
1

Controller Area Network

Marco Di Natale

Scuola Superiore S. Anna- Pisa, Italy

Adapted for EECS 124 by Sanjit A. Seshia, UC Berkeley

CAN bus

CAN = Controller Area Network
– Publicly available communications standard [1] 

http://www.semiconductors.bosch.de/pdf/can2spec.pdf

Serial data bus developed by Bosch in the 80s
– Support for broadcast and multicast comm

– Low cost

– Deterministic resolution of the contention

– Priority-based arbitration

– Automotive standard but used also in automation, 
factory control, avionics and medical equipment

– Simple, 2 differential (copper) wire connection

– Speed of up to 1Mb/s

– Error detection and signalling



2

CAN bus

Purpose of this Lesson

– Introduction to a widely-used communication protocol

standard in the automotive industry

– Develop time analysis for real-time messages

– Understand how firmware can affect the time

determinism and spoil the priority assignment

CAN bus

A CAN-based system 

Peripheral
HW

System 
SW

Appl.
SW

Device
drivers RTOS

Middleware

Application

Firmware
(MAC layer

implementation)

TX buffers
(TXobjects)

typically 1 to 32

RX buffers
(RXobjects)

typically 1 to 32



3

CAN bus

CAN standard (MAC protocol)

– Fixed format messages with limited size

– CAN communication does not require node (or 
system) addresses (configuration information)

• Flexibility – a node can be added at any time

• Message delivery and routing – the content is identified by an

IDENTIFIER field defining the message content

• Multicast – all messages are received by all nodes that can 

filter messages based on their IDs

• Data Consistency – A message is accepted by all nodes or 

by no node

CAN bus

Frame types

DATA FRAME

• Carries regular data

REMOTE FRAME

• Used to request the transmission of a DATA FRAME with the 

same ID

ERROR FRAME 

• Transmitted by any unit detecting a bus error

OVERLOAD FRAME

• Used to force a time interval in between frame transmissions



4

CAN bus

DATA FRAME

CAN bus

DATA FRAME

Start of frame – 1 dominant bit. A frame can only start when the 

bus is IDLE. All stations synchronize to the leading edge of the 

SOF bit

Identifier – 11 (or 29 in version 2.0) bits. In order from most

significant to least significant. The 7 most significant bits cannot

be all recessive (all 1s)

RTR – remote transmission request, dominant for REQUEST 

frames, recessive for DATA frames

CONTROL – (see figure) maximum data length is 8 (bytes) other

values are not used



5

CAN bus

DATA FRAME (conitinued)

Data – 0 to 8 bytes of data

CRC – 15 CRC bits plus one CRC delimiter bit (recessive) 

ACK – two bits (SLOT + DELIMITER) all stations receiving the 

message correctly (CRC check) set the SLOT to dominant (the 

transmitter transmits a recessive). The DELIMITER is recessive

END OF FRAME – seven recessive bits

Bit stuffing

any sequence of 5 bits of the same type requires the 

addition of an opposite type bit by the TRANSMITTER 

(and removal from the receiver)

CAN bus

Arbitration

All nodes are synchronized on the SOF bit

The bus behaves as a wired-AND

An example …

00101011010 01111010010 00111110110

Id = 0x15a Id = 0x3d2 Id = 0x1f6

0 0 0

0

sof

0

0 1 0

0

1 10 1

1 0

1011010

1 0



6

CAN bus

A sender must wait longer than that maximum propagation 

latency before sending the next bit.

Why? 

CAN bus

The type of arbitration implies that the bit time is at least twice the 

propagation latency on the bus

This defines a relation between the maximum bus length and the 

transmission speed. The available values are 

5000 m10 kbit/s

2500 m20 kbit/s

1000 m50 kbit/s

500 m125 kbit/s

250 m250 kbit/s

100 m500 kbit/s

50 m800 kbit/s

25 m1 Mbit/s

Bus lengthBit rate
node A

node B

node A starts

transmitting a bit

node B 
overwrites

node A reads the effect

of changes by B

M
in

im
u

m
 b

it
 t

im
e

ti
m

e



7

CAN bus

Error and fault containment

There are 5 types of error

BIT ERROR

The sender monitors the bus. If the value found on the bus is

different from the one that is sent, then a BIT ERROR is detected

STUFF ERROR

Detected if 6 consecutive bits of the same type are found

CRC ERROR

Detected by the receiver if the received CRC field does not match 

the computed value

FORM ERROR

Detected when a fixed format field contains unexpected values

ACKNOWLEDGEMENT ERROR

Detected by the transmitter if a dominant value is not found in the 

ack slot

CAN bus

A station detecting an error transmits an ERROR FLAG.

For BIT, STUFF, FORM, ACKNOWLEDGEMENT errors, it
is sent in the immediately following bit.

For CRC it is sent after the ACK DELIMITER 



8

CAN bus

Fault containment

Each node can be in 3 states:

Error active

Error passive: limited error signalling and transmission features

Bus off: cannot influence the bus

Each node has two counters:

TRANSMIT ERROR COUNT: 

increased – (list) by 8 when the transmitter detects an error …

decreased – by 1 after the successful transmission of a message

(unless it is 0)

RECEIVE ERROR COUNT: 

increased – (list) by 1 when the node detects an error, by 8 if it

detects a dominant bit as the first bit after sending an error flag …

decreased – (if between 1 and 127 by 1, if >127 set back to a value

between 119 and 127) after successful reception of a message

CAN bus

Fault containment

Each node can be in 3 states:

Error active

Error passive: limited error signalling and transmission features

Bus off: cannot influence the bus

error

active

error

passive

bus off

TRANSMIT ERROR COUNT ≥≥≥≥ 128 or

RECEIVE ERROR COUNT ≥≥≥≥ 128
TRANSMIT ERROR COUNT ≥≥≥≥ 256

TRANSMIT ERROR COUNT ≤≤≤≤ 127 and

RECEIVE ERROR COUNT ≤≤≤≤ 127

TRANSMIT ERROR COUNT = 0 and

RECEIVE ERROR COUNT = 0 and …



9

CAN bus

Timing Analysis (and inversions) – Ideal behavior

Assumption 1: nodes are not synchronized, 

nor any assumption on local clocks is used

by the MW and driver levels

Assumption 2: messages are always

transmitted by nodes based on their priority

(ID) – ideal priority queue of messages

Assumption 3: periodic

messages, but no assumption on 

the message phases

CAN bus

Timing Analysis (and inversions) – Ideal behavior

id = 0x103

id = 0x261

id = 0x304

id = 0x122

id = 0x141

id = 0x111

id = 0x202

id = 0x103

id = 0x111

id = 0x141

id = 0x202

id = 0x122

id = 0x261id = 0x304



10

CAN bus

Timing Analysis – worst case latency – Ideal behavior

id = 0x103

id = 0x261

id = 0x304

id = 0x122

id = 0x141

id = 0x111

id = 0x202

Critical instant theorem: for a preemptive priority based scheduled resource, the 

worst case response time of an object occurs when it is released together with

all other higher priority objects and they are released with their highest rate

CAN bus

Timing Analysis – worst case latency – Ideal behavior

id = 0x103

id = 0x261

id = 0x304

id = 0x122

id = 0x141

id = 0x111

id = 0x202

id = 0x261

spend time in local queue

(higher priority messages are transmitted with max rate)

Ii

id = 0x103

id = 0x111

Message

transmission time

Ci

Mi

Message Mi starts its
transmission

id = 0x122
id = 0x141
id = 0x202



11

CAN bus

Timing Analysis – worst case latency – Ideal behavior [2]

The transmission of a message cannot be preempted

id = 0x261

qi = time spent in local queue

Ii

id = 0x103

id = 0x111

Message

transmission time

Ci

Mi

Message Mi starts its
transmission

id = 0x304

Bi

interference from higher priority messages

blocking from lower priority messages

iii IBq +=

iii Cqw +=

∑
∈

=

)(

,

ihpj

jii II

j

j

i
ji C

T

q
I












=

,

j

ihpj j

i
ii C

T

q
Bq ∑

∈ 










+=

)(

Fixed point formula: solved iteratively by

setting qi(0)=0 until the minimum solution

is found

CAN bus

An example (Ci computed for maximum size, bus speed 500 kb/s)

ECU612.5122msg23

ECU120121msg22

ECU110120msg21

ECU430119msg20

ECU120118msg19

ECU525117msg18

ECU120116msg17

ECU325115msg16

ECU325114msg15

ECU225113msg14

ECU212.5112msg13

ECU312.5111msg12

ECU120110msg11

ECU1100109msg10

ECU1100108msg9

ECU4100107msg8

ECU45000106msg7

ECU212.5105msg6

ECU410104msg5

ECU312.5103msg4

ECU26.25102msg3

ECU110101msg2

ECU110100msg1

ECUTiIDMessage

ECU41000145msg46

ECU6500144msg45

ECU3500143msg44

ECU2500142msg43

ECU3500141msg42

ECU3250140msg41

ECU3250139msg40

ECU4250138msg39

ECU3100137msg38

ECU3100136msg37

ECU4100135msg36

ECU3100134msg35

ECU9500133msg34

ECU150132msg33

ECU550131msg32

ECU350130msg31

ECU820129msg30

ECU810128msg29

ECU730127msg28

ECU225126msg27

ECU420125msg26

ECU4100124msg25

ECU312.5123msg24

ECU910168msg69

ECU5100167msg68

ECU150166msg67

ECU150165msg66

ECU41000164msg65

ECU41000163msg64

ECU21000162msg63

ECU91000161msg62

ECU131000160msg61

ECU51000159msg60

ECU121000158msg59

ECU111000157msg58

ECU71000156msg57

ECU101000155msg56

ECU11000154msg55

ECU31000153msg54

ECU41000152msg53

ECU61000151msg52

ECU41000150msg51

ECU910149msg50

ECU41000148msg49

ECU31000147msg48

ECU41000146msg47



12

CAN bus

In reality, this analysis can give optimistic results!

A number of issues need to be considered …

– Priority enqueuing in the sw layers

– Availability of TxObjects at the adapter

– Possibility of preempting (aborting) a transmission attempt

– Finite copy time between the queue and the TxObjects

– The adapter may not transmit messages in the TxObjects by

priority

CAN bus

In reality, this analysis can give optimistic results!

A number of issues need to be considered …
– …

– Availability of TxObjects at the adapter

– Finite copy time between the queue and the TxObjects

Adapters typically only have a limited number of TXObjects
or RxObjects available



13

CAN bus

A number of issues need to be considered …

– …

– Availability of TxObjects at the adapter

• Let’s check the controller specifications!

CAN bus

What happens if only one TxObject is available?

– Assuming preempatbility of TxObject

id = 0x103

id = 0x261

id = 0x304

id = 0x122 id = 0x2a1

id = 0x2d2

id = 0x261

id = 0x341

id = 0x122

id = 0x103

preemption

id = 0x261

Priority inversion for =x261 

AFTER its queuing time



14

FlexRay
• Successor to CAN, higher bit rate and more ECUs

• Periodic transmission of messages, with period broken into a 
“static” segment and a “dynamic” segment

• Static segment has slots assigned to ECUs in a fixed way –
ensures guaranteed slot

• Dynamic segment provides “extra slots” for soft real-time 
tasks

CAN bus

Bibliography
[1] CAN Specification, Version 2.0. Robert Bosch GmbH. 

Stuttgard, 1991, 
http://www.semiconductors.bosch.de/pdf/can2spec.pdf

[2] K. Tindell, H. Hansson, and A. J. Wellings, Analysing
real-time communications: Controller area network 
(can),' Proceedings of the 15th IEEE Real-Time Systems 
Symposium (RTSS'94), vol. 3, no. 8, pp. 259--263, 
December 1994.

[3] A. Meschi M. Di Natale M. Spuri Priority Inversion at the 
Network Adapter when Scheduling Messages with
Earliest Deadline Techniques , Euromicro Conference on 
Real-time systems, L’Aquila, Italy 1996.

[4] R. Davis, A. Burns, R. Bril, and J. Lukkien. Controller 
area network (can) schedulability analysis: Refuted, 
revisited and revised. In RTN06, Dresden, Germany, 
July 2006.


