton}, (s1, wait), {alarmon, belton}) ∈ δ

Unfortunately, while in state wait, there is no transition defined in the seat belt con-
troller with input set {end5, belton}, therefore the output of the seat belt controller
is actually not defined.

M1 M2

i1 o1 o2i2

Figure 5.17: Two finite state machines in feedback connection

Figure 5.17 shows the general case of a feedback connection of two FSMs M1

and M2.
The standard solution to solve the feedback connection problem is to make the

output independent from the input: λ ⊆ S × 2O. This new type of Finite state
machines is known as of Moore’s type (as opposed to Mealy machines).

Hierarchical FSMs: StateCharts

The FSM model of computation is suitable to capture functions that are control
dominated. Modeling using FSMs is, however, rendered difficult by the complexity
coming from the number of states and transitions. Consider an abstract model of
the status of a thread (Figure ??-a). A thread may be in the sleep1 state where it
does not need any CPU time to be executed. An input req1 may resume the thread
execution that enters a new state ready1 where the it is waiting to be executed.
When the CPU is availalbe, the thread receives a notification through input exec1
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Figure 5.18: Example of one and two threads FSMs.

Figure 5.19: Example of one and two threads FSMs.

and it transitions to state run1 where it is running on the CPU. The thread goes
back to the sleep1 state after completing the execution. It emits output rel1 to
release the CPU and make it availalbe to other threads. Consider two parallel
threads running on the same CPU. The state machine of these two parallel threads is
shown in Figure 5.18-b. It has 9 states and many transitions. This FMs results from
the composition of the two concurrent threads. Unfortuntately, the FSMs model
of computation does not provide any syntactic of semantic support for expressing
concurrent executions of finite state machines. Intuitively, we would like to simply
describe the system as the concurrent or parallel composition of two threads, leaving
the semantic of the composition to be defined by the model of computation.

While in the run1 state, thread M1 needs to execute some control actions.
For instance, it may execute a thread corresponding to the seat belt controller.
Moreover, while in the run1 state, the thread may be preempted by an abort signal
that sends the thread back to state sleep1 (Figure 5.19-a). The finite state machine
may get very complex as the nubmer of transitions induced by the abort signal
equal the nubmer of states in the seatbelt controller. A more intuitive way of
describing this thread is shown in Figure 5.19-b. It intuitively uses a construct tha
defines a state machine inscripted into a state of a higher level state machine. This
hierarchical construction is not possible in the FSM model of computation.

Another example of of use of these two constructurs (concurrency and hierarchy)
comes from the composition of the seat belt controller and the timer (Figure 5.14).
The seat belt controller has 3 states and the timer has 11 states. The composition of
the two is a state machine with 33 states. However, not all of them are necessarily
reachable. The state transition diagram of the composition is shown in Figure 5.20.

This figure should be com-
pleted, the conditions on
all the transitions snould be
checked.

To overcome the complexity encountered in capturing systems with FSMs, Harel
proposed a visual formalism called Statecharts [77]. This formalism extends the
FSM model with the notion of hierarchy, concurrency, and communication. The
seat belt controller and timer example will drive the presentation of the Statecharts.
The system can be decomposed as follows:

• The timer FSM consists of a non-alarm zone (from 0 to 5) and an alarm zone
(from 5 to 10). This type of decomposition will make use of hierarchy. Alarm

(OFF, 0)

(WAIT, 1) (WAIT, 2) (WAIT, 3) (WAIT, 4) (WAIT, 5)

(ALARM, 6)(ALARM, 7)(ALARM, 8)(ALARM, 9)(ALARM, 10)

KeyOn/Start

KeyOff or BeltOn/ KeyOff or BeltOn/ KeyOff or BeltOn/

KeyOff or BeltOn/

End5/AlarmOn
KeyOff or BeltOn/

Sec/ Sec/ Sec/ Sec/

Sec/Sec/Sec/Sec/

Figure 5.20: Result of the composition of the seat belt controller and the timer.
The composition has 11 states and 20 transitions.
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Figure 5.21: Statecharts description of the seat belt controller and the time.

and non-alarm zones will be refined into further states.

• The timer FSM makes transitions independently from the seat belt controller.
This decomposition will make use of concurrency.

• Whenever the seat belt is fasten, both the controller and the timer make a tran-
sition to their initial states (corresponding to system state (off, 0)). Hierarchy
will also be used to simplify the description of this type of transition.

The description of the combination of the seat belt controller and the timer
using Statecharts is shown in Figure 5.21. This example only use some of the basic
features of Statecharts. Advanced features will be shortly explained later in this
section.

Each state of a Statechart is graphically represented by a box. States can contain
other states in a hierarchical fashion. A basic state is a state that does not contain
sub-states, i.e. it is a leaf of the hierarchy (e.g. state 0 in the timer state. The root
state is a state without parents. In this example, seatbelttimer is the root state.
The timer state contains three sub-states: state 0 is an idle state, state na is a
non-alarm zone state, while a is an alarm zone state. The timer can only be in one
of these three state, therefore state timer is called an OR-State meaning that its
sub-states are related to each other by exclusive-or. State a and state na are also
OR-states.

The entire system is the composition of the seatbelt state and the timer state.
However, this type of composition does not have the same meaning as the OR-State
one. The two states are concurrent, meaning that the system is in one of the sub-
states of seatbelt and one of the sub-states of timer. The composition is denoted
by a dashed line separating the sub-states and the parent state (the seatbelttimer
state in this example) is called an AND-State.

Transitions are more expressive than in the FSMs model. A transition label is
of the form e[c]/a where:

• e is the event that triggers the transition.

• c is a guard condition. This condition must be true in order for the transition
to be enable. If the guard condition is evaluates to false, the transition cannot
be taken even if event e has occurred.
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• a is an action that is carried out when the transition is taken. The action can
be an event that in turn triggers other transitions.

Events and actions provide an infrastructure for interaction and communication
among FSMs. The example shown in Figure 5.21 only used events and actions.
A special symbol, a dot with an arrow pointing to a state, is used to mark the
initial states. The initial state is off AND 0 for the seatbelt AND timer states,
respectively. When the key is turned on, the transition from off to on is taken
and event start is emitted. Notice that event start also triggers a transition from
0 to na. This is an example of broadcast communication of events. Broadcast
communication of events is synchronous in the sense that the start event is visible
immediately, as soon as emitted, by the entire model. Therefore, transition from 0
to na is taken together with transition from off to on.

After the key is turned on, the new state of the system is on and na. Notice that
na is an OR-state that contains sub-states. The initial sate for na is 1, therefore
the system goes into state on and 1. Another useful feature provided by Statechart
is a way of modeling preemption. From any of the sub-states in na, if the key is
turned off or the seat belt is fasten, the active state of the timer becomes 0. This
feature simplifies the diagrams in terms of number of transitions.

Before, describing the semantics of a Statechart diagram, one more feature is
worth describing. A state can be associated with an activity. For instance, the
alarm is an activity that we denote BEEP . This activity must start when the
alarm zone is entered and must stop when the alarm zone is exited. Statecharts
allows the sepcification of an activity A in state s throuhg the notation throughoutA
written insied s. This notation corresponds to generating an event start(A) when
the state is entered, and the event stop(A) when the state is exited.Should we add features like

timeouts, connectors and
history?

We explained the syntax and the intuitive meaning of the main features of Stat-
echarts. The semantics of a Statecharts diagram is given by an algorithm that
executes the model and generates a sequence of states. Unfortunately, there are
many ways of defining the execution of a Statecharts model. In 1994, seven years
after the work of Harel, Van Beeck summarized 22 different variants of Satecharts
semantics [140]. Two years later, in 1996, Harel and Naamad published the seman-
tics of STATEMATE [78], a tool that implemented Statecharts. STATEMATE was
a product offered by i-Logix, Inc., that was later acquired by Telelogic which was
then acquired by IBM. STATEMATE is still shipped today [2].

What follows is a description of the the semantics of Statecharts as implemented
by STATEMATE. The execution of a Statecharts model is a sequence of snapshots
of the system execution. A snapshot is called status. Each execution starts with a
status that represents the initial state. A transition from one status to the next is
called step. The definition of a step and the decisions that are taken during a step
define the semantics. The basic principles adopted by the developer of STATEM-
ATE are the following:

1. All changes that occur during a step can be sensed only in the next step. In
particular, if an event is emitted during a step, it will be made visible to the
rest of the system only in the next step.

2. Event stay active only for the duration of a step. They are not “remembered”
in subsequent steps.

3. Computations done in a step are based on the status of the system at the
beginning of the step.
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4. A maximal set of non-conflicting transitions is always executed. This means
that if a transition can be taken than it is taken.

These four principles are used to compute the next status starting from the
preset one. Need to find a way of simpli-

fying the semantics and ex-
plain it.5.4.2 Discrete Event

The model of time that we all share is the one of a real variable. Systems evolving
in time are observable through physical quantities that are functions of time. These
functions are defined in any point of the real line, i.e. for any value of time. Also,
at least at the macroscopic level, these functions are continuous. However, in many
applications, only a subset of points on the real line are the interesting ones. In
these cases, the continuous time functions can be abstracted into a discrete set of
points called events. Abstraction is done when the information contained in the
time interval between two consecutive events can be either recovered, or it is simply
uninteresting. The important information that is retained is the total ordering of
the events. Given two events, it is always possible to order them depending on
which one happened first.

Example 5.4.8 (Sampling) Consider for instance a continuos time signal modeled
by a function x : R → R. We denote this signal simply by x(t). The Furier
transform of x(t) is X(f) that describe the frequency spectrum of x(t). Signal
x(t) is band-limited if there exists a frequency value B such that X(f) = 0 for
all |f | > B. Constant B is called the bandwdith of x(t). For instance, a sinusoid
x(t) = sin(2πfot) is band-limited since X(f) = δ(f − f0) 4.

The Nyquist-Shannon sampling theorem says that a band-limited signal x(t)
with bandwdith B can be completely represented by uniformly spaced samples
taken with time interval:

T ≤ 1
2B

where 2B is also called the Nyquist rate. Therefore, it is sufficient to know the
set of values V = {x(nT ) : n ∈ Z} to reconstruct the entire waveform x(t).

Another example of abstraction is digital circuit simulation. The interesting
events in this context are the transitions from 0 to 1 and from 1 to 0. These
transitions are abstractions of the corresponding ones from low to high voltage
and from high to low voltage, respectively, that occur in at the output voltage of
the transistors implementing the digital circuit. The actual voltage waveform is
abstracted away because from the logic point of view the values of the voltage at all
time are not relevant. This abstraction is of course possible only when the logical
behavior of the system is not affected by the actual signal waveform.

Example 5.4.9 (Digital circuit) Consider the circuit in Figure 5.22. A pulsed
voltage source is connected to the input of three cascaded inverters. Each inverter
is implemented by a pair of MOS transistors, an NMOS and a PMOS. The supply
voltage is 5V .

The voltage source generates a square wave with period equal to 20ns, swinging
between 0V and 5V . The instantaneous change in voltage at the input of the
first inverter propagates with some delay. Moreover, the waveform generated at

4With δ we denote the dirac pulse.
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Figure 5.22: Cascade composition of three inverters and result of the SPICE simu-
lation.
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the output is continuous with a certain slope. Because transistors have input and
output capacitances that need to be charged (and discharged) to change the input
and output voltage, some time is needed before the that transition changes its region
of operation. The output of the second inverter is not a square wave anymore.
However, the second inverter switches its output voltage as a consequence of its
input voltage crossing some threshold.

These circuit can be modeled using Spice [?]. The result of the transient analysis
are also shown in Figure 5.22. The sub-plot shows the actual voltage change at the
output of the first and second inverters. The interval of time where the voltage is
between the two extreme values 0V and 5V is negligible compared to the time where
the voltage is equal to one of the two extreme values. Therefore, the switching can be
completely abstracted as if it happened in zero time. In a digital circuit simulator,
the two voltage levels are encoded by 0, for 0V , and 1 for 5V . Transitions from
one level to the other happen instantaneously in a discrete set of points in time.
These events retain the total order imposed by the continuos time nature of the real
circuit.

The definition of the semantics of the discrete time model of computation re-
quires the introduction of the notion of events and signals (see Section 5.7.2 for
more details). An event is a pair (v, t) ∈ V × T where V is a set of values and T
is a set of tags. For instance, the set of values could be the set of real numbers. If
a signal is quantized, the set V contains a finite set of values in a given range. For
discrete time systems, the set of tags is a coutable subset of real numbers. Recall
that a countable set is a set where each element can be associated with a natural
number (the element of the set can be counted).

The discrete event model of compoutation is a timed model, meaning that there
is an exclicit notion of time that induces a global order of the events in the system.
Given two events, e1 = (v1, t2) and e2 = (v2, t2), their ordering is induced by the
ordering of the tags: e1 ≤ e2 ⇐⇒ t1 ≤ t2. In discrete event systems, the set
of tags is totally ordered meaning that tags can be alway compared to each other.
Given two tags t1, t2,∈ T , either t1 ≤ t2 or t2 ≤ t1. This means that given two
events, it is always possible to establish which one happened first.

A signal is simply a set of events. Events can happen at any time asynchronously.
In practical terms, an event in a discrete event system is a change in value of a signal.
When an event appears at the input of a block, the block is executed. The execution
consists in reading the values of the inputs, run an algorithm that implement the
input-output function of the block, and generate other events on the output signals.
The tags associated with the output events do not have to be equal to the tags of
the input events. A block may introduce a delay by associating tags to the output
events that are greater than the tags of the input events. This feature can be used
to model the execution time of the block. However, the execution time may also be
zero which has serious implications on the definition of the execution semantics of
a discrete event system.

A simulation engine for discrete event systems can follow a very simple set of
steps to produce a simulation trace (Algorithm 1. The algorithm taks as input the
set of signals in the system S and the set of blocks B. Each block b ∈ B is connected
to a set of input signals I(b) ⊆ S and a set of output signals O(b) ⊆ S. When a
block runs, it generates a set of events E = run(b). The algorithm maintains an
event queue Q where events are ordered by their tags. The queue is initially empty.
All sources, i.e. all blocks without input signals, run first and generate events that
are placed in the queue. Then, the main loop starts. The simulation engine extracts
the event with the least time stamp from the queue. The event belong to a signal s.
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Algorithm 1 Discrete event simulation
Input: Set of signals S; set of blocks B
Q← ∅
forall b ∈ B such that I(b) = ∅ do

E ← run(b)
add all events in E to Q

while Q 6= ∅ do
e← extractmin(Q)
s← getsignal(e)
forall b ∈ B such that s ∈ I(b) do

E ← run(b)
add all events in E to Q

All blocks that are ”sensitive” to that event, meaning all blocks that have s as input
signal, are executed. The execution will generate other events that are inserted in
the queue. Although the algorithm seems simple, the simulation of a discrete event
system must deal with many subtleties, some of which are presented next.

The system in Figure 5.23 has three blocks a, b and c. Block a is a source that
generates two events e1 = (v1, t) and e2 = (v2, t) with two different values v1 and
v2 but the same time stamp t. Funtion extractmin must make a decision between
the two events. It is arbitrary to process e1 before e2 or vice versa. Since the
simulator provides one execution trace only, a decision must be made. The two
possible decisions provide two different execution traces of the same system. If e1
is extracted first, block b is executed, whereas if e2 is extracted first, block c is
executed.

Suppose a simulator choses the first alternative, thereby executing b. Also,
suppose that the execution of b happens in zero time (i.e. with not delay from
the inputs to the outputs). Block b generates one event e3 = (v3, t) that is placed
in the queue. There are now two events, e2 and e3, in the queue. These two
events are both connected to the input of c. Should c be executed once or twice?
Algorithm 1 extracts one event at the time from the queue. Theefore, according
to this algorithm, block c will be executed twice. However, the two events have
the same tag and they should be seen (and “consumed”) together by c. This is yet
another decision that affects the simulation results because if c is executed twice, it
will generate two output events, whereas if it is executed once, only one event will
be generated. If the execution of b requires a certain time ∆, the the output events
generatd by b will be delayed and c will be definitely executed twice.

Some discrete event simulator engines assume that the execution of a block al-
ways takes a minimum amount of time such that some of the problems we presented
can be eliminated. The interested reader can find a more detailed discussion in the
in depth chapter.

5.4.3 Process Networks

Data-flow networks first appeared at the end of the 50s as a model for parallel
programming. In this new model, a program is described as a set of processes
interacting asynchronously by echanging messages over queues. The intent of the
model is to capture only data dependency among processes, thereby leaving the
freedom of executing processes without dependencies in parallel. This is majoor
advantage of languages that provide ways of expressing concurrency of actions.
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Figure 5.23: Discrete event simulation of a simple system with three blocks. Block
A generates two events with the same time stamp t. The simulator has the choice to
run B before C or vice versa. Many simulators avoid zero time delay by introducing
a fixed reaction time for each block.
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Programs described using function calls do not provide this important feature since
all functions run in the same thread of execution.

In one of the early research work on this topic, Gilles Kahn [?] introduced a
simple parallel programming language and provided also a formal description of its
semantics. In this model, that today falls under the name of Kahn Process Net-
works (KPN), processes exchange information on First-Input-First-Output (FIFO)
channels with unbounded capacity. In this section we present this model and its
properties following the original definitions by Gilles Kahn, further developed by
Edward A. Lee and Thomas Park [?].

Remark 5.4.10 (FIFO Channels and Communication Semantics) A First-In-
First-Out unidirection communication channel can be thought of as a memory with
to ports:

• One port provides a service to write data in the memory. This port is used
by a process called producer.

• One port provides a service to read data from the memory. This port is used
by a process called consumer.

The FIFO channel has the follownig properties. The order in which data are ex-
tracted from a FIFO is the same in which they are inserted. Figure 5.24 shows and
example of a system with two processes A (the producer) and B (the consumer)
accessing a unidirectional FIFO.

process A
  input i;
  output o;
  var tmp;
  while(true)
    tmp = read(i);
    write(o,tmp);
  end while;

process B
  input i;
  output o;
  var tmp;
  while(true)
    tmp = read(i);
  end while;

i o i o

〈. . . vn, vn−1, . . . , v1, v0〉

Figure 5.24: Two concurrent processes communicating through a FIFO channels.

Process A has an input i from which it reads data that are then written in
the FIFO. Process B is a sink that reads from the FIFO. The behavior of the two
processes is specificed as a sequential program. Each process executed an infinite
loop performing write and read operations (see the pseudo-code in Figure 5.24).
Two natural questions arise:

1. What happens upon a read request if the FIFO is empty?

2. What happens upon a write request if the FIFO is full?

These questions are related to the communication semantics of the two processes
A and B. Consider process B attempting to read from an empty FIFO. There are
two possible cases:

• The data contained in the FIFO is absolutely necessary for the process to keep
running. In this case the process must wait idle until some data are written
in the FIFO.
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• The process may have several tasks to execute, some of which may not depend
on the content of the FIFO. Therefore, the process may decide to keep running
by executing those tasks and come back to check whether the FIFO is still
empty or not.

In the first case, process B attempting to read from an empty FIFO simply blocks
until another process A writes enough data to let B continue its execution. This
is called blocking read semantics. The second communication mechanism, instead,
has a non-blocking read semantics. Notice that, to implement this semantics, the
process must be able to check whether the FIFO is empty. Allowing a process to do
so introduces some fundamental problems that will be covered later in this chapter.

To answer the second question, we need to distinguish between the case where
the FIFO has a finite memory and the case where it is unbounded. A FIFO can be full
only if it has finite memory. If the FIFO is unbounded, a process attempting to write
will always succeed, therefore there is no need to block the writing operation. This
is called non-blocking write semantics. Whereas, if the FIFO is bounded, a process
that attempts to write can be blocked. This is called blocking write semantics. Even
if the FIFO is bounded, a non-blocking write semantics can be implemented. In
this case there are a few choices: the process may check whether the FIFO is full
and decide to execute other actions waiting for the consumer process to read from
the FIFO and release some space; or the process may simply overwrite the content
of the FIFO.

A KPN can be represented as a directed simple graph where nodes are processes,
called actors, and arcs represent communication channels (i.e. unbounded FIFOs).
Actors exchange tokens whose type is abstract and we will never define explicitly
when discussing the properties of KPNs. The concrete type of a token can be a
simple integer, a matrix or an image. Let D denote the domain of tokens, meaning
the set of values that tokens can take on. For example, for integer tokens D = Z,
while for images D can be the set of all images with size 640×480 pixels and a color
depth of 8 bits. Figure 5.24 is an example of KPN. Consider an observer seating on
the FIFO channel. She will observe a sequence of tokens flowing from the producer
to the consumer. The sequence of values can be finite or infinite.

In defining the semantics of a KPN, the content of processes (i.e. the specifics
of the program describing their execution) is completely hidden. Processes are
characterized by properties based on which properties of the entire KPN program
can be inferred. Little assumptions are necessary to obtain strong results about
the behaviors of a KPN. It is assumed that a process has an internal thread and it
can contain states. Because the output sequence of a process depends on the input
sequence and also on the internal state, a process cannot be defined as a function
from input tokens to output tokens. A process is defined as a function from input
sequences to output sequences. The set of finite and infinite sequences of a set D
is denoted by Dω. A sequence is denoted as X = [x1, x2, . . .] where xi is the i-th
token of the sequence.

Example 5.4.11 (Infinite Impulse Response Filter Process.) Consider the follow-
ing pseudocode describing the thread of a KPN process:

process IIR
input x ;
output y ;
variable state initially 0 ;
variable tmp ;
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while( true )
tmp = read( x ) ;
state = state + a * tmp ;
write( y , state ) ;

end while ;
end process

This process is an Infinite Impulse Response (IIR) filter that reads one token at
the time from the input channel x, updates the state variable, that is initialized to
0, and writes the output y. Let us assume that the tokens are real numbers. Can
we define a function f : R → R from the input to the output representing process
IIR? The output value is determined by the update equation state = state+a ·tmp.
Therefore, the output depends on the internal state as well, and cannot be directly
computed only by knowing the value of the input. As a simple example, consider the
two sequences X1 = [0.0, 1.0, 2.0, 3.0, 4.0 . . .] and X2 = [0.0, 2.0, 4.0, . . .], and assume
a = 0.5. The output sequences corresponding to these two input sequences are
Y1 = [0.0, 0.5, 1.5, 3.0, 5.0, . . .] and Y2 = [0.0, 1.0, 3.0 . . .], respectively. The output
corresponding to the input value 4.0 is 5.0 and 3.0 respectively.

To take into account the effect of the internal state, the IIR fileter is rather
defined as a function that maps input sequences to output sequences a s follows:

f : Dω → Dω

For a given input sequence X = [x1, x2, . . .] the output sequence Y = [y1, y2, . . .]
is defined as follows:

yi = a

i∑
j=1

xi

In general, a process has many inputs and many outputs, therefore a process
is a functions from a tuple of input sequences to a tuple of output sequences. A
process with n inputs and m outputs is a function defined as follows:

f : Dω × . . .×Dω︸ ︷︷ ︸
n

→ Dω × . . .×Dω︸ ︷︷ ︸
m

This representation can also be viewed as a vector of m functions, one for each
output sequence.

Consider a network of processes. It may be possible that several processes have
enough tokens in its input queue to keep running. All these processes could run
concurrently meaning without any precedence among them. However, the program
will eventually implemented on a computing platform that may have limited concur-
rency. For instance, if the KPN program is implemented on a single processor, then
processes cannot be executed concurrently. A natural question to ask is whether
the order in which processes are executes matters to the final result of the com-
putation. The most important property about this model of computation is that
given a unique input sequence to a KPN, the output sequence is uniquely defined
independently from the order in which the processes are executes. This property is
called determinacy. Although each schedule gives the same result, they have differ-
ent latency, code size and memory requirements [107]. The interested student may
refer to Section 5.4.3 for a formal proof of the determinacy property.

Obviously, the assumption of FIFO channels with unbounded capacity makes
a KPN program not amenable to hardware or software implementation since, in
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practice, FIFOs are always bounded. Therefore, it is important to be able to find a
schedule of the processes such that the number of tokens in each FIFO in guaranteed
to be bounded. In Section ?? we introduce some restrictions on the KPN model
such that such schedule can be found efficiently. Example ?? clarifies this point and
shows how the KPN model can be used to describe the functionality of a simple
system.

Example 5.4.12 (Kahn Process Network Modeling) We will model a simple Au-
tomatic Gain Control (AGC) loop. This sub-system is part of the front-end of radio
receivers to adjust the voltage range of a signal based on the knowledge of the am-
plitude of the transmitted signal. Figure 5.25 shows the entire systems that is the
interconnection of five processes. A random number generator is the source of the
system that generates random real numbers in the interval [0, 2]. A simple process
that scales the input by a constant factor k1 mimics the attenuation effect of the
channel between the transmitter (i.e. the source) and the receiver. The other three
blocks constitute the AGC. This is a classical control loop whose purpose is to drive
the value of a variable to a reference. The AGC tries to recover the attenuation
factor and eliminate its effect by multiplying the input signal by the inverse of k1.

Random 
source

Channel
loss Multiplier

Subtract
reference

IIR
filter

xi ∈ [0, 2]

×k1 ×

ref − in

Figure 5.25: An automatic gain control loop

The AGC multiplies the incoming signal by the output of a filter whose input is
the difference between the output of the AGC and the reference value. The reference
value is set to an appropriate value that depends on the range of the random source.
The effect of the loop is the following. If the gain at the output of the filter is too
high, the output of the multiplier will be greater than the reference value. Therefore
the difference between the reference and the output of the multiplier will be negative
and the output of the filter will decrease. On the other hand, if the gain is too small,
the input to the filter will be positive and the output of the filter will increase.
Therefore, we simply need to set the reference value to the average value of the
source which is 1.

There are some interesting details to notice. Suppose that each process proceeds
by reading its inputs, doing some elaboration and then writing its outputs. The
random source simply computes a random number and then writes that number in
the output FIFO. While the specification of the system is correct, the simulation in
a real environment may expose some difficulties. First of all, it is perfectly fine for
the source to generate an infinite sequence of tokens and place the into its output
FIFO even if no other process executes. Therefore, when using a real simulation
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environment, the source output queue can easily go unbounded. Second, when the
system starts, each process attempts to read from its input buffer. Unfortunately,
the multiplier does not have any input token from the filter which in turn does not
have any input token from the Subtract Reference process. Therefore, no processing
is executed by the AGC.

Figure 5.26 shows a model of the AGC loop in Ptolemy II. The source is an
actor that generates random values in the interval [0, 2] with uniform probability
density function. As soon as the simulation engine is started, an error message
is displayed. In this model, two actors only have sufficient tokens to run: the
source and the constant reference. The two corresponding output buffer fill up
instantaneously and an error message is displayed.

Figure 5.26: Error message due to the presence of an unbounded buffer in the AGC
model in Ptolemy II.

To fix this problem, few more components are needed. Figure 5.27 shows the
modified model. Delay elements are introduced in the AGC loop and the sources are
now controlled by input triggers (for instance, the Source actor is triggered by the
output of the filter meaning the it will generate a new output for each new output
produced by the filter). A delay element outputs a certain number of initial tokens
and after that behaves as an identity process that passes its input to its output.
The simulation result shows that the estimated gain send to the multiplier is equal
to 2 which is the inverse of the channel loss which is 0.5 in this example.

Formal Semantics of Process Networks

Sequences of token can be ordered accoridn to a prefix ordering. A sequence X
preceded a sequence Y , denoted X v Y , if X constitutes an initial sub-sequence of
(or it is equal to) Y , i.e. the sequence X is a prefix of the sequence Y . For exam-
ple, [x1, x2, x3] v [x1, x2, x3, x4] while [x1, x2, x3] and [x1, x2, x4] are incomparable.
Problem ?? shows that the prefix ordering is a partial order on the set of all finite
and infinite sequences. Let ⊥ denote the empty sequence. Obviously, ⊥ v X for
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Figure 5.27: Simulation result of the correct model of the AGC loop in Ptolemy
II.

any sequence X.
Let S denote the set of all finite and infinite sequences of tokens. A subset

C = {X1, X2, . . . , Xn} of S is called a chain if any two elements of C are comparable.
The reason why it is called a chain is because the element of C can be linearly
ordered, i.e there exists a permutation σ of the indexes 1, . . . , n such that Xσ(1) v
Xσ(2) v . . . v Xσ(n).

Given a subset B = {Y1, . . . , Ym} of S, an upper bound of B is a sequence Y ∈ S
such that Yi v Y for all Yi ∈ B, meaning that an upper bound of a subset of S is
an sequence in S that is ”greater” that any sequence in B. Notice that the upper
bound does not have to belong to B. If it does, then it is called the maximum
element of B. Moreover, the upper bound is not unique. There is a set of upper
bounds U of a set B that contains all those sequences that are greater than the
sequences in B. If the set U has a minimum element, it is called the least upper
bound of B and it is unique.

The set S of infinite an finite chains has an interesting property. Every chain
C ⊂ S has a least upper bound. Because of this property, S is called a complete
partial order (CPO). The least upper bound of a chain C is denoted lub(C) and it
can be thought of as the limit of the chain.

Consider a process with p inputs and q outputs. It is a function f : Sp → Sq

that mapts q-tuples of input sequences to q-tuples of output sequences. Tuple of
sequences are also ordered by the ordering relation induced by the prefix order-
ing defined on sequences. Specifically, given two tuples (X1, . . . , Xk) ∈ Sk and
(Y1, . . . , Yk) ∈ Sk:

(X1, . . . , Xk) v (Y1, . . . , Yk) ⇐⇒ Xi v YI , ∀i = 1, . . . k
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This ordering allows to extend the definition of chains and of least upper bound
of chains to tuples of sequences Sk.

Functions functions between tuples of sequences can be extended to functions
between sets of tuples of sequences. Let B ⊆ Sp be a set of tuple of sequences, then
the set f(B) is defined as follows:

f(B) = {f(X) ∈ Sq|X ∈ B}
A natural question to ask is the following. Given a chain C ∈ Sp, is f(C) ∈ Sq

also a chain? This is not true in general but it is a very desirable property for a
process to have. The following definition states the property that a process must
have in order for this to be true.

Definition 5.4.13 (Continuity) A process f : Sp → Sq is continuous if and only
if for all chains C ∈ Sp, lub(F (C)) exists and:

F (lub(C)) = lub(F (C))

We can also define monotonicity of a process.

Definition 5.4.14 (Monotonicity) A process f : Sp → Sq is monotonic if and
only if for all pairs X ∈ Sp and X ′ ∈ Sp the following holds

X v X ′ ⇒ f(X) v f(X ′)

Monotonicity implies that if the input sequence to a process is extended (i.e is
made longer by adding tokens), the output sequence cannot shrink (i.e. must either
stay the same or it must also extend with more tokens). It is a generalized notion
of causality. It also means that a monotonic process transforms chains into chains.

To arrive at the definition of the semantics of a KPN, its behavior is written
as a single fix point equation. Consider the KPN of Figure 5.28 (taken from the
original paper published by Kahn [?]). A process f : Sp → Sq can be though of as
a vector of q functions, one for each of the outputs. The function that computes
the i-th output is denoted by f(i) : Sq → S.

The KPN shown in Figure 5.28 can be described by the following set of equations:

X1 = f1(X6, X5)
X2 = f2(2)(X1)
X3 = f2(1)(X1)
X4 = f4(2)(X2)
X5 = f3(1)(X3, X4)
X6 = I

X7 = f3(2)(X3, X4)
X8 = f4(1)(X2)

The previous system of equations can be also written in a more compact form
as follows:

X = F(I,X)
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Figure 5.28: A KPN with four processes f1,f2,f3 and f4.
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The behavior of the system is the solution of this equation. Notice that there
can be many solutions to this equations. The behavior of the system is defined
to be the least element of the set of solutions. The following theorem clarifies the
reason why it is important that all processes are continuous.

Theorem 5.4.15 (Fix-Point theorem) If F is continuous, the following equation:

X = F(X)

has a unique fix point solution X∗ = lub({Fn(I,⊥) : n ≥ 0}).

5.4.4 Data Flow

The data-flow model of computation is very similar to Kahn process networks.
In fact, a data flow network is a set of processes that communicate through un-
bounded FIFO channels. The communication semantics is also the same, namely
non-blocking write and blocking read. The fundamental difference between the two
models consists in the restrictions that are imposed on the processes.

Data flow processes are called actors. The execution of an actor is a sequence
of firings. Each firing consumes a certain number of tokens from the inputs and
produces a certain number of tokens on the outputs. Actors can fire only if there
are enough tokens in its input queues. Specifically, a set of rules, called firing rules,
are associated to each actor and define the conditions under which the actor can
fire.

Example 5.4.16 (A simple data-flow example) Consider a two-input adder like
the one in Example 5.3.4. The two inputs are the operands of the addition operation,
while the output is the result of adding the inputs. The intuitive execution of the
adder is the following: read one token (e.g. a fix point number) from one input, read
one token from the other input, compute the sum, write the result to the output.
An alternative (and still correct) execution is the following: read tokens v1 and v2
from one input, read tokens v′1 and v′2 from the other input, compute the sums
o1 = v1 + v′1 and o2 = v2 + v′2 and write the two results o1 and o2 to the output.
The two execution ultimately produce the same output stream. There are many
other execution that are correct according to the intuition of what the adder actor
is supposed to do. The firing rule associated with the adder determines when the
adder performs the addition, i.e. under what condition is the adder allowed to sum
the inputs and generate the output value. The following statement is an example
of firing rule:

The adder is ready to fire when there is at least one token in each input
queue.

This statement resembles the concept of prefix of a sequence. As long as the se-
quence of tokens defined by the firing rule is a prefix of the sequence of tokens that
are stored in the input FIFOs, the actor can fire. This concept is formalized in this
section.

A firing rule can be formally defined as a prefix of the input sequence that must
be matched in order for the actor to be enabled to fire. An actor with p inputs can
have a set of N firing rules:

R = {r1, . . . , rN}
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Figure 5.29: Examples of three different data-flow actors: (a) a merge actor that
copies one of the inputs to the output depending on the Boolean value of a third
input, (b) a select actor that send the input to one of the outputs depending on the
Boolean value of a second input, (c) a simple actor that generates one output token
for each input token, (d) a simple actor that generates 1024 output tokens for each
1024 input tokens. actor that

where each element of the set ri is a tuple of p elements, one for each input as
follows:

ri = (ri,1, . . . , ri,p)

Each element of ri,j defines the prefix of a sequence. When the firing rules are a
prefix of the tokens in the inputs queues of an actor then the actor can fire.

Firing rules are defined by sequences of values. Consider the adder case with
integer inputs. The number of firing rules is infinite because each sequence with
one integer is a valid firing rule. In these cases, a special symbol ∗ is used to denote
any value. A sequence [∗] is a prefix of any sequence with at least one token, and
similarly [∗, ∗] is a prefix of any sequence with at least two tokens. Let x̃j be the
sequence tokens in the j-th input queue of an actor. Then, firing rule ri is enabled
if:

ri,j v x̃j , ∀j = 1, . . . , p
We need to be explicit about
the restrictions on the actors
(the must be functional) and
about the conditions under
which actors are monotonic
In the original paper of Lee
and Parks, the select and
merge actors have different
definitions. Maybe we want
to rename them

Figure 5.29 shows four different actors. A merge actor has three inputs and
one output. Two of the three inputs are streams of data while the third one is a
selection input that is used to decide which one of the two data inputs is passed
to the output. The selection input accepts Boolean tokens (i.e. tokens whose value
can only be true (T) or false (F)). If the selection token is true, then one token from
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input 1 is copied to the output; otherwise if the selection token is false, one token
from input 2 is copied to the output. The firing rules for the merge actor can be
written as follows:

r1 = ([∗],⊥, [T ])
r2 = (⊥, [∗], [F ])

Notice that, according to these two firing rules, if the token written in the FIFO
connected to the selection input are not Boolean, the merge actor will never fire.

The select actor has two inputs: a data input and a selection input. If the
selection input is true, then one input token is copied to output 3, otherwise to
output 4. The select actor has the following firing rules:

r1 = ([∗], [T ])
r2 = ([∗], [F ])

For the select and merge actors, the consumption and production rates (i.e. the
number of consumed and produced tokens) can vary from one firing to the other.
Each time the select actor fires, it consumes one token from input 1 and one token
from input 2. If the selection is true, it will produce one token on output 3 and none
on output 4, otherwise it will produce one token on output 4 and none on output
3. Similarly, the merge actor has a different consumption pattern depending on the
value of the selection input. Specifically, it consumes one token from input 1 and
one token from input 3 if the selection is true, and one token from input 2 and one
from input 3 if the selection is false. The merge actor always produces one token.

When an actor has fixed production and consumption rates, the number of
consumed and produced tokens for each firing is written on its input and output
edges (close to the corresponding port). An example of such actors is shown in
Figure 5.29(b) and Figure 5.29(c). For example, the scale actor shown in figure
always consumes one token from input 1 and produces one token on output 2. The
1024 point Fast Fourier Transform (FFT) actor in figure, always consume 1024
tokens at the input and produces 1024 tokens at the output. If the consumption
and production rates are known and fixed for all actors, then we call the data-flow
program a Static Data Flow (SDF).

Static Data-Flow

A static data-flow graph is a special type of process network where each actor has
a fixed consumption and production rate associated to each port. This restriction
allows to prove many properties and to develop optimization techniques to statically
schedule the data flow execution. Given a data flow network, it is possible to
compute a schedule off-line. A schedule defines the sequence in which actors should
be run and guarantees that an actor is run only when it is enabled to run (i.e. there
are enough input tokens in its input queues). The ability to compute a schedule
off-line brings several advantages:

• At run-time, actors are fired according to the schedule. The schedule guar-
antees that actors are fired only when they are ready to be fired (i.e. when
there are enough tokens in their input queues). Therefore, a static schedule
avoids the overhead of checking whether an actor can run and deciding which
one to execute among the enabled ones.
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• It is possible to compute the size of each FIFO channel off-line. The static
schedule and the production and consumption rates of the actors allow to
compute the maximum number of tokens to be stored for each FIFO.

In this section we cover the basic techniques used to statically schedule a SDF
network. The scheduling technique uses only information on the process graph,
meaning the actors, their interconnection and the number of produced and con-
sumed tokens.

A
B

np
nc

FIFO channel

Token already in the FIFO
(part of the state of the network)

Figure 5.30: Two data flow actors A and B that communicate over a FIFO channel.
Upon firing, A produces np tokens and writes them in the FIFO, while B consumes
nc tokens from the FIFO.

Figure 5.30 shows two actors A and B communicating over a FIFO channel. As
shown in figure, at each point of an execution of a SDF network, a certain number
of tokens is available in the channels (i.e. tokens that have been produced by not
yet consumed). The vector containing the number of tokens in each FIFO of the
SDF is the network state. A schedule should have the following two properties:

• A schedule should be admissible, meaning that it should fire an actor only
when it is ready to fire;

• A schedule should be periodic, meaning that it should be able to bring the
network back to its initial state firing each actor at least once.

A schedule S that satisfies these two properties is called a valid schedule. A
SDF network admits many valid schedules. Valid schedules differ in the memory
size needed for their execution, the code size and other metrics that can be seen as
cost function. Selecting one valid schedule among the many possible ones becomes
an interesting optimization problem.

A firing vector vS is a vector that contains one element for each actor in the
SDF network. The firing vector characterizes the schedule in terms of the number
of times each actor is executed in the schedule. For instance, if actor A is executed
5 times, then vS(A) = 5. A valid schedule should be periodic. Thus, after all actors
have been fired, each FIFO must have exactly the same number of tokens that it
had at the beginning of the schedule execution. It means that the execution of a
schedule can neither create nor consume extra tokens. Therefore, for each FIFO
channel between actor Ai and actor Aj in the process graph, the total number of
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tokens produced by the Ai must be equal to the total number of tokens consumed
by Aj . Consider the example shown in Figure 5.30. For a given schedule S and
firing vector vS , the total number of tokens produced by actor A is vS(A) ·np while
the total number of tokens consumed by B is vS(B) · nc. The following balance
equation must be satisfied by any valid schedule:

vS(A) · np = vS(B) · nc ⇒ vS(A) · np − vS(B) · nc = 0

The balance equation can be written for each FIFO channel in the process graph
leading to a system of equations that can be solved statically.

Example 5.4.17 Figure 5.31(a) shows an example of process graph with three
actors A, B and C. The balance equations for these graph are the following:

1. Output 2 of A to input 1 of B: 3vS(A)− vS(B) = 0

2. Output 2 of B to input 1 of C: vS(B)− vS(C) = 0

3. Output 3 of C to input 1 of A: vS(C)− 2vS(A) = 0

4. Output 3 of A to input 2 of C: 2vS(A)− vS(C) = 0

This set of equations can be written in matrix form. Define the matrix M as follows:

M =


3 −1 0
0 1 −1
−2 0 1

2 0 −1


Let V = {v1, . . . , vn} be the set of actors and E = {e1, . . . , em} be the set of

FIFOs of a SDF network. Then the entry Mi,j of the matrix is equal to np if actor
vi produces np token on FIFO ej , −nc if actor vi consumes nc tokens from FIFO
ej and zero otherwise. Thus, the set of balance equations can be written as follows:

MvS = 0

This is a linear system of m equations in n unknowns, where m is the number
of channels and n is the number of actors. If this system has no solution, then a
periodic schedule does not exist. In this example, the columns ofM are independent,
therefore a non-zero vector vS that satisfies the balance equations cannot be found.
An intuition of why this is the case is that in order to maintain the balance on
the channels between A and C, C must be executed twice the times than A. To
maintain the balance on the channel between B and C, these two actors must be
executed the same number of times, implying that B must be executed twice the
times than A. But this last condition does not satisfy the balance equation on the
channel between A and B.

Consider the process graph shown in Figure 5.31(b). It is the same as in Fig-
ure 5.31(a) but the number of tokens produced by the A on output port 2 is now
equal to 2. The balance equation is the following:

3 −1 0
0 1 −1
−2 0 1

2 0 −1

vS = 0



5.4. MODELS OF COMPUTATION FOR EMBEDDED SYSTEM DESIGN 101

A

B C

3

1

2

1 1

1 1

2

1

2 3

1 2
1

23

A

B C

1

2

1 1

1 1

2

1

2 3

1 2
1

23

2

(a) (b)

Figure 5.31: An SDF network with three actors A, B and C.

This system has an infinite number of solutions. Any multiple of the vector
vS = [1 2 2]T is a valid firing vector. The firing vector indicates that actor B and C
must be executed the same number of times that is twice the number of times that
A is executed. Three valid schedules are ABCBC, ABBCC and ABABBCBCCC.
The first two schedules are called minimal, while the last one is non-minimal.

Example 5.4.17 gives us some hints on the existence of a valid schedule. First of
all we notice that a connected graph with n vertexes must have at least n−1 edges.
Therefore, the rank of the matrix M of a connected process graph is at least n− 1.
Also, the columns of matrix M cannot be all independent, otherwise a solution to
the system cannot be found. Lee [?] proved the following theorem:

Theorem 5.4.18 A connect SDF graph with n actors has a periodic schedule if
and only if its topology matrix M has rank n− 1. If M has rank n− 1, then there
exists a unique smallest integer solution q to Mq = 0.

Although this theorem provides an existence result for a period schedule, it does
not say anything about the admissibility of the schedule. Consider the example of
Figure 5.31(b). A period schedule exists and we were also able to write one in
Example 5.4.17. A minimal schedule is ABCBC. Unfortunately, this schedule is
not admissible because A needs two tokens on input 1 to fire, but in the initial
state there are no tokens in that FIFO channel. The admissibility of a schedule
depends on the number of initial tokens that are present in the FIFO channels.
In the example shown in Figure 5.31(b), adding two initial tokens in the channel
between B and A makes the schedule admissible. Need to add an example on

how to fix a period, non-
admissible schedule. Need
to add boolean data flow.
Need to add code and mem-
ory minimization.

5.4.5 Petri Nets

The Petri-net model of computation was developed by Carl Adam Petri during his
Ph.D. [113] and published in English as a technical report in 1966 [114]. This model
of computation was developed to model distributed computation, manufacturing
processes, control processes, communication networks, transportation networks and
in general systems that comprise a set of tasks depending on each other.

A Petri Net (PN) is a bipartite weighted directed graph with two set of vertexes:
places and transitions. Transitions, that are graphically represented by bars or
boxes, model actions or tasks. Places, that are graphically represented by circles,
represent storage space used to store tokens that are produced by transitions. The



102 CHAPTER 5. FUNCTIONAL DESIGN

arcs of the directed graph can only connect transitions to places or places to tran-
sitions, and are labeled with weights. The weight on an arc denotes the number of
produced tokens (weights equal to one are omitted in the graphical representation
of a PN).
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Figure 5.32: (a) Example of a Petri-Net with four places p1, p2, p3 and p4 and three
transitions t1, t2 and t3; (b) the state of the Petri-Net after transition t3 has fired;
(c) the state of the Petri-Net after transitions t3 and t2 have fired; (d) the state of
the Petri-Net after transitions t3, t2 and t1 have fired.

The example in Figure 5.32(a) shows the graphical notation used to describe
a Petri-Net. This Petri-Net has four places, p1 through p4 and three transitions,
t1 through t3. Black dots are used to denote tokens. The number of dots in each
place is the state of the Petri-Net. Figure 5.32 shows a partial execution of the PN.
Intuitively, the number of tokens in the input places of a transition is a precondition
for the transition to be enabled. For instance, transition t1 is enabled when there is
at least one token in its input places p1 and p2. Similarly, transition t3 is enabled
when there is at least one token in place p3, and transition t2 is enabled when there
are at least two tokens in place p4. When a transition is enabled, then it can fire
consuming tokens from the input places and producing tokens on the output places.
For instance, upon firing, t3 produces three tokens that are held in place p4, and
t1 produces one token on place p1 and one on place p3. Consider the state of the
Petri-Net in Figure 5.32(a). Transition t3 is the only one that is enabled and that
can fire. When it fires, it modifies the state of the Petri-Net into the one shown in
Figure 5.32(b). Now, transition t2 is enabled and can fire resulting in the state of
Figure 5.32(c). Finally, transition t1 can fire changing the state into the one shown
in Figure 5.32(d). Notice that after firing all the transitions once, the state of the
Petri-Net is not equal to the initial one. Later on in this section we will find a
periodic schedule for a Petri-Net.
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We can now introduce more precise definition of Petri-Nets. A marking of a
Petri-Net is a vector M with m elements, where m is the number of places of the
Petri-Net. The p-th element of the vector is the number of tokens in place p and is
denoted M(p). For instance, the initial marking in the example of Figure 5.32(a)
is M0 = (1, 0, 1, 0)T . After transition t3 fires, the new marking becomes M1 =
(1, 0, 0, 3)T . We should add a comparison:

input places=preconditions,
transitions=events, output
places=postconditions

The formal definition of a Petri-Net is taken from an excellent survey written
by Tadao Murata in 1989 [106].

Definition 5.4.19 (Petri-Net) A Petri-Net is a 5-tuple PN = (P, T, F,W,M0)
where:

• P = {p1, . . . , pm} is a set of places

• T = {t1, . . . , tn} is a set of transitions

• F ⊆ (P × T ) ∪ (T × P ) is a set of arcs

• W : F → N is a weight function that associates to each arc a natural number
called weight

• M0 : P → N∪{0} is an initial marking that associates to each place a natural
number denoting the number of tokens in that place

• P ∩ T = ∅, P ∪ T 6= ∅
A Petri-Net structure is a tuple N = (P, T, F,W ) without any specific initial mark-
ing. A Petri-Net with a given initial marking M0 is denoted by a pair (N,M0).

Example 5.4.20 The Petri-Net in Figure 5.32(a) is the 5-tuple PN = (P, T, F,W,M0)
where:

• P = {p1, p2, p3, p4} is the set of the four places

• T = {t1, t2, t3} is the set of the three transitions

• F = {(p1, t1), (p3, t3), (p4, t2), (p2, t1), (t1, p2), (t3, p4), (t2, p2), (t1, p1)} is the
set of all arcs

• the weight function is defined as follows:

W (t3, p4) = 3
W (p4, t2) = 2
W (p1, t1) = W (p3, t3) = W (p2, t1) =
= W (t1, p2) = W (t2, p2) = W (t1, p1) = 1

• the initial marking is such thatM0(p1) = 1, M0(p2) = 0, M0(p3) = 1,M0(p4) =
0.

The behavior of a PN, i.e. the set of possible sequences of markings that can be
generated by a PN model, depends on the transition firing rule. This rule defines
when a transition is ready to fire as follows:

1. Pre-condition: A transition t is enabled if there are enough tokens in its input
places, i.e. for each input place p of t the following condition holds:

M(p) ≥W (p, t)
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2. Execution: An enabled transition may or may not fire.

3. Post-condition: A firing of an enabled transition changes the marking (state)
of the Petri-Net by removing W (p, t) tokens from each input place p and
adding W (t, p′) tokens to each output place p′.

For instance, consider the case of Figure 5.32(a) for which a formal definition
of the Petri-Net is given in Example 5.4.20. The input places to transition t1 are
p1 and p2. To check if t1 is enabled, means to check that M0(p1) ≥ W (p1, t1) and
M0(p2) ≥ W (p2, t1). Since the first condition is satisfied but the second is not,
transition t1 is not enabled.
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Figure 5.33: TBD

The Petri-Net model of computation can be used to capture concurrency (i.e.
concurrent execution of transitions), causality (i.e. dependency among transitions)
and choice. Figure 5.33 shows how these three features are modeled in the PN
MoC. Consider the Petri-Net in Figure 5.33(a). This example can be considered an
abstract model of the system of Example 5.7.5 where the input and output places
represent the stack of incoming and outgoing mails, and the transitions are the
stamping actions. A difference exists, though, between this model and the example
because the tokens in a place are not ordered. Transitions t1 and t2 are both enabled
because there is one token in each input place. Therefore they may or many not fire.
However there is no restriction on which one has to be executed first. In fact, the
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Petri-Net model of computation is un-timed, meaning that events (i.e. the firing
of a transition) are only partially ordered. The two transitions can be executed
concurrently moving both tokens from the input places to the output places.

Consider now the Petri-Net in Figure 5.33(b). Transition t1 does not have
any input place. These special kind of transitions are called source transitions
and are always enabled. Transition t2 cannot fire unless there is a token in place
p2. Therefore, transition t2 will fire after transition t1, capturing the sequential
execution of the two actions associated with the two transitions.

Finally, consider the Petri-Net in Figure 5.33(c). Transition t3 and t4 are two
special transitions with no output places. These special kind of transitions are
called sink transitions and, upon firing, do not generate any token. After transition
t1 fires, a token is present in place p2. Both transitions t2 and t3 are enabled. This
condition is called choice. There are two possible executions of the Petri-Net: t2
fires and consumes the token, in which case t3 is not enabled anymore, or t3 fires
and consumes the token, in which case t2 is not enabled anymore.

Here we should clarify that a
token does not have a value.
A choice is an abstraction
of a real choice. For verifi-
cation and scheduling, both
branches of the choice are
important and must be con-
sidered.

Remark 5.4.21 (On the meaning of a token)

Example 5.4.22 (Petri-Net model of a producer-consumer system)

MsgP MsgC

AckP AckC

tP tC

Producer process Consumer process

MsgP MsgC

AckP AckC

tP tC

Producer process Consumer process

MsgP MsgC

AckP AckC

tP tC

Producer process Consumer process

MsgP MsgC

AckP AckC

tP tC

Producer process Consumer process

MsgP MsgC

AckP AckC

tP tC

Producer process Consumer process

MsgP MsgC

AckP AckC

tP tC

Producer process Consumer process

(a) (b) (c)

(d) (e) (f)

pd

pa

PW CW

pd

pa

PW CW

pd

pa

PW CW

pd

pa

PW CW

pd

pa

PW CW

pd

pa

PW CW

Figure 5.34: Execution of a simple producer-consumer example

This example is a model of a simple system with one producer and one consumer.
Figure 5.34(a) shows the PN model of the producer process, consumer process and
a buffer between the two. Initially, the producer is ready to generate a data to
be sent to the consumer which, instead, is waiting for a data to arrive. When
transition MsgP fires, a token is placed in the data buffer pd (Figure 5.34(b)) and
a token is also placed in place PW . Notice that a token in PW encodes a state of
the process that is waiting for an acknowledge. The consumer can now receive the
token because transition MsgC is enable. After firing transition MsgC , a token is
placed in CW which indicates that a datum has been received (Figure 5.34(c)). The
only enabled transitions now is AckC which sends an acknowledge to the producer
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process (Figure 5.34(d)). The producer, that was waiting for the acknowledge, can
receive the acknowledge token and go back to the initial marking of Figure 5.34(a).

use the unbounded buffer ex-
ample as one of the prob-
lems. Properties of Petri-Nets

What are the interesting properties that we would like to be able to assert about a
Petri-Net model? To answer this question we should understand what places and
transitions model. Places are used to model the pre-conditions and post-conditions
of events that are modeled by transitions. Places capture a sort of distributed state
of the system. As in any system with states, an interesting question is wether a
particular state, considered unsafe, is reachable from an initial state. Places also
capture storage space for tokens. Eventually, a place will be implemented by a
memory element. Therefore, another interesting question is wether the execution
of a Petri-Net can accumulate an infinite number of tokens in a place.

The properties of Petri-Nets are divided into two classes: behavioral properties
and structural properties. Behavioral properties are related to the evolution of the
state of a Petri-Net and depend on the initial marking. Structural propetries depend
only on the structure of the Petri-Net. Structural properties are verified indepen-
dently from the initial marking and are, therefore, more general than behavioural
properties. Unfortunately, such properties are very restrictive and are satisfied only
in very few cases.

Interesting behavioural properties are:

Reachability . The firing of a transition in a Petri-Net changes the marking M .
It is similar to a transition from one state to another in a finite state machine.
A sequence of n firings results in a sequence of n markings form M0 to Mn. In
this case, marking Mn is reachable from M0. The set of all reachable markings
starting from M0 is denoted by R(N,M0). The rechability problem for Petri
nets is the problem of finding if a marking Mn belongs to the set R(N,M0)
for a given initial marking M0. The reachability problem is decidable [95].

Boundedness . The places of a Petri net represent buffers in real systems. There-
fore, it is important that the maximum number of token that can accumulate
in a place does not exceed a finite upper bound (i.e. the number of tokes does
not go unbounded). A Petri net (N,M0) is said to be k-bounded if for any
reachable marking Mn ∈ R(N,M0), the number of tokens in each place does
not exceed a finite number k, i.e Mn(p) ≤ k, for all p ∈ P . A Petri net is said
to be safe it is 1-bounded, i.e. the maximum number of tokens in each place
for any reachable marking is equal to one.

Reversability . A Petri net is reversable if, for each marking M reachable from the
initial marking M0, M0 is reachable from M . This property will be exploited
later in the analysis method section to find a cyclic schedule of the transitions
of a Petri Net.

Liveness . Each transition of a Petri net represents a task or action that is executed
when the preconditions are satisfied, meaning that there are enough tokens in
the input places. Of course, we don’t want a transition to be idle all the time,
otherwise it would represent a task that is never executed. A Petri net is said
to be live if, no matter what marking has been reached, any transition in the
Petri net can eventually be fired. Liveness implies deadlock-freedom but theShould we add the definition

of L0, L1 ... live? converse is not true.
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Conservation . A Petri net is conservative if the sum of the number of tokens in
each place is constant for all reachable markings.

In the description of the behavioral properties, we make explicit reference to
the initial marking. Similar properties can be defined independently from the ini-
tial marking by looking only at the structure of a PN. There properties are more
restrictive than their behavioral conterpart. For instance, structural boundedness
implies behavioral boundedness for any finite initial marking, but the converse is not
true in general (i.e. a PN (N,M0) may be bounded but N may not be structurally
bounded). Some interesting structural properties are the following:

Boundedness . A PN N is structurally bounded if it is bounded for any initial
marking M0.

Liveness . A PN N is structurally live is there exists an initial marking M0 such
that (N,M0) is live.

Consistency . A PN N is consistent if there exists an initial marking M0 such
that it is possible to bring the PN back to M0 by firing every transition at
least once.

Analysis Methods

In this section we show some analysis techniques used to check structural and be-
haviroural properties of Petri-Nets. Analysis techniques can be divided into two
classes: structural techniques and state space techniques. Structural techniques use
only the structure (P, T, F,W ) of a PN and infer properties that are valid inde-
pendently from the sequence of markings. These methods are usually very efficient
by offer only necessary or sufficient conditions. State space analysis techniques,
instead, are mainly concerned with the states that can reached starting from a par-
ticular marking M0. These techniques are more complex than the structural ones
but they can provide necessary and sufficient conditions.

Incidence Matrix . The incidence matrix A of a Petri-Net structure (P, T, F,W )
corresponds to the node-edge incidence matrix of a graph. Each row of the matrix
refers to a place p ∈ P and each column to a transition t ∈ T . If a place p is a
predecessor of a transition t, then A(p, t) = −W (p, t), meaning that when transition
t fires consumes W (p, t) tokens from p. If a place p is a successor of a transition t,
then A(p, t) = W (t, p), meaning that when transition t fires produces W (t, p) tokens
on place p. The entry A(p, t) is equal to 0 when neither (p, t) nor (t, p) belong to F
(i.e. when the place and the transitions are not connected).

The incidence matrix of the Petri-Net shown in Figure 5.35 is the following:

A =


t1 t2 t3

p1 1 0 0
p2 1 1 −1
p3 0 −1 1


The incidence matrix can be used to quickly check when a marking M is not
reachable from a marking M0. The concept of repetition or firing vecotr has been
already introduced for data flow models (see Section 5.4.4). As in the case of SDF, a
schedule for a Petri-Net must first be defined. A schedule is a sequence of firings of



108 CHAPTER 5. FUNCTIONAL DESIGN

p1 p2 p3t1
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Figure 5.35: Example of a Petri-Net for which a periodic schedule exists.

transitions, that corresponds to a sequence of markings of the Petri-Net. Formally,
a firing sequence is denoted by:

σ = M0 t1 Mn . . . tnMn

of simply by σ = t1 . . . tn. For instance, a firing sequence of the Petri-Net in
Figure 5.35 is the following:

σ = (1, 0, 0) t1 (0, 1, 0) t3 (0, 0, 1) t2(0, 1, 0)

In this case, marking (0, 0, 1) is reachable from (1, 0, 0).
A firing vecotr v has one element for each transition such that v(t) represents

the number of times that a transition t fires in a firing sequence. At the end of a
firing sequence, the total number of tokens in a place p is the sum of all the tokens
produced by the transitions of which p is a successor, minus the sum of all the
tokens consumed by the transitions of which p is s predecessor. Therefore, it can
be computed by the following expression:∑

t:(t,p)∈F
W (t, p)v(t)−

∑
t:(p,t)∈F

W (p, t)v(t) =
∑
t∈T

A(p, t)v(t)

This sum corresponds to the element-wise product of the row of the incidence matrix
corresponding to p times the firing vector. Thus, given a firing vector v and an initial
marking M0, the marking M reached after all transitions have been fired can be
computed as follows:

M = M0 +Av

The underlying assumption is that the transitions can be fired, i.e. it is always
possible to find a firing sequence that fires each transitions exactly the nubmer of
times as specified by the firing vector. For instance, consider computing a firing
vector for the Petri-Net in Figure 5.35 such that marking M = (0, 0, 1) is reached.
The firing vector is a solution to the linear system of equations M = M0 +Av that
can be written as follows: −1 0 0

1 1 −1
0 −1 1

 v(t1)
v(t2)
v(t3)

 =

 −1
0
−1


The solution of this system is v(t1) = 1 and v(t3) = v(t2) + 1 that corresponds to
a space of solutions because the rank of the matrix is one less its dimension. Thus,
any firing vector of the form (1, k, k + 1)T satisfies the system of equations. In
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this simple case, it is possible to verify by hand that such firing vector correspond
to a firing sequence where each transition can actually fire. One such sequence is
t1 t3 t2 t3 t2 t3.

If a marking M is reachable from the initial marking M0 then there there exists
a solution v to the state equation M = M0 +Av. The converse is usually not true,
meaning that if the state equation has a solution, M is not necessarily reachable
from M0. For instance, consider a Petri-Net with the same structure of the one in
Figure 5.35 but with a different initial marking, namely M0 = (0, 0, 0). Is M =
(0, 0, 1) reachable? We may attempt to solve the state equation that becomes the
following:  −1 0 0

1 1 −1
0 −1 1

 v(t1)
v(t2)
v(t3)

 =

 0
0
−1


The solution of this system of equation is v(t1) = 0, v(t2) = v(t3) meaning that any
firing vector of the form (0, k, k) should lead to marking M . However, M is actually
not reachable because if the initial marking is (0, 0, 0) no transition can be fired.

This algebraic method provides a necessary condition for reachability. It is very
fast because it only requires to solve a linear system of equations. Therefore, this
method can be used to check before the reachability tree (see Section 5.4.5) is
constructed to rule out unreachable states.

Invariants The state equation can be used to find schedules for Petri-Nets and
to check for structural boundedness.

Similarly to SDF models, a cyclic schedule of a Petri-Net (N,M0) is a firing
sequence that brings the Petri-Net back to its initial markingM0. If a cyclic schedule
exists, then there must exist a non-zero firing vector that satisfies the equation
M0 = M0 +Av, i.e. Av = 0. The solutions to this equation are called T-invariants.
For example, the T-invariant of the Petri-Net in Figure 5.35 are all the firing vectors
of the form (0, k, k)T .

Another important property is conservativeness that implies structural bound-
edness. A Petri-Net is said to be partially conservative if there exists a positive
integer y(p) for each place p such that the weighted sum of tokens yTM is constant
for all reachable markings from any initial marking M0. The state equation can
be used to prove conservativeness as follows. Multiplying each side of the state
equation by yT we obtain:

yTM = yTM0 + yTAv

Since the weighted sum of the tokens in the places must be constant the following
must hold :

yTM = yTM0 ⇒ yTAv = 0 ∀v ⇒ yTA = 0

Coverability Tree The coverability tree belongs to the class of state space anal-
ysis methods. Each node of the coverability tree represents a marking. There is an
edge between two markings (i.e. between two node of the tree) if and only if the
child marking can be reached from the parent marking by firing one transition. Fig-
ure 5.36 shows an example of such a tree for the Petri-Net of Figure 5.35. The root
of the tree is the initial marking M0 and each edge is labeled by a transition that,
when fires, changes the marking into the one that is written in the landing node.
Even if it may seem that this tree has an infinite number of nodes, this example
suggests that some nodes may be discovered multiple times. Whenever a node is
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(1, 0, 0) (0, 1, 0) (0, 0, 1) (0, 1, 0)
t1 t3 t2 t3

Figure 5.36: Example of a tree representing the marking evolution of a firing se-
quence of the Petri-Net of Figure 5.35.

discovered again, the entire tree rooted at that node has been certainly discovered,
and there is no need to continue exploring it. Even if we stop the construction
of the tree when new nodes cannot be found, the coverability tree may still grow
unbounded. This is the case for unbounded Petri-Nets (see Problem).

The coverability tree can be made bounded in size with the following checking
if the number of tokens in a place can go unbounded and using a special symbol
in to indicate this condition. The algorithm to construct the coverability tree of a
Petri-Net was originally developed by Karp and Miller [89]

Algorithm 2 Generation of the Coverability Tree
Input: A Petri-Net (N,M0)
Output: The coverability tree
Label M0 as the root of the tree and tag it new while new markings exist do

Select a new marking M if M is identical to a marking on the path from M0

to M then
Tag M old

else
if No transitions are enabled at M then

Tag M dead-end
forall Enabled transitions t at M do

Compute M ′ obtained by firing t On the path from the root to M , if
there exists M ′′ such that M ′(p) ≥M ′′(p) for each p ∈ P and M ′ 6= M ′′,
replace M ′(p) by ω for each p such that M ′(p) > M ′′(p) Insert M ′ in
the tree and an arc from M to M ′ with label t; tag M ′ new

Algorithm 2 sketches the procedure to build the coverability tree. Each node of
the tree is a marking of the Petri-Net that has a tag associated with it. The tag can
be new, old or dead-end. The algorithm maintains a list of new markings that
is initialized with the root M0. A new marking might have been already found, in
which case it should be in the tree on the path from the root to the current marking.
If this is the case, the marking is tagged old and will not be considered anymore. If
a marking is not old, then the algorithm starts exploring all enabled transitions. If
there are no enabled transitions, than the marking is a dead-end meaning that the
Petri-Net cannot progress further. Otherwise, for each enabled transition t at M ,
the algorithm computes the new marking M ′ obtained by firing t. Suppose there
is another marking M ′′ on the path from the root to M ′ such that the number of
tokens in each place in M ′′ is less that or equal to the number of tokens in each place
in M ′ (and the two markings are different). Then, it would be possible to fire the
same sequence of transitions that reached M ′ from M ′′ obtaining another marking
M ′′′ with even more tokens in each place. Therefore, those places are unbounded
and this is denoted by writing an ω in each of them.

The coverability tree can solve the reachability problem for bounded Petri-Net
and can verify if a Petri-Net is bounded. However, the ω sign does not tell us
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ConflictSynchronization

(a) (b)

Figure 5.37: Example of (a) a marked graph and (b) a state machine.

anything about the reachability of a particular state (see Problem ??), therefore
this technique cannot solve the reachability problem in general.

Slide 72 of lecture notes.
Concuding Remarks

Special classes of Petri-Nets

The Petri-Net model of computation is very expressive. In fact, transitions are
like data flow actors that allow to capture streaming computation. At the same
time, a marking is a distributed state which makes this model of computation also
able to capture state based systems. This expressiveness prevents us to develop
methods that can provide strong verification results. In this section we show how,
by putting restriction on the structure of a Petri-Net, we can find a compromise
between expressiveness and complexity of analysis mthods.

The first class of Petri-Nets that we introduce is the so called Marked Graphs
(MG). In a marked graph, each place has exactly one input transition and one
output transition. Figure 5.37(a) is an example of MG. It is clear that MGs can
model concurrency, causality and synchronization but they cannot model choice.

The second class of Petri-Nets is state machines (SM). In a state machine, each
transition has exactly one input place and one output place. State machines are
dual of marked graphs in the sense that given a MG, if each transition is replaced
by a place and each place by a transition the resulting Petri-Net is a SM. Fig-
ure 5.37(b) shows an example of SM. SMs can model conflicts but they cannot
model synchronization.

A third class of Petri-Nets that embodies the features of MG and SM is the
class of free-choice Petri-Nets (FCPN). This class of Petri-Nets was introduced by
Hack in 1972 [74] in his master thesis at the MIT. In a FCPN each transition after
a choice has exactly one input place.

Figure 5.38(a) shows a FCPN. The two transitions t2 and t3 after the choice
have only one predecessor place p1. In this Petri-Net the choice of firing t2 or t3
only depends on the choice that is taken locally when p1 holds at least one token.
Figure 5.38(b) shows the case where a choice is not free because firing t3 or t2
depends also on the number of tokens in place p4. The meaning of a choice being
free is that the outcome of a choice depends only on the value of the tokens (that
is abstracted non-deterministically) rather than on its arrival time. This is true
for the Petri-Net in Figure 5.38(a) but it is not true for the one in Figure 5.38(b)
because the decision betweeen t2 and t3 is conditioned on the arrival of a token in
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Figure 5.38: An example of Free-Choice Petri-Net (a) and a Petri-Net where the
choice is not free (b).

p4 prior to the choice.
FCPN have been extensively studied by Best [17] and Desel and Esperanza [43].

They can express concurrency, causality, synchronization and conflicts (but limited
to free-choice). A very strong structural theory has been developed for FCPN.
Necessary and sufficient conditions for liveness and safeness can be derived only
based on the structure of the Petri-Net. The approach to derive these conditions is
based on the decomposition of a FCPN in marked graphs and state machines.

Marked Graph (and State Machine) decomposition of a FCPN Consider
a free choice Petri-Net. Each choice is represented by a place with multiple output
transitions. Define an allocation to be a function A : P → T that establishes
which transition to fire among the conflicting ones at the output of a place. Once
an allocation has been decided, only one output transition for each place can fire.
Thus, unused transitions can be removed from the Petri-Net. The result is obviously
a conflict-free Petri-Net, i.e. a Marked Graph.

Algorithm 3 Marked Graph decomposition of a Petri-Net
Input: A Free-Choice Petri-Net structure (P, T, F,W )
Output: A set of Marked Graphs MG
MG← ∅ forall Allocations A : P → T do

Tmp ← (P, T, F,W ) Delete all unallocated transitions from Tmp, i.e. t such
that (p, t) ∈ F and A(p) 6= t repeat

Delete all places form Tmp that have all input transitions already deleted
Delete all transitions from Tmp that have at least one input place already
deleted

until Neither transitions nor places have been removed form Tmp ;
MG←MG ∪ {Tmp}

return MG

Algorithm 3 computes the marked graphs obtained by selecting all possible
allocations. An example of the execution of the algorithm is shown in Figure 5.39.
The FCPN shows in this example has only one choice which is represented by
place p1 and its two output transitions t1 and t2. Thus, there are two possible
allocations corresponding to the two choices where t1 fires or t2 fires. For each
allocation, for instance the one that selects t1, the non-allocated transitions are
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Figure 5.39: The pictorial representation of the execution of Algorithm 3.

deleted from the Petri-Net structure. Deleting transitions will leave some places
with no input transitions. The algorithm continues by deleting those places as well.
As a consequence of deleting places, some transitions will remain without output
places. These transitions are also removed from the Petri-Net. The algorithm
continues until neither transitions nor places can be deleted.

For each allocation, a marked graph is generated and stored into a set. When
the algorithm terminates, it returns the set of all marked graphs. The following
theorem gives necessary and sufficient conditions for the liveness and safeness of a
FCPN

Theorem 5.4.23 Let N be a FCPN, then N has a safe and live initial marking
if and only if

• Every Marked Graph reduction is strongly connected and non empty, and the
set of all reductions covers N , or

• Every State Machine reduction is strongly connected and non empty, and the
set of all reductions covers N .

5.4.6 Continuous Time

The continuous time model of computation has been implicitly used in several
engineering discipline such as automatic control and circuit analysis and design. In
the continuous time model of computation, the inputs and outputs of a process are
waveforms. A waveform is a function of time f : R → R that associates a value to
each time instance t ∈ R. For instance, sin(ωt) is a sinusoid with angular frequency
ω.

A continuous time block, or process, can be described by a set of equations that
define the output waveforms depending on the input waveforms. Simple examples
of these equations are the one defining a process that operates the sum of two
waveforms or a process that simply scales its input by a constant factor (Figure 5.40.
The SCALE process is defined by the following equation:

y(t) = k · u(t), ∀t ∈ R

where k is the scaling factor. The SUM process is defined by the following equation:

y(t) = u1(t) + u2(t), ∀t ∈ R
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Figure 5.40: Examples of a continuous time process that scales the input by a
constant factor (process SCALE), and a process that sums the inputs (process
SUM).
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Figure 5.41: Feedback connection of continuous time systems.
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Processes can be connected together by defining connection constraints. Picto-
rially, these constraints are represented by arrows connecting the outputs of some
processes to the inputs of others as in Figure 5.41. In this figure, each arrow corre-
sponds to one equation that imposes the output waveform of one process to be equal
to the input waveform of another process. For instance, the connection constraint
pointed in Figure 5.41 corresponds to the equation:

u3(t) = e(t), ∀t inR

Thus, a continuous time system corresponds to a system of equations. Some of
these equations describe the behavior of each process and some of the are connection
constraints. Assume, for instance, that the two processes B1 and B2 in Figure 5.41
are described by equations y(t) = f1(u3(t)) and y1(t) = f2(u4(t)), respectively.
Then the entire system corresponds to the following set of equations:

e(t) = u1(t) + u2(t)
y(t) = f1(u3(t))
y1(t) = f2(u4(t))
u3(t) = e(t)
u4(t) = y(t)
u2(t) = y1(t)

Computing the behavior of the entire system for a given input waveform u1(t)
corresponds to computing all the waveforms of the system, this means solving the
system of equations. Depending on the functions f1 and f2, a closed form solution
may or may not be easy to find. Therefore, simulation of continuous time systems
is a very important verification tool.

Example 5.4.24 Room temperature control with a pid loop.

Example 5.4.25 Power circuit

Example 5.4.26 Electronic circuit.

5.4.7 Hybrid Systems

The first example of heterogeneous model of computation that we discuss is a par-
ticular composition of discrete event and continuous time systems. This type of
models are known as hybrid systems. A hybrid system has a continuous evolution
and occasional jumps. It is difficult to find a direct example in nature of a hybrid
system since our perception of natural phenomena is continuous. However, in many
cases, the evolution of a system appears to us as having instantaneous jumps. A
classical example is a bouncing ball. Consider a ball that falls from a certain height.
We observe the ball accelerating until it hits the ground. After the collision takes
place, the velocity instantaneously changes direction and the ball moves up with a
decreasing velocity. If we observe the collision at a finer time scale, we realize that
the change in velocity is actually continuous. From a macroscopic point of view,
though, we are not interested in the entire process. In particular, we are not inter-
ested in what happens in the short interval of time where the ball is in contact with
the ground. We abstract this interval and we simply say that the velocity changes
instantaneously. This abstraction has very serious implications that we will discuss
later in this section.
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Figure 5.42: The hybrid model of temperature conditioned by a thermostat.

Other examples of hybrid systems are mechanical systems controller by elec-
tronic systems. Physical quantities like pressure, temperature, velocity or accel-
eration are measured by sensors. The electric signal generated by the sensors is
converted to digital values and processed by the electronic systems which then
sends commands to actuators that are able to influence the temporal evolution of
the physical quantities. While the mechanical system is governed by physical laws
that are continuous in time, the electronic system is driven by a clock which makes
it discrete in time.

As an example, consider the time evolution of the temperature of an environment
that is controlled by a thermostat. The thermostat is a sensing device that measures
temperature and commands an actuator like a heater. The heater can be turned
on or off. The temperature of the room, is different depending on the state of
the thermostat. If the heater is on, the temperature increases as a function of
the difference between the heater and room temperatures. If the heater is off,
the temperature decreases. The equations that regulate the temporal evolution of
temperature are very similar to the equation of the voltage across a capacitor that is
connected to a voltage source by a resistor. Figure 5.42 shows a first model based on
intuition. Intuitively, we have modeled the discrete behavior of the thermostat with
a finite state machine that has two states: on and off . In each state of the finite
state machine we have written the equations that describe the room temperature.
Switching from one state to the other is regulated by transitions that are guarded
by a condition on the temperature itself.

The initial state is the off . Since the hybrid system also has continuous time
variables as state (temperature in this case), we also have to define the initial
condition on this variables. In this case, the temperature T is set to an initial value
T0. In the off state, the room exchanges heat with the environment, thus the
temperature tend to the temperature of the environment Te. When temperature
drops below 22 degrees C, the thermostat turns the heater on. In this state the
equations change. There is still a contribution due to the heat exchange with the
environment but also the heater warms up the room with an equivalent temperature
Tf . When the temperature reaches 23 degrees C, the thermostat turns the heater
off. Notice that the assumption is that as soon as the guard condition is enabled
(meaning it evaluates to true), the hybrid system makes a transition from one
state to the other. This type of semantics of the transition is called triggering
semantics. A different semantics says that if the guard condition is enabled, then
the transition may be taken but it doesn’t have to be taken. With this semantics,
it is not guaranteed that the temperature stays between 22 and 23 degrees.

The language used to describe hybrid systems has two more features that are
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Figure 5.43: The hybrid model of temperature conditioned by a thermostat. This
model includes invariant conditions.

called invariants and resets. An invariant is a condition associated to a state. If the
condition is true, then the system can stay in that state, otherwise it has to switch
to another state. This means that when the hybrid system is in one state and the
invariant becomes false, there must be at least one transition from that state with
an enabled guard condition. Figure 5.43 shows the same model of the thermostat
that also includes invariant conditions. In this model, the switching from off to
on state happens between 21 and 22 degrees, and the switching from off to onn
happens between 23 and 24 degrees.

Another useful feature is the possibility of resetting the value of state variables
when a transition is taken. The bouncing ball is one example where this feature
is useful. After hitting the ground, the velocity of the ball has to change sign.
Moreover, because some energy is lost in the impact, the magnitude of the velocity
is also scaled by a constant factor. Figure 5.44 shows the hybrid system model of
the bouncing ball. In this model, y denotes the vertical position of the ball, v the
vertical velocity, g is the gravitational acceleration, y0 is the starting quota and ε
is a loss factor. The initial condition is that the ball starts from a positive height
y0 and initial velocity v0. Subject to gravity, the ball will fall and when it touches
the ground, we reset its velocity. The reset condition is written as follows:

y′ = y

ẏ′ = −εẏ′

where primed variables denotes the values after the transition while non-primed
variables denote the values before the transition. The first reset condition guaran-
tees continuity of the position variables. The second reset condition says that the
velocity after the collision is equal to the velocity before the collision scaled by a
factor ε and with opposite direction.

While this informal description seems rather simple, the precise definition of
the evolution of a hybrid system is quite complex. Early work on formal models
for hybrid systems includes phase transition systems [7] and hybrid automata [103].
These somewhat simple models were further generalized with the introduction of
compositionality of parallel hybrid components in hybrid I/O automata [102] and
hybrid modules [8]. In the sequel, we follow the classic work of Lygeros et al. [101]
to formally describe a hybrid system as used in the control literature.

We consider subclasses of continuous dynamical systems over certain vector fields
X, U and V for the continuous state, the input and disturbance, respectively. For
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Figure 5.44: The hybrid system model of a bounding ball.

this purpose, we denote with UC the class of measurable input functions u : R→ U ,
and with Ud the class of measurable disturbance functions δ : R → V . We use
the symbol SC(X,U, V ) to denote the class of continuous time dynamical systems
defined by the equation

ẋ(t) = f(x(t), u(t), δ(t))

where t ∈ R, x(t) ∈ X and f is a function such that for all u ∈ UC and for all
δ ∈ Ud, the solution x(t) exists and is unique for a given initial condition. A hybrid
system can then be defined as follows

Definition 5.4.27 (Hybrid System) A continuous time hybrid system is a tuple
H = (Q,UD, E,X,U, V,S, Inv,R,G) where:

• Q is a set of states;

• UD is a set of discrete inputs;

• E ⊂ Q×UD ×Q is a set of discrete transitions;

• X,U and V are the continuous state, the input and the disturbance, respec-
tively;

• S : Q → SC(X,U, V ) is a mapping associating to each discrete state a con-
tinuous time dynamical system;

• Inv : Q→ 2X×UD×U×V is a mapping called invariant;

• R : E ×X × U × V → 2X is the reset mapping;

• G : E → 2X×U×V is a mapping called guard.

Note that we can similarly define discrete time hybrid systems by simply replac-
ing R with Z for the independent variable, and by considering classes of discrete
dynamical systems underlying each state. The triple (Q,UD, E) can be viewed as
an automaton having state set Q, inputs UD and transitions defined by E. This
automaton characterizes the structure of the discrete transitions. Transitions may
occur because of a discrete input event from UD, or because the invariant in Inv
is not satisfied. The mapping S provides the association between the continuous
time definition of the dynamical system in terms of differential equations and the
discrete behavior in terms of states. The mapping R provides the initial conditions
for the dynamical system upon entering a state.

The transition and dynamical structure of a hybrid system determines a set of
executions. These are essentially functions over time for the evolution of the contin-
uous state, as the system transitions through its discrete structure. To highlight the
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discrete structure, we introduce the concept of a hybrid time basis for the temporal
evolution of the system, following [101].

Definition 5.4.28 (Hybrid Time Basis) A hybrid time basis τ is a finite or an
infinite sequence of intervals

Ij = {t ∈ R : tj ≤ t ≤ t′j}, j ≥ 0

where tj ≤ t′j and t′j = tj+1.

Let T be the set of all hybrid time bases. An execution of a hybrid system can
then be defined as follows.

Definition 5.4.29 (Hybrid System Execution) An execution χ of a hybrid system
H, with initial state q̂ ∈ Q and initial condition x0 ∈ X, is a collection χ =
(q̂, x0, τ, σ, q, u, δ, ξ) where τ ∈ T , σ : τ → UD, q : τ → Q, u ∈ UC , δ ∈ Ud and
ξ : R× N→ X satisfying:

1. Discrete evolution:

• q(I0) = q̂;

• for all j, ej = (q(Ij), σ(Ij+1), q(Ij+1)) ∈ E;

2. Continuous evolution: the function ξ satisfies the conditions

• ξ(t0, 0) = x0;

• for all j and for all t ∈ Ij,

ξ(t, j) = x(t)

where x(t) is the solution at time t of the dynamical system S(q(Ij)),
with initial condition x(tj) = ξ(tj , j), given the input function u ∈ UC
and disturbance function δ ∈ Ud;

• for all j, ξ(tj+1, j + 1) ∈ R
(
ej , ξ(t′j , j), u(t′j), v(t′j)

)
• for all j and for all t ∈

[
tj , t
′
j

]
,

(ξ(t, j), σ(Ij), u(t), v(t)) ∈ Inv (q(Ij))

• if τ is a finite sequence of length L+ 1, and t′j 6= t′L, then(
ξ(t′j , j), u(t′j), v(t′j)

)
∈ G (ej)

We say that the behavior of a hybrid system consists of all the executions that
satisfy Definition 5.4.29. The constraint on discrete evolution ensures that the
system transitions through the discrete states according to its transition relation E.
The constraints on the continuous evolution, on the other hand, require that the
execution satisfies the dynamical system for each of the states, and that it satisfies
the invariant condition. Note that when the invariant condition is about to be
violated, the system must take a transition to another state where the condition
is satisfied. This implies the presence of an appropriate discrete input. Because
a system may not determine its own inputs, this definition allows for executions
with blocking behavior. When this is undesired, the system must be structured
appropriately to allow transitions under any possible input in order to satisfy the
invariant.
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Note also that the same input may induce different valid executions. This is
possible because two or more trajectories in the state machine may satisfy the
same constraints. When this is the case, the system is non-deterministic. Non-
determinism is important when specifying incomplete systems, or to model choice
or don’t care situations. However, when describing implementations, it is convenient
to have a deterministic specification. In this case, one can establish priorities among
the transitions to make sure that the behavior of the system under a certain input
is always well defined. Failure to take all cases of this kind into account is often the
cause of the inconsistencies and ambiguities in models for hybrid systems.

Definition 5.4.30 A hybrid system execution is said to be (i) trivial if τ = {I0}
and t0 = t′0; (ii) finite if τ is a finite sequence; (iii) infinite if τ is an infinite
sequence and

∑∞
j=0 t

′
j − tj =∞; (iv) Zeno, if τ is infinite but

∑∞
j=0 t

′
j − tj <∞.

The Zeno behavior of a system is a rather interesting phenomenon resulting from
the abstraction of certain dynamics. The bouncing ball is a classical example of such
behavior. Let us compute the time interval between two bounces. We use an index
k ranging from 0 to infinity to denote the interval number. In the k-th interval, the
initial velocity is vk and the initial position is equal to zero. To compute the next
time the ball hits the ground, we need to solve the following equation

−gt2 + vkt = 0

which has two solutions: t = 0 (the trivial solution) and t = 2vk/g. The velocity at
the next impact is still equal to −vk by symmetry. Therefore, the initial velocity of
the k+ 1-th interval is vk+1 = εvk. The total length of the hybrid system execution
can them be computed as follows:

t0 +
2v0
g

∞∑
i=1

εi

Since ε ≤ 1, the sum is finite, meaning that the execution is Zeno. This is the
consequence of the abstraction that we have made in considering an instantaneous
bounce.

Example 5.4.31 Obstacle avoidance.

Example 5.4.32 Power systems with contactors.

5.5 Composing Models of Computation

In the course of this chapter, we presented many modeling languages to capture
the behavior of systems. Each language is suitable for modeling systems belonging
to a certain class. For instance, Finite State Machines are used to model control
dominated systems while dataflow languages are used to model signal processing
applications. Moreover, each MoC also comes with a set of tools that enable formal
verification and synthesis.

A complex embedded systems seldom fits in only one application domain. A
simple vending machine, discussed in Section 5.2.1, can be conveniently described
by a finite state machine that, however, only capture its logical behavior. An output
event that indicates that the machine is serving a coffe is actually a command to
an electromechanical system that is in charge of dispensing a cup and filling it up
with requested product. This is not a unusual situation if one considers that an
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embedded system interacts with a physical system through sensors and actuators.
Many interesting behaviros that are worth analyzing arise from this very same
interaction, which requires to model both the logical behavior and the embedded
system and the physical behavrior of the environment. The use of hybrid systems
(Section 5.4.7) to model the interaction between the contious and the discrete time
parts of an embedded systems is one example of heterogenous modeling.

Heterogeneity does not only arise when considering the combination of a contin-
uos time plant5 and a digital controller. Within an embedded system, it is common
to find several application domains with different modeling needs such as control,
analog and digital signal conditioning and processing, human-machine interface soft-
ware, network protocol stack etc. All these sub-systems need to interact to deliver
the required functionality. For instance, the analog signal received by a transceiver
is first processed by an analog front-end. Then, the signal is converted into a digital
representation and it is processed by a digital signal processor that recovers the
transmitted packets. The header of the packet is analyzed to generate signals for
a state machine that sends commands to the rest of the protocol stack software to
determine the content of the payload and deliver it to the application software.

In this section we will discuss the definition of the interaction among sub-systems
that are described using semantically heterogenous languages. We will discuss three
different ways of defining such interaction. A method that requires to refine all sub-
systems into a common model of computation, thereby obtaining an homogenous
system. A method that composes models hierarchically where each level of the
hierarchy is a homogenous system. A method that provides the special constructs,
meaning special interfaces, to define the direct interactions among components de-
scribed using different MoCs.

Example 5.5.1 (A simple Wifi model) To understand the difficulties a designer
faces when composing models with different semantics, consider the following simple
description of the basedband processing provided by the IEEE 802.116 standard.
In this example, we look at the processing performed by the physical layer which
receives a packet to send from the MAC layer. The packet to be sent is called
MAC Packet Data Unit (MPDU). The structure of the physical level packet, called
PPDU, is shown in Figure 5.45.

The packet starts with a preamble of 144 bits. The preamble is divided into a
series of bits used for synchronization (SYNC) and a Start Frame Delimiter (SFD).
The frame is also divided into two parts: a header that defines the properties of the
packet (e.g. data rate, length and service type), and the MPDU.

The operations carried out buy the physical layer are a mix of control and
computation. The heterogeneous nature of the operations is clear by reading the
specification provided by the standard. The preamble and the header of the packet
have to be transmitted using a data rate of 1 Mb/s and DBPSK modulation. The
MPDU can be transmitted using different data rates and a different type of mod-
ulation. Moreover, the interactions between the physical layer and the MAC layer
is determined by a handshaking procedure that is clearly depedent on the state of
the two layer. On the other hand, the stream of bits to be transmitted undergoes
a sequence of elaborations that are data-processing oriented.

Figure 5.46 shows one possible block diagram that describes the structure of the
physical layer of a transmitter. We omit the processing required after the mapping
of bits on a constellation for the sake of simplicity. Each block of the data processing

5By plant we mean the physical system controlled by the embedded system.
6Reference to the standard needed here.
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Figure 5.45: The structure of a physical layer packet data unit.
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Figure 5.46: Block diagram of an 802.11 transmitter.
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performs a specific task:

• The scambler takes care of adding enough diversity in the transmitted bits.
Intuitively, if the sequence of trasmitted bits is constant, it would be very
difficult for the receiver to synchronize its clock to march the phase of the
trasmitted signal. The scambler makes sure that such patological situation
does not happen. Only the preamble had to be processed by the scrambler.

• The encoder encodes the bits according to a scheme used for error recovery.
Convolutional codes are used in the 802.11 protocol.

• The interleaver performs and interleaving of the trasmitted bits. Interleaving
is need to avoid that erros accourring in burts will not be corrected. In fact,
the error correction is only capable of correcting one erroneous bits every n
bits (where n depends on the encoding scheme). If bits are interleaved and
a burst of erros occurs, only a few bits for each codeword will actually be
erroneous, thereby enhancing the overall performance of the receiver.

• The mapper maps a sequence of bits to one point of a bidimensional constel-
lation.

The details of each block are not essential to our discussion. It is sufficient to
understand that the preamble of the PPDU has to be scrambled and trasmitted
at 1 Mb/s with DBPSK modulation while the MPDU must not be scrambled and
can be trasmitted at a different rate, also corresponding ot a different modulation
scheme. The controller block is a state machine that controls the operation of each
of the data processing block.

The simple interaction that is interesting to analyze is the one between the
controller and the scrambler.

5.5.1 The method of common refinement

5.5.2 Hierarchical composition of heterogeneous models of
computation

Hybrid systems are a good example of this approach. Each state of a finite state
machine represents a continuous time system described by differential (and possibly
algebraic) equations. In general, this concept can be exploited to compose the
finite state machine model with other models of computations, such as data flow or
discrete event. Conversely, a finite state machine model can be used to define the
input-output relation of a data flow actor. This way of composing hetorogeneous
models of computation is the one used by Ptolemy II [?, ?].

An illustrative example is shown in Figure 5.47. The top level model is a static
data flow with three actors A, B and C. Actors A and B consume one token and
produce one token, while actor C consumes two tokens on each input and produces
one token. A periodic schedule for this data flow model is ABABC. Actor A and
actor C are refined into two finite state machines D and E, respectively. State b of D
is refined into another finite state machine F, while state h of E is refined into a data
flow model containing two actors, G and H. State g of E is refined into another date
flow model containing three actors: I, J and K. Intuitively, when actor A fires, state
machine D is executed. Similarly, when actor E fires, state machine E is executed.
If D is in state b and it is executed, then state machine F is also executed. If E is
in state h, the entire data flow model that refines h is also executed.



124 CHAPTER 5. FUNCTIONAL DESIGN

B

A

H

C

G

i1

i2

i3(2)

i4(2)

o1

o2

o3

i3(2)

i4(2)
o3

a b

c

d

e

f
g

h

SDF

FSM

FSM

FSM

SDF

D
E

F

i2 > 1/o2 = 1

i2 < 0/o2 = 0

I

J

K

i3(2)

i4(2)

o3

SDF

Figure 5.47: An example of hierarchical composition of different models of compu-
tation.

This simple example shows many of the subtleties that arise when models are
composed hierarchically. Actor A has a static toke production and consumption
rate. This property must be maintained by any refinement of the actor. Consider
the state machine D in state a. When actor A fires, if the value of the input is
greater than 1 then the state machines makes a transition to the state b and emits
an output equal to 1. If the value of the input is less than 1, the state machine
remains in state a and the output is not emitted (i.e. it is absent). Since one token
has to be emitted for each reaction of the finite state machine, we must encode the
absence of a token into a value in the data flow model. This value can be a default
value or it can be a special value that is added to the set of possible values of the
signals in the top level data flow model.

Consider the case where D is in state b, actor A is fired and the value of input
i2 is less than 0. State machine D is executed and the transition back to state a is
enabled. However, state b is refined into another state machine that should also be
executed. Therefore, the refinement (i.e. F) is executed first and the the transition
in D is taken. Since the refinement F is executed, it may also take a transition7 and
emit the output o2 that is then emitted, and equal to 0, by D. If the values emitted
by D and F are the same, then the output is uniquely defined. If the two values are
different, a rule must be defined to combine the two values. Notice that the choice
of executing the refinement first and the transition of the higher level FSM after is
one possible choice. Another choice is to always execute the transition of the higher
level FSM first and the refinement of the arrival state after. However, the problem
of resolving the possible incompatibility of the values emitted by the two FSMs is
still to be addressed.

FSM E has two states refined into two different data flow models. If the state
machine is in state h and actor C is fired, then the refinement of state h is first

7In this example we have not specified the guard conditions and the output actions of each
transition in the finite state machines since they are not essential to understand the problems
when composing models hierarchically.
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executed. Since the state machine is supposed to execute in a finite amount of time
(where time is an abstract concept at this abstraction level), the data flow model
that refines a state must also run for a finite amount of time. This condition requires
to define an iteration for each model that refines a state of state machine. The case
presented in the example is particularly simple to handle. Since the refinement of
state h is a static data flow, it is possible to compute a periodic schedule which
implicitly defines an iteration of the model. In this simple case, an iteration is the
successive firing of G and H. For the refinement of state g, one iteration is the firing
of I, J and K. When the state machine is executed, one iteration of the refinement
of the current state is executed first and then the state machine can possibly make
a transition. Notice that there is a consistency constraint that the SDF refinements
must satisfy. Since actor C consumes two tokens from each input and produces one
token on its output, each refinement must also consume two tokens from i3 and i4
and produce one token on o3, as shown in Figure 5.47.

5.5.3 Direct composition of heterogneous models

The hierarchical composition of heterogenoeus models, despite the subtlelties that
the designer should be aware of, simplyfies the definition of the interactions among
heterogenous components. The simplication comes from the homogenous nature of
the models at the same level of the hierarchy. Thus, the change of model appears
only at the inner boundary of a component and the interaction between two models
is determined by the way in which the inner model is controlled by the outer model.

This approach, though, has some limitations. Some components are naturally
described by heterogenous interfaces. One simple example is an analog-to-digital
converter that has two ports: an input port that accepts continuous time waveforms
and an output port that esposes a discrite time representation of the input. In
principle, we could represent this component as being a continous time one by
representing the exact waveform of the discrete time output (i.e. by representing
the output as a waveform with sharp transitions as in a sample-and-hold model).
However, this approach corresponds to cosidering the analog to digital converter as
a continuos time componet, thus giving up the potential benefit that a discrite time
abstraction could bring to the table.

Perhaps, the most important limitation is in the structural difference between
the model and the real system. Example 5.5.2 shows a simple system that explains
these potential discrepancy.

Example 5.5.2 (A simple wifi transceiver)

A more natural way of describing a heterogenous embedded system would be to
allow the direct connection of components described using different MoCs. These
type of connections, however, are not easy to define. For instance, Example ??
shows a system where finite state machines and dataflow actors are mixed at the
same level of the hierachy.

Example 5.5.3 (Digital receiver)

As described by Example ??, the definition of the interfaces between the different
components is not uniquely defined. The way in which events are exhanged between
a finite state machine block and a dataflow actor depends on the design intent.
Fixing one particular translation would limit the expressiveness of the heterogenous
model and, consequently, the type of designs that can be captured.
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There are few rigorous approaches to provide designer with a language for the
description of the interaction between heterogenous components. Languages such as
Simulink, VHDL-AMS and Modelica, all define the concepts of discrete and contn-
uos time variables that can be exposed through ports. However, these environment
do not really allow modeling heterotenous systems, but they are rather specialized
to deal with discrete events and continuous waveforms.

Among the academic approaches, we describe two here: the ModHel’X and the
MetropolisII ones.

ModHel’X

Metropolis II

5.5.4 Interface Automata

5.6 Analysis and Verification

The advantage of using formal models to capture the specification of a system
reveals itself in the possibility of using analysis tools. Perhaps, the most common
analysis tool is simulation. The simulation of a model can give many insights into its
behavior. The design selects a certain sequence of inputs, also called stimuli, under
which she expects the system to behave in a certain way and produce a sequence
of outputs. If the behavior is not the one expected by the designer, the model
undergoes a debugging phase which can also be facilitated by tools. Finding errors
through simulation requires the designer to select the input sequences in such a
way that all corner cases are covered. This task is particularly difficult for complex
systems. Therefore, bugs can go undetected in the final product.

Formal methods, such as model checking and theorem proving, provide a way of
verifying that a system satisfies certain properties independently on what are the
stimuli. Model checking is used to verify properties of finite state systems. This
technique takes two inputs: the model of the system to verify and a set of proper-
ties described using formulae defined on the state space. The result is either that
the system satisfies the properties or, most interestingly, a counterexample that for
some input sequence the properties are not satisfied. The computational complexity
of this technique is exponential in the size of the system, where by size we mean the
number of states. Several improvement have been devised to make practical use of
model checking such as the use of ordered binary decision diagrams (OBDD) [25] to
represent transition functions and the use of composition and abstraction. Compo-
sitional reasoning aims at inferring properties on the entire system by looking at the
properties satisfied by each component. Abstraction consists in hiding some of the
information of the current system and derive another system with a smaller state
space. For instance, assume that the state variables x1, . . . , xn are of integer type
and that variable xi takes on value from a domain Di. The the state space is the
cross product D1× . . .×Dn. Depending on the size of each domain, the state space
may be too big to be exhaustively searched buy model checking tools. However, we
main abstract these system by abstracting the real value of the variables ad only
exposing their sign. Of course, properties that depend on the actual value of the
variables cannot be checked.

Theorem proving has the advantage of being able to verify infinite sate space
models. In theorem proving, a proof can be constructued by starting from axioms
and applying inference rules. An inferecen rule has premises (that are propositions)
and a conclusion. The inference rule has the following meaning: if all the premises
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are provable (withing the proof system), then the conclusion holds. Given a proof
system, proving a theorem means to find a chain of inference such that starting
from the axioms the desired conclusion can be found. Even if theorem proving
technique are very powerful, they cannot be fuly automated. Theorem provers are
rather tools that help humans in building the proof of a therem. Conversely, model
checking can be fully automated.

5.6.1 Simulation

5.6.2 Formal Methods

Model Checking of Finite State Systems

Model checking was jointly proposed by Clarke and Emerson [35] and Queille and
Sifakis [116] in 1982. Model checking is a technique to verify that a finite state
system satisfies a property expressed as a formula in some logic, which is also called
specification. If the proterty is satified, it means that the finite state system is a
model for the given specification.

Model checkers accept the description of the finite state system in a formal
language that is then interpreted as a finite state transition system. Following the
approach of Clarke and Emerson, we will use Kripke structures defined as follows.

Definition 5.6.1 A Kripke structure is a tuple M(AP, S, S0, R, L) where:

• AP is a set of atomic propositions,

• S is a finite set of states,

• S0 ⊆ S is a set of initial states,

• R ⊆ S × S is a transition relation such that for each s tate s ∈ S there exists
a sate s′ ∈ S such that (s, s′) ∈ R,

• L : S → 2AP is s function that labels each state with the set of proposition
that are true in that states.

To undestand the meaning of this structure and the way in which automatic
model checking works, we use a simple example take from [34]. Consider two se-
quential processes P1 and P2 as shown in Figure 5.48. Each process has a program
counter that represents the address of the current instruction beigh executed. The
two processes can executed independently from each other but when they reach a
block of instruction called critical sections, and denoted by C1 and C2 in Figure 5.48.
Only one of the two processes can enter the critical section. If one of them, say P1

is executing C1, then process P2 cannot execute C2. This corresponds, for instance,
to accessing the same variable in memory. Before process Pi tries to access the
critical section, it attempts to do so by executing a “trying” instruction Ti. If the
execution is succesful, the process access the critical section.

Any implementation of this system must satisfy two important properties:

• the two processes P1 and P2 never enter the critical sections C1 and C2 con-
currently (mutual exclusion).

• Each process is eventually granted the access to its critical section (absence of
starvetion). A system where only one proceess can enter its critical section,
althoguh it prevents the simultaneous access, is not correct.
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Figure 5.48: Example of two sequential processes P1 and P2 with critical sections
C1 and C2, respectively.

A finite state space model for this example can be built by observing the values
of the two program counter. Each pair of values of the program counters represents
a new state. Mutual exclusion can be easily identified with a set of states, i.e. the
set of all states where the two program counters are not in the critical sections.
Absence of starvation is not so obvious to define as a set of states. This property
requires to look at sequences of states or computation path. Absence of starvation
requires that, along a computation path, access to the critical section is eventually
granted to both processes. A path in M is an infinite sequence of states (s0, s1, . . .)
such that each pair (si, si+1) ∈ R, meaning that there is a transition in M for each
pair of adjacient states in the path. When a formula f is true in a state s08 of a
Kripke structre M , we use the notation M, s0 |= f .

These properties are expressed by formulas in a logic called Computational Tree
Logic (CTL). The syntax of this logic is defined by the following rules:

• AP is an underlying set of atomic propositions.

• Each atomic proposition p ∈ AP is a CTL formula.

• If f1 ad f2 are two CTL formulas, then ¬f1, f1∧f2, AXf2, EXf2, A[f1 U f2]
and E[f1 U f2] are also CTL formulas.

We define the semantics of CTL formulas later in this section, but we give an
intuition of the meaning of the path quantifies A and E and of the until connective
U . The quantifier A stands for for all paths while E stands for for some path (or
there exists a path). X is the next step operator. Intuitively, the formula AXf1 is
true in a state s if for all paths, f1 is true in the successor state of s. The formula
A[f1 U f2] is true in a state s0 if for all paths (s0, s1, . . .), f1 holds until a state a
reached where f2 holds. Formally, the semantics of CTL is defined in terms of a

8We use the symbol s0 to denote the first state of a path. The reader should not think to an
initial state only.
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Figure 5.49: A finite transition system for the two-process example.

Kripke structure M . The relation |= is defined inductively as follows:

s0 |= p ⇐⇒ p ∈ L(s0)
s0 |= ¬f ⇐⇒ not(s0 |= f)

s0 |= f1 ∧ f2 ⇐⇒ s0 |= f1 and s0 |= f2

s0 |= AXf1 ⇐⇒ for all t such that (s0, t) ∈ R, t |= f1

s0 |= EXf1 ⇐⇒ for some t such that (s0, t) ∈ R, t |= f1

s0 |= A[f1 U f2] ⇐⇒ for all paths (s0, s1, . . .) ∃ i ≥ 0 such that
si |= f2 and for all 0 ≤ j < i sj |= f1

s0 |= E[f1 U f2] ⇐⇒ for some path (s0, s1, . . .) ∃ i ≥ 0 such that
si |= f2 and for all 0 ≤ j < i sj |= f1

Other fomulas can be defined in terms of the ones defined above. Consider the
formula AFf that is true in a state s0 if for all paths starting at s0, f is true
in some future state along the path. This formula can be written as A[true U f ]
because the atomic proposition true is trivially true in all states. Similarly, EGf
that is true in a state s0 if if there exists a path such that f is true in all states of
the path can be written as ¬AF¬f , meaning that it is not true that for all paths f
never holds.

Using the values of the program counters to define the state of the system is
not a convenient choice in our case. The number of states of this model is the
square of the number of possible values that a program counter can take on, which
can be potentially very large. Since we are not interested in the detailed execution
of each instruction of the two processes, we can abstract the domain of values of
the program counters into a simple three-value domain where the values are N ,
indicating that the program counter in not ina critical region, C indicating that the
program counter is in the critical region and T , indicating that the program counter
points at the instruction that tries to access the critical region.

Figure ?? shows a finite transition graph of the two-process example. Each
state corresponds to a particular combination of abstract values of the program
counters. In the fugure we have use the values also as atomic proposition and we
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have labelled each state with the set of atomic proposition that are true in that
state. For instance, label {N1, N2} is a set of two atomic propositions where Ni
means process i is in a non critical region. The state transition graph represents a
specific implementation where only one process at the time is allowed to advance
in its program. We now express the two properties that we are interested in using
CTL formulas:

• mutual exclusion : ¬EF (C1 ∧ C2) (there is no path that eventually leads to
a state where both processes are in the critical section).

• Absence of starvation for process P1: AFC1 (for all path, eventually process
P1 is allowed to access its critical section). A similar formula can be written
for process P2.

It is easy to verify that the mutual exclusion formula is true in every state.
The rest of this section defines the verification problem and gives an algorithm

to solve it. Given a Kripke structure M(S, S0, R, L), it is possible to define a lattice
of predicates over S, P (S). To do this, given a predicate Z (i.e. a formula defined
on the state space S), let S[Z] be the set of states that satisfy Z. For instance,
consider the example in Figure 5.49 and the predicate C1. The set of states that
satisfies C1 is S[C1] = {3, 7}. Predicates can be ordered by set inclusion. Given
two predicates Z1 and Z2, Z1 ≤ Z2 if and only if S[Z1] ⊆ S[Z2]. For instance, the
predicate C1 ∨ C2 is such that S[C1 ∨ C2] = {3, 7, 6, 8}, thus C1 ≤ C1 ∨ C2. In
particular, S[false] = ∅ and S[true] = S, meaning that false is the least element
of the lattice and true is the greatest element.

A predicate transformer is a function τ : P (S)→ P (S) that mas predicates into
predicates. A predicate transformer is monotonic if Z1 ≤ Z2 implies τ(Z1) ≤ τ(Z2).
Monotonicity is very important because the set of states satisfying a formula can be
defined as the least or greatest fix point of a predicate transformer that is guaranteed
to exist if it is monotonic. We need to show that, given a CTL formula, computing
the set of states that satisfy the formula is equivalent to computing the fix point of
a predicate transformer. Consider the formula A[f1 U f2]. The set of states that
satisfy this formula is the union of two sets:

• the states where f2 is satisfied;

• the states where f1 is satisfied and, for all successor states A[f1 U f2] is
satisfied

Therefore, the solution of the following equation is the set of states that satifies the
predicate:

A[f1 U f2] = f2 ∨ (f1 ∧AX(A[f1 U f2]))

Consider the folliwng predicate transformer

τ(Z) = f2 ∨ (f1 ∧AXZ)

It can be shown that this predicate transformer is monotonic. The least fixed point
of this predicate is the set of states that satisfy A[f1 U f2]. Algorithm 4 computes
the least fixed point of an input predicate transformer τ .

Consider now the property that we want to verify that is AFC1 = A[true U C1].
The execution of the Algorithm 4 is shown in Table 5.2. Predicate Q is initialized
to false. The first step of the algorithm computes the following predicate:

τ(false) = C1 ∨ (true ∧AXfalse) = C1 ∨ false = C1
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Algorithm 4 Least fixed point computation
Input: τ predicate transformer
Output: Predicate Q
Q← false
Q← τ(Q)
while Q 6= Q′ do

Q← Q′

Q′ ← τ(Q)

Step Q S[Q]
0 false ∅
1 C1 ∨ (true ∧AXfalse) = C1 {3, 7}
2 C1 ∨ (true ∧AXC1) = C1 ∨AXC1 {3, 7, 4}
3 C1 ∨AX(C1 ∨AXC1)) {3, 7, 4, 1}

Table 5.2: Values of the predicate Q and set of states S[Q] at each step of Algo-
rithm 4.

The set of states that satisfy this predicate are 3 and 7. The second step of the
algorithm computes τ(τ(false)) and so on. Notice that each time the predicate
transformer is applied, the algorithm increases the length of the computation path
that has to be looked at. The predicate that is returned corresponds to the set
of states S[Q] = {3, 7, 4, 1}. The result means that if the initial state is one of
among S[Q], precess P1 eventually enters the critical section independently from
the computation path. This is also easy to verify by inspection in this simple
example. In particular, state 0 does not satisfy this property.

The major problem of model checking is its complexity that depends on the
number of sates. This technique can be used only for systems with a limited state
space. A major breakthrough came later in when McMillan used OBDD to represent
transition functions []. This technique is called symbolic model checking and it is
conceptually similar to model checking. The speed improvement is achieved by using
OBDD and defining the operators ∨, ∧ and the predicate transformer directly on
the OBDDs.

Verification of Hybrid System Models
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5.7 In Depth

5.7.1 Abstract Syntax and Abstract Semantics

5.7.2 Denotational Frameworks

Tagged Signal Model

In order to compare different models of computation, we need to introduce a math-
ematical tool able to capture the fundamental properties of each model. The de-
scription of a model can be given as a set of functions representing the possible
input-output relations of the agents of that model. This type of interpretation of a
model is called denotational semantics. A different way of describing a model is by
giving an algorithm that dictates the rules to execute the agents in a system. The
result of algorithm is the behavior of the systems. This type of interpretation of a
model is called operational semantics.

We use the Tagged Signal Model (TSM) as a denotational framework to describe
and compare models of computation. In TSM, a process, that is an agent like the
adder in Figure 5.10, is a set of behaviors. Intuitively a behavior is the input-output
relation of the process. Inputs and outputs are called signals. A signal is a set of
events where an event capture what happens on that signal at a specific “time”.
We will see that the notion of time is abstracted into something else called tag that
can potentially capture more sophisticated “time” structures.

In the exposition of the TSM we follow a reverse order by defining the events
first, then the signals and then the behaviors.

Events and Signals There are many examples of signals. In electronics, we
learn what digital and analog signal are. We also learn that an analog signal can
be sampled and elaborated digitally. Figure 5.50 show the process of sampling a
signal to obtain a “discrete” version of it. The sampled signal is discrete both in
time and in its values.

The original sinusoid is a continuous time signal that is well described by a
function of time:

f(t) = sin(2πt)

In this case we only represented one period of the sinusoid. The function f(t)
associates one value of the signal to each value of the time. To sample the sinusoid,
we decide a sampling step ∆t = 0.1 and only take one sample of the signal every
∆t seconds. Therefore, the new sampled signal can be represented by a sequence of
values now:

f(0), f(0.1), f(0.2), ....

Each of the values if obviously associated with a time stamp. The same applies also
to the continuous case but it is difficult to represent the continuous waveform with
a sequence because the time variable t is a real number.

One sample of the signal can be represented by a pair (v, t) where v is the value
and t is the times. In our case we have (f(t), t), t = k∆t. The sampled signal f ,
therefore, can be easily represented by the set of such samples.

Remark 5.7.1 (Sequences and sets) We changed the representation of the signal
from sequence to set. This is a very important step. Notice that the purpose of the
sequence is to maintain an order among the values of the samples signal. Since we
added the time information in the pairs that define the signal, it is not necessary
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anymore to maintain such order by using a sequence because given two samples, it
is always possible to order them by looking at the time.

Signals can be generalized using the more abstraction concept of events.

Definition 5.7.2 (Event) Let V be a set of values and T a set of tags. An event
e is an element of the set V × T .

A signal is a set of events. Given the set V and T , a signal does not have to
contain all possible events.

Definition 5.7.3 (Signal) Let V be a set of values and T a set of tags. A signal
s is an element of the power set 2V×T .

Example 5.7.4 In our example of the sampled sinusoid, the set of values is the
set of real numbers: V = R. The set of tags is the set is the set of time instants
equally spaced by ∆t = 0.1s: T = {k · 0.1 s.t. k ∈ Z}.

The signal f is the set of samples of the sinusoid f(t), therefore:

f = {(v, t) ∈ V × T s.t. v = f(t)}

The set of events belonging to the signal f is a subset of V × T . For instance, the
pair (0, 0.1) is an event that does not belong to the signal.

After sampling, the signal has to be represented with a finite number of bits. If
we use for instance 3 bits to quantize the signal, then the set of possible values is
restricted to V ′ = {−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5}.

We introduced the notion of tags using the sinusoid examples. In this example
the set of tags are real numbers that can be ordered: given two tags t1 and t2 it is
always possible to compare them and establish with one is the smallest (using the
relation ≤ that is defined on the real numbers). The tag set, in this case, is said to
be totally ordered.

The tag set, though, can be more general than time. Indeed, the set of tags
could be only partially ordered meaning that some tags could be not comparable.
For instance, if the tag set contains colors, i.e. T = {read, yellow, gree}, then it is
not possible to compare them and establish whether red is less than yellow 9.

Example 5.7.5 (Partially ordered tags) Two independent offices, that handle
two different kind of mails, receive piles of mails in the morning (Figure 5.51). The
order of the mail in stack is the order in which they arrived at the office. The mail
must be stamped in the same order and placed in an outbox to be delivered. Can
the office employee tell exactly when the mail where stack in the pile? Obviously,
since the pile is received in the morning and not in real time, the employee cannot
answer this question. Nevertheless, she can tell which one came first. Definitely,
the pile is ordered. We can imagine that each mail is an event where the value is
the mail itself (the value is not important for our discussion), and the tag is just
drawn from a set of tags.

The set is only partially ordered. For instance, we can say that: t3 ≤ t2 ≤ t1
and that t9 ≤ t8 ≤ t7 ≤ t6. Can we establish an order among the tags t3 and t9?
In order words, can be say if mail v9 arrived before mail v3? Such order cannot be

9It is possible to define an order among colors by using their RGB values. The RGB code of
a color is a triple of integers that can be ordered lexicographically. In this example we are using
labels for the colors for which an natural ordering relation does not exist.
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Office 1

Office 2

(v1, t1)
(v2, t2)
(v3, t3)

(v4, t4)
(v5, t5)

(v6, t6)
(v7, t7)
(v8, t8)
(v9, t9)

(v10, t10)

Figure 5.51: Example of two independent offices that receive a stack of mails to
stamp in the morning.
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established by the two employees that receive the two piles. The two tags are said
to be not comparable.

This example also shows how the tags can capture the causality among events.
Each mail is stamped by the employee that takes a certain amount of time to do
her job. Independently from the real time when the mail is placed in the outbox,
we can assert that its tag must be greater than the corresponding tag that the same
mail has in the inbox pile. Thus we can say that t3 ≤ t5. Moreover, since the mails
are handled in order, we can say that t2 ≤ t4.

If we only look at the outboxes of the two offices, it is also true that we cannot
compare t10 and t5 because we don’t know where the mails where stamped relative
to each other.

The set of tags T = {t1, . . . , t10} of this example is a partially ordered set.

Behaviours, Processes and Composition A component in a system has inputs
and outputs that connect to other components. In this section we formalize the
notion of components and composition of them. We start with an example and
where we introduce informally most of the concepts explained in the rest of this
section.

Example 5.7.6 (Adder) The adder in Figure 5.10 is a component of the FIR
filter. It has two inputs and one output. Intuitively, it reads one value from each
of the inputs, and generate one output that is the sum of the two values from the
inputs. Instead of looking at the single execution of this component, we can use
the notion of signals to denote the entire behavior of the adder. Given two input
sequences :

in1 = 〈8 5 9 2 . . .〉
in2 = 〈1 0 4 1 . . .〉

the output sequence is :

out = 〈9 5 13 3 . . .〉

This is one possible combination of input-output sequences that is compliant with
the functionality of the adder. The tuple of the three sequences together is called a
behavior, i.e. a behavior is a tuple of signals. Another valid tuple of sequences for
the adder is the following:

in1 = 〈8 1 9 2 . . .〉
in2 = 〈0 1 4 1 . . .〉
out3 = 〈8 2 13 3 . . .〉

In the TSM denotational framework a component, like the adder, is called a process,
i.e. a process is simply defined as set of behaviors.

For a given set of values V and a give set of tags T , let S = 2V×T denote the
set of all signals. A tuple of N signals (s1, . . . , sn) is a element of the set:

S × . . .× S︸ ︷︷ ︸
N times

= SN

Definition 5.7.7 (Process) A process P is a subset of SN for some N .



5.7. IN DEPTH 137

Remark 5.7.8 (Inputs and Outputs) In the definition of a process, the role of N
is pretty clear. A process P ⊆ SN has N ports that are not partitioned in inputs
and output ports. Moreover, ports are not labelled by names but they are indexed
by their position in the tuple. It is possible to define a partition of the inputs and
the outputs. For instance, in the adder example, process Add is a subset of S3.
Assume that the first two element of the tuple are inputs and the last one is the
output. Then the process can be also seen as a relation among the input and output
signals. In fact a relation between two sets A and B is a subset of A×B and process
Add is a subset of S2 × S.

Definition 5.7.9 (Behavior) A behavior s ∈ S is said to satisfy a process P if
and only if s ∈ P .

So far, we have defined processes. A system is the result of the composition
of may processes. We have not defined composition yet, but the meaning of this
operation is pretty intuitive. Composing two processes means that they will have
some signals in common. Therefore, the composition of two processes P1 and P2

is another process defined by their intersection P1 ∩ P2. To take the intersection,
though, the two processes must have the same number of signals (i.e. each process
must be a subset of the same set SN for some N).

Definition 5.7.10 (Composition) Given a set of processes P = {P1, ..., Pk} with
Pi ∈ SN , the composition of these processes is a processes Q ∈ SN such that

Q = ∩Pi∈PPi

Example 5.7.11 (Parallel processes) Figure 5.52 shows a process Q that is com-
prised of two independent processes P1 and P2. Notice that process Q has 8 signals
s1, . . . , s8. Four of them are defined by that behaviours of P1 and the other four
by the behaviours of P2. Since the two processes are independent, we can define Q
as P1 × P2. Connecting two signals means imposing their equality. For instance,
connecting s2 and s5 means imposing that s2 = s5. A connection, therefore, is
simply a process defined by the equality of some of its signals. Process C2,5 is the
connection of s2 and s5, more precisely:

C2,5 = {s = (s1, . . . , s8) ∈ S8|s2 = s5}

The intersection Q ∩ C2,5 is also shows in Figure ??.

Classification of MoCs Models of computations can be compared using the
tagged signal model. Each model distinguishes itself from the others by the way in
which events are related to each other. There are two classes of MoCs: timed and
untimed.

A timed model of computation is a model where the set of tags T is totally
ordered. It means that given any two members of t and t′ of the set T , either t < t′

or t′ < t. Thus, given any two events in a system, it is always possible to order
them according to which one happened first. For timed models of computation, a
tag is also called a time stamp.

Timed models are natural to us because we perceive time as being totally or-
dered. For any two events in time, we are able to order them and say which one
happened first. Moreover, we can state the length of time that elapsed between the
two events because we have a physical notion of time that we assume to be the same
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Figure 5.52: A process Q composed of two parallel processes P1 and P2, a connection
C2,5 between two signals s2 and s5 and the result of their composition.
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everywhere 10. In the physical world, time is a real number, meaning that T = R.
Given two members of T , say t and t′, the length of time that elapse between them
is |t− t′|. In general, when a notion of distance, or better a metric, can be defined
on the elements of T , we refer to a tag system as metric time.

Remark 5.7.12 (Metric) Given a set T , a metric is a function d : T × T → R
such that, for all t, t′, t′′ ∈ T the following properties are satsfied:

• d(t, t′) ≥ 0 (Non-negativity)

• d(t, t′) = 0 ⇐⇒ t = t′ (Identity of indiscernibles).

• d(t, t′) = d(t′, t) (Symmetry).

• d(t, t′′) ≤ d(t, t′) + d(t′, t′′) (Subadditivity or triangle inequality).

The continuous time model of computation is a metric timed model of com-
putation where the set of tags is the set of real number R (see Section ?? for a
more precise definition). A signal in a continuous time model of computation is a
waveform defined by a function of time. For instance, a sinusoid sin(2πfot) with
frequency f0 represents a continuous time signal.

Another timed model of computation, that will be described in more details in
Section ??, is the discrete event. In the discrete event model of computation, the
set of tags T has an interesting structure. It is totally ordered and it is countable
meaning that the set of tags can be enumerated by the integer numbers. This model
is the one that is adopted in many simulators for logic circuits.

When the set of tags T of a model of computation is only partially ordered,
the model is said to be untimed. Example 5.7.5 introduced already the notion of
partially ordered event.

There are a number of reasons to relax the total ordering of the tags. Total
order is used to capture dependency and synchronization. In some cases, there
are activities that can be executed concurrently without forcing any relationship
between the events that belong to the inputs and output of different processes.

Agent Algebras

Formal Methods for Verification

5.7.3 Operational Description

Languages for Embedded and Hybrid Systems

5.7.4 Mapping between Models of Computation

Notions of Equivalence

Concurrency and Coordination

De-synchronization

5.8 Tools for Heterogeneous Specification

5.8.1 Ptolemy II

The Ptolemy II [22, 23, 24] software framework is a modeling, analysis and de-
sign environment for heterogeneous and real-time embedded systems. Ptolemy II is

10We neglect relativistic effect.
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part of the Ptolemy project conducted at the University of California at Berkeley.
The predecessors of this framework are Gabriel [18], that focused on SDF models
and code generation for digital signal processors, and Ptolemy Classic [26], that pre-
sented many extensions including boolean and dynamic data flow, multidimensional
dataflow and process networks.

Ptolemy II offers a graphical environment for design capture. The user describes
a model using a graphical language that is based on a solid abstract syntax which is
common to any model independently of its semantics. The abstract syntax defines
entities, ports, relations and links. Ultimately, entities will contain a thread of
execution and will exchange data using links and relations. The communication
semantics is determined by the way in which data are exchanged and it is determined
by an object called receiver that is contained by each input port of an entity. The
concurrency model, the order of execution and the state update of the actors are
defined by the director of a model.

Ptolemy II provides many interesting features for modeling heterogeneous sys-
tems, debugging and generating code from a model. Moreover, polymorphism,
inheritance and type inference are also provided by the framework.

Abstract Syntax

The abstract syntax of Ptolemy II is based on clustered graphs. These clustered
graphs are uninterpreted in the sense that the vertexes, the edges and the clusters
are not bound to a specific interpretation. For example, they can be used to capture
a dataflow model where vertexes are actors and edges are connections between
actors; they can also be used to describe a finite state machine where vertexes are
states and edges are transitions.

A configuration of a clustered graph is called a topology which is a collection of
entities and relations. Figure 5.53 shows a particular topology with three entities
and one relation. Entities have ports that are connected to relations by links. A
connection between two ports involves the two links that connect the ports to a re-
lation. As shown in figure, many ports can be connected to a relation. The meaning
of such a connection is defined by the semantics associated with the relation.

To support hierarchy, the abstract syntax defines component entities and com-
posite entities. A component entity is a leaf of the hierarchy. A composite entity
can contain component entities, composite entities and relations, namely another
hierarchical topology. Figure 5.54 shows an example of a hierarchical topology. En-
tity E5 is composite. It contains two entities, E1 and E2, and one relation R1. A
port of a component entity contains a list of links that are connected to the port.
A port of composite entity contains two list of links: the links that are contained
by the entity and the outside links. A port of compositey entity is used to hide the
internal ports.

Example 5.8.1 (Use of the abstract syntax) The flexibility and expressiveness of
the abstract syntax allows to capture different concept in the same environment.
Figure 5.55 shows a dataflow model and a StateCharts model. In drawing these
models we have used the same notation introduced in previous sections of this
chapter.

Dataflow actors naturally map to entities. Dataflow actors communicate over
point-to-point unidirectional channels that map to connections. Because channels
are unidirectional, the explicit representation of the relation can be omitted. How-
ever, the rules of the abstract syntax force the use of a relation even in the case of a
point-to-point connection. In Section 5.4.4 and 5.4.4, the definition of the dataflow
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Figure 5.53: The elements of a topology.
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Figure 5.54: Hierarchical topology.
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Figure 5.55: Dataflow and Statecharts models can both be captured by the abstract
syntax.

model of computation did not include hierarchy. The abstract syntax allows the
use of hierarchy in a very intuitive manner.

StateCharts models can also be represented11. States map to entities and tran-
sitions to connections. The constructs that the abstract syntax provide to describe
hierarchical models is fundamental for StateCharts. In this case, connections can
span multiple hierarchy levels. These type of connections are called level-crossing
connections and are supported by the abstract syntax but not used in Ptolemy II.

Abstract Semantics

Executable entities, meaning entities that encapsulate a thread of control, are called
actors in Ptolemy II. Actors also provide interfaces to communicate with other
actors. There are no restrictions on the order in which the actors are executed and
neither on the way in which data are exchanged between actors. The execution
order is decided by the domain in which the actors are used and the communication
semantics is implemented by special objects called receiver that is contained in input
ports. The abstract semantics provides a framework for concurrent execution that
is neutral about the model of computation.

Actors communicate through message passing. The input ports of an actor con-
tain a special object called receiver that implements an interface for communication.
Figure 5.53 shows a connection of three entities through a relation. This means that
in input port can receive messages from multiple sources. Thus, a receiver can re-

11In the StateCharts diagram of Figure 5.55 we have avoided the explicit representation of
relations.
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ceive messages from multiple channels. The interface that a receiver implements
has two methods: a put method and a get method. The put method is called by
the originator of a message to deliver the message to the input port of an actor. The
get method is called by the receiving actor to retrieve the message from the input
port. Depending on the implementation of these two methods, the communication
semantics changes. The following list of receivers are implemented and ready to use
in Ptolemy II:

• Mailbox. This is a simple one-place buffer.

• Asynchronous Message Passing. This receiver implement a FIFO queue and
it is typically used in models of computation like process network.

• Rendezvous. In the implementation of this receiver, the put and get methods
are blocking. When a source actor calls the put method, the receiver blocks
the source’s thread of control until the target actor calls the get method, and
vice versa.

• Discrete event. Each event sent to the receiver is stored in a calendar queue
and processed by the discrete event simulation engine.

The concurrent execution and scheduling of actors depends on the domain or
model of computation underlying a model. The approach followed by Ptolemy II is
to provide a set of functions whose implementation and order of invocation defines
the semantics of the domain. Each actor implements an interface that comprises
eight methods: preinitilize, initialize, prefire, fire, postfire, stopFire,
wrapup and terminate. An iteration consists of one invocation of prefire, any
number of invocations of fire and one invocation of postfire. An execution con-
sists of one invocation of preinitialize, followed by one invocation of initialize,
any number of iterations followed by wrapup. These methods are typically called to
perform different functions related to an actor. Among them, the following methods
are important to the definition of the semantics of a model:

• preinitialize. This method is invoked exactly once at the beginning of an
execution and before type resolution. It is used to instantiate the receivers on
each input port and defines the type of the ports.

• initialize. This method is invoked exactly once after type resolution and
can be invoked again to restart an execution. It is used to create and initialize
internal variables and to generate events before the simulation starts.

• prefire. This methods can be called multiple times during an execution but
only once for each iteration. It is used to check whether an actor is ready to
be fired. If an actor is not ready to fire, then prefire is called again after
the a change in the system state has been detected by the simulation engine.

• fire. This method implements the function performed by the actor. It can
be called multiple times during an iteration until some convergence criteria
are met. Thus, this method should not change directly the internal state of
the actor which should be updated by the postfire method.

• postfire. This method is called exactly once after an iteration and it is
typically used to update the internal state of an actor. This method is also
used in the hierarchical composition of heterogeneous models of computation.
In these case, each model should have a notion of finite execution and the
postfire method is used to check whether an actor has ended its “mission”.
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Figure 5.56: The Verginl graphical user interface of Ptolemy II

In a hierarchical model, a manager governs the execution of the top-level model.
Each composite entity has its own local director that governs the execution of the
entities at that level.

Example 5.8.2 (Static dataflow (SDF) domain) Each dataflow actors in this
domain implement a simple prefire method that returns a boolean value false
is there are not enough tokens in the input ports. If the are enough tokens to fire
the actor, then prefire returns true. The receiver used in this domain is a simple
FIFO queue which implements a method to check how many tokens are in the FIFO.

The director of the SDF domain uses a scheduler that solves the balance equa-
tions (see Section 5.4.4) and computes a schedule for the dataflow network. The
computation of the schedule is performed during initialization of the director. The
fire method of the director calls the prefire, fire and postfire of each actor
according to the schedule.

The Vergil Graphical Inteface

Ptolemy II provides a graphical interface to model heterogeneous systems. The
graphical interface is called Vergil and serves not only as a design entry but also as
a framework to integrate several tools like for instance code generation.

Figure 5.56 shows the main windows of the Vergil graphical user interface. The
main windows has three panes that are the library, navigation and model-building
pane. The library pane contains all the components provide by the framework
such as the utilities library, the director library and the actor library. The utilities
library provides a set of general components such as CompositeActor that is used
to implement hierarchical entities. The director library provides the local directors
that implement the rules governing a model of computation. The actor library
provides a variety of different actors such as sources, sinks, mathematical functions
and input-output functions (e.g. functions to plot and visualize data). The top
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toolbar provides command to adjust the model visualization, control simulation
and instantiate ports and connections.

Additional Features

Ptolemy II offer a reach set of features to embedded system designers. Modeling is
not only simplified by the support of hierarchy but also by a powerful type system
that is able to infer the type of the data exchanged by the actors. The user can
explicitly specify the type associated with the ports of an actor. Ptolemy can
propagate the type information to the rest of the model notifying the user of any
inconsistency that may appear during type resolution.

Actors in Ptolemy II are polymorphic. Data exchanged by actors are encapsu-
lated into an abstract data type called token. This allows the user to define the
operation of an actor depending on the actual token type. Therefore the same actor
can be used in different context independently from the data type. For instance,
an actor performing the sum of the inputs can be used to sum integer numbers,
floating point numbers or string.

Another interesting feature is the possibility of defining and actor class that get
instantiated in different models. Moreover, inheritance is also supported. These
two features are essential to provide an object oriented language. An actor class
derived from a base class inherits all the actors contained in the based class.

Finally, the framework provides strong support for debugging. The user can
step through the execution of a model and “listen” to the director or to any actor
to verify that the behavior of the prefire, fire and post fire methods is the expected
one. The plotting capabilities of Ptolemy II, provided by the PtPlot package is a
distinguishing feature of this environment.

5.8.2 Mathworks

5.8.3 Metropolis

5.8.4 Labview

5.8.5 Modelica

Modelica is an object-oriented language for hierarchical physical modeling [62,
136] targeting efficient simulation. One of its most important features is non-causal
modeling. In this modeling paradigm, users do not specify the relationship between
input and output signals directly (in terms of a function), but rather they define
variables and the equations that they must satisfy. Modelica provides a formal
type system for this modeling effort. Two commercial modeling and simulation envi-
ronments for Modelica are currently available: Dymola [51] (Dynamic Modeling
Laboratory) marketed by Dynasim AB and MathModelica, a simulation envi-
ronment integrated into Mathematica and Microsoft Visio, marketed by MathCore
Engineering.

Modelica Syntax

The syntax of the Modelica language is described in [13]. Readers familiar with
object-oriented programming will find some similarities with Java and C++. How-
ever, there are also fundamental differences since Modelica is oriented to mathe-
matical programming. This section describes the syntactic statements of the lan-
guage and gives some intuition on how they can be used in the context of hybrid
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systems. This, of course, is not a complete reference but only a selection of the basic
constructs of the language. A complete reference can be found in [13]. The book
by Tiller [136] is an introduction to the language and provides also the necessary
background to develop Modelica models for various physical systems.

Modelica is a typed language. It provides some primitive types like Integer,
String, Boolean and Real. As in C++ and Java, it is possible to build more compli-
cated data types by defining classes. There are many types of classes: records, types,
connectors, models, blocks, packages and functions. Classes, as well as models, have
fields (variables they act on) and methods. 12 In Modelica, class methods are rep-
resented by equation and algorithms sections. An equation is syntactically defined
as <expression = expression> and an equation section may contain a set of equations.
The syntax supports the ability to describe a model as a set of equations on vari-
ables (non-causal modeling), as opposed to a method of computing output values by
operating on input values. In non-causal modeling there is no distinction between
input and output variables; instead, variables are involved in equations that must
be satisfied. The Algorithm sections are simply sequential blocks of statements and
are closer to Java or C++ programming from a syntactic and semantic viewpoints.
Modelica also allows the users to specify causal models by defining functions. A
function is a special class that can have inputs, outputs, and an algorithm section
which specifies the model behavior.

Before going into the details of variable declaration, it is important to introduce
the notion of variability of variables. A variable can be continuous-time, discrete-
time, a parameter or a constant depending on the modifier used in its instantiation.
The Modelica variability modifiers are discrete, parameter and constant (if no mod-
ifier is specified then the variable is assumed to be continuous). The meaning is
self-explanatory; the formal semantics is given in Section 5.8.5.

Modelica also defines a connect operator that takes two variable references as
parameters. Connections are like other equations. In fact, connect statements are
translated into particular equations that involve the required variables. Variables
must be of the same type (either continuous-time or discrete-time). The connect

statement is a convenient shortcut for the users who could write their own set of
equations to relate variables that are “connected”.

Modelica is a typed system. Users of the language can extend the predefined
type set by defining new, and more complex, types. The Modelica syntax supports
the following classes: 13

• record: it is just an aggregation of types without any method definition. In
particular, no equations are allowed in the definition or in any of its compo-
nents, and they may not be used in connections. A record is a heterogeneous
set of typed fields.

• type: it may only be an extension to the predefined types, records, or array
of type. It is like a typedef in C++.

• connector: it is a special type for variables that are involved in a connection
equation. Connectors are specifically used to connect models. No equations
are allowed in their definition or in any of their components.

• model: it describes the behavior of a physical system by means of equations.
It may not be used in connections.

12 C++ or Java programmers are used to this terminology, where methods are functions that
are part of a class definition.

13Some of the constructs mentioned below are explained in Section 5.8.5
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• block: it describes an input-output relation. It has fixed causality. Each
component of an interface must either have causality equal to input or output.
It can not be used in connections.

• package: it may only contain declarations of classes and constants.

• function: it has the same restrictions as for blocks. Additional restrictions
are: no equations, at most one algorithm section. Calling a function requires
either an algorithm section or an external function interface which is a way
of invoking a function described in a different language (for instance C). A
function can not contain calls to the Modelica built-in operators der, initial,

terminal, sample, pre, edge, change, reinit, delay, and cardinality whose meaning is
explained in Section 5.8.5.

Inheritance is allowed through the keyword extends like in Java. A class can extend
another class thereby inheriting its parent class fields, equations, and algorithms.
A class can be defined as partial, i.e. it cannot be instantiated directly but it has to
be extended first. The Modelica language provides control statements and loops.
There are two basic control statements (if and when) and two loop statements (while

and for).
if expression then

equation/algorithm
else

equation/algorithm
end if

For instance, an expression can check the values of a continuous variable. Depending
on the result of the Boolean expression, a different set of equations is chosen. It is
not possible to mix equations and algorithms. If one branch has a model described
by equations, so has to have the other branch. Also the number of equations has
to match. The syntax of the for statement is as follows:

for IDENT in expression loop
{ equation/algorithm; }

end for
IDENT is a valid Modelica identifier. A for loop can be used to generate a vector
of equations, for instance. It is not possible to mix equations and algorithms. The
while statement syntax is as follows:

while expression loop
{ equation/algorithm; }
end while

A while loop has the same meaning as in many programming languages. The body
of the while statement is active as long as the expression evaluates to true. Finally,
the when statement has the form:

when expression then
{ equation/algorithm; }

end when
when expression then
{ equation/algorithm; }

else when expression then
{ equation/algorithm; }

end when
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The body of a when statement is active when the expression changes from false
to true. Real variables assigned in a when clause must be discrete time. Also,
equations in a when clause must be of the form v = expression, where v is a
variable. Expressions use relation operators like ≤,≥,==, ... on continuous time
variables, but can be any other valid expression whose result is a Boolean.

Modelica Semantics

The Modelica language distinguishes between discrete-time and continuous-time
variables. Continuous-time variables are the only ones that can have a non-zero
derivative. Modelica has a predefined operator der(v) that indicates the time
derivative of the continuous variable v. When v is a discrete time variable (specified
by using the discrete modifier at instantiation time) the derivative operator should
not be used even if we can informally say that its derivative is always zero and
changes only at event instants (see below). Parameter and constant variables remain
constant during transient analysis.

The second distinction to point out is between the algorithm and the equation

sections. Both are used to describe the behavior of a model. An equation section
contains a set of equations that must be satisfied. Equations are all concurrent and
the order in which they are written is immaterial. Furthermore, an equation does
not distinguish between input and output variables. For instance, an equation could
be i1(t) + i2(t) = 0 which does not specify if i1 is used to compute i2 or vice-versa.
The value of i1 and i2, at a specific time t0, is set in such a way that all the equations
of the model are satisfied. An algorithm section is a block of sequential statements.
Here, order matters. In an algorithm section, the user should use the assignment
operator := instead of the equality operator =. Only one variable reference can be
used as left operand. The value of the variable to the left of the assignment operator
is computed using the values of the variables to the right of it.

Causal models in Modelica are described using functions. A function is a
particular class that has input and output variables. A function has exactly one
algorithm section that specifies the input/output behavior of the function. Non-
causal models are described by means of equation sections defined in classes or
models. Statements like if then else and for are quite intuitive. In the case of if

clauses in equation sections, if the switching condition contains also variables that
are not constants or parameters then the else branch cannot be omitted, otherwise
the behavior will not be defined when a false expression is evaluated.

The when clause deserves particular attention. When the switching expression
(see Section 5.8.5) evaluates to true the body of the when clause is active. The
switching expression is considered a discrete-time predicate. If the body of the
when clause is not active, all the variables assigned in the body should be held
constant to their values at the last event instant. Hence, if the when clause is in an
equation section, each equality operator must have only one component instance on
the left-hand side (otherwise it is not clear which variable should be held). Such
component instance is the one whose value is held while the switching expression
evaluates to false. This condition can be checked by a syntax checker.

Finally, a connect statement is an alternative way of expressing certain equations.
A connect statement can generate two kinds of equations depending on the nature of
the variables that are passed as arguments. In the first case, the variables v1, . . . , vn
are declared flows at instantiation time (using the flow modifier) and the connection
generates the equation v1 + . . . + vn = 0. Otherwise, the connection generates the
equation v1 = ... = vn.
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Equivalent Mathematical Description of a Modelica Program. A pro-
gram written in the Modelica language can be interpreted by defining a one-to-
one mapping between the program and a system of Differential Algebraic Equations
(DAE). The first step is to translate a hierarchical Modelica model into a flat set
of Modelica statements, consisting of the set of equation and algorithm sections of
all the used components. The resulting system of equations looks like the following:

c := fc(rel(v)) (5.2)

m := fm(v, c) (5.3)

0 := fx(v, c) (5.4)

where v := [ẋ;x; y; t;m; pre(m); p]. Here, p is the set of parameters and constant
variables, m is the set of discrete event variables, pre(m) is the value of discrete
events variables immediately before the current event occurred, x and y are con-
tinuous variables, rel(v) is the set of relations on variables in v and c is the set of
expressions in if statements (including expressions coming from the conversion of
when statements into if). The variables x and y are distinguished because x vari-
ables appear differentiated while y variables do not. A DAE solver will iterate in
the following way:

• Equation 5.4 is solved by assuming c and m constants, meaning that the
system of equations is a continuous system of continuous variables;

• during integration of Equation 5.4, the conditions in Equation 5.2 are moni-
tored. If a condition changes its status, an event is triggered at that specific
time and the integration is halted.

• at the event instant, Equation 5.3 is a mixed set of algebraic equations which
is solved for the Real, Boolean and Integer unknowns;

• after the event is processed, the integration is restarted with Equation 5.4.

Examples

We first describe the full wave rectifier example, which shows the usefulness of object
orientation and non-causal modeling. The variables are currents through and volt-
ages across each component, whose types are defined as follows:

type Voltage = Real;
type Current = Real;

Each component in a circuit has pins to connect to other components. A pin
is characterized by a voltage (with respect to a reference voltage) and an input
current. A pin is defined as follows:

connector Pin
Voltage v;
flow Current i;

end Pin;
The connector keyword is used to specify that pins are used in connection statements.
The flow keyword is used to declare that the variable i is a flow, i.e. the sum of
all Current fields of Pins in a connection must be equal to zero. A generic two-pin
component can be described in the following way [63]:

partial class TwoPin
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Pin p, n;
Voltage v;
Current i;
equation

v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;
This class defines a positive and a negative pin. Kirchoff’s equations for voltage and
current are declared in the equation section. This class is partial and we extend it to
specify two pins components like resistors and capacitors. A capacitor for instance
can be described as follows:

class Capacitor
extends TwoPin;
parameter Real C(unit=”F”) ”Capacitance”;
equation

C * der(v) = i;
end Capacitor;

In the equation section, we need only declare the component constituent equa-
tion since the other equations are inherited from a two-pin component. A pa-
rameter is used for the value of capacitance. A diode is modeled as a compo-
nent with two regions of operation: reverse bias for v < 0 and forward bias for
v ≥ 0:

class Diode
extends TwoPin;
equation

if v ≥ 0 then i = v / 0.1;
else i = -1e-15;
end if ;

end Diode;
In the forward-bias region, the diode is a resistor with a very small resistance while
in reverse bias it is basically an open circuit (only a small reverse current flows
through it). Each component can be instantiated and interconnected with others
to build a netlist as in the following example:

class circuit
Resistor R1(R = 10); Capacitor C1(C = 0.01);
Vsin DCp(VA = 5); Vsin DCn(VA = 5);
Diode d1; Diode d2;
Ground G;
equation

connect( DCp.p, d1.p ); connect( d1.n , R1.p );
connect( d1.n , C1.p ); connect( DCp.n, G.gpin );
connect( DCn.p, G.gpin ); connect( DCn.n, d2.p );
connect( d2.n , R1.p ); connect( C1.n, G.gpin );
connect( R1.n, G.gpin );

end circuit;
where Vsin is the sinusoidal voltage source and Ground is a component that is used
to fix the voltage of a node to 0V . Figure 5.57 shows the simulation result for
the two different types of load. The waveforms were obtained by simulating the
Modelica models with Dymola. Dymola is able to solve the algebraic loop by
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performing a symbolic manipulation.

(a) (b)

Figure 5.57: Dymola simulation results of the Modelica rectifier example: (a) for
an RC load and (b) for a pure resistive load

5.8.6 Esterel, Signal, Lustre

5.9 Problems

Problem 5.9.1 Define process SMALL of the vending machine presented in
Section ??. Notice that a customer is allowed to insert one or two dollars.

Problem 5.9.2


