
1

Introduction to
Embedded Systems

Edward A. Lee & Sanjit Seshia
UC Berkeley
EECS 124
Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit Seshia, All rights reserved

Lecture 8: Concurrency 1: Threads

EECS 124, UC Berkeley: 2

Definition and Uses

Threads are sequential procedures that share memory.

Uses:
Reacting to external events (interrupts)
Exception handling (software interrupts)
Creating the illusion of simultaneously running
different programs (multitasking)
Exploiting parallelism in the hardware (e.g. multicore
machines).

2

EECS 124, UC Berkeley: 3

Memory architectures: Issues

Persistence
Bounding the stack
Scratchpad memories
Caches
Absolute and relative addresses
Virtual memory
Heaps

allocation/deallocation
fragmentation
garbage collection

Segmented memory spaces
…

These issues loom
larger in embedded
systems than in
general-purpose
computing.

EECS 124, UC Berkeley: 4

Memory usage: Understanding the stack.
Find the flaw in this program

int x = 2;

int* foo(int y) {
int z;
z = y * x;
return &z;

}

int main(void) {
int* result = foo(10);
...

}

statically allocated: compiler assigns a memory location.

arguments on the stack

automatic variables on the stack

program counter and copies of all
registers on the stack

This program returns a pointer to a variable on
the stack. What if another procedure call occurs
before the returned pointer is de-referenced?

3

EECS 124, UC Berkeley: 5

ATMega168 Architecture

Example of a
microcontroller
architecture. Used in
iRobot command
module.

16K bytes
(14,336
available.
Includes
interrupt
vectors
and boot
loader.)

1 k bytes RAM

Additional I/O in iRobot:
• Two 8-bit timer/counters
• One 16-bit timer/counter
• 6 PWM channels
• 8-channel, 10-bit ADC
• One serial UART
• 2-wire serial interface

stack
Source: ATmega168 Reference Manual

EECS 124, UC Berkeley: 6

One more word on memory: Heaps

An operating system typically offers a way to dynamically
allocate memory on a “heap”.

Memory management (malloc() and free()) can lead to
many problems with embedded systems:

Memory leaks (allocated memory is never freed)
Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (“garbage collection”) typically
require stopping everything and reorganizing the
allocated memory. This is deadly for real-time programs.

4

EECS 124, UC Berkeley: 7

Focus on
concurrency,
starting with
interrupts

Triggers:
A level change on an interrupt request pin
Writing to an interrupt pin configured as an output (“software interrupt”)

Responses:
Disable interrupts.
Push the current program counter onto the stack.
Execute the instruction at a designated address in the flash memory.

Design of interrupt service routine:
Save and restore any registers it uses.
Re-enable interrupts before returning from interrupt.

Source: ATmega168 Reference Manual

EECS 124, UC Berkeley: 8

Example: Set up a timer on the iRobot Command
Module to trigger an interrupt every 1ms.

TCCR: Timer/Counter Control Register
OCR: output compare register
TIMSK: Timer Interrupt Mask

The “prescaler” value divides the system
clock to drive the timer.

Setting a non-zero bit in the timer
interrupt mask causes an interrupt to
occur when the timer resets.

Source: iRobot Command Module Reference Manual v6

5

EECS 124, UC Berkeley: 9

Setting up the timer interrupt hardware in C

#include <avr/io.h>

int main (void) {
TCCR1A = 0x00;

TCCR1B = 0x0C;

OCR1A = 71;
TIMSK1 = 0x02;

...

}

This code sets the hardware up
to trigger an interrupt every 1ms.
How do we handle the interrupt? Source: ATmega168 Reference Manual

memory-
mapped
register

EECS 124, UC Berkeley: 10

#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;
volatile uint8_t timer_running = 0;
SIGNAL(SIG_OUTPUT_COMPARE1A) {

if(timer_running) {
if(timer_count) {
timer_count--;

} else {
timer_running = 0;

}
}

}
int main(void) {

... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds

}
}

Example: Do something for 2 seconds then stop

volatile: C keyword to tell the
compiler that this variable may
change at any time, not (entirely)
under the control of this program.

static variables: declared outside
main() puts them in statically
allocated memory (not on the
stack)

macro defining an interrupt service
routine for interrupt vector that
reacts to a timer interrupt. This
macro takes care of saving register
state (via compiler directives).

Source: iRobot Command Module Reference Manual v6

6

EECS 124, UC Berkeley: 11

Concurrency
#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;
volatile uint8_t timer_running = 0;
SIGNAL(SIG_OUTPUT_COMPARE1A) {

if(timer_running) {
if(timer_count) {
timer_count--;

} else {
timer_running = 0;

}
}

}
int main(void) {

... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds

}
}

concurrent code: logically
runs at the same time. In
this case, between any
two machine instructions
in main() an interrupt can
occur and the upper code
can execute.

Source: iRobot Command Module Reference Manual v6

EECS 124, UC Berkeley: 12

Reasoning about concurrent code

what if the interrupt occurs
right here?

Source: iRobot Command Module Reference Manual v6

#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;
volatile uint8_t timer_running = 0;
SIGNAL(SIG_OUTPUT_COMPARE1A) {

if(timer_running) {
if(timer_count) {
timer_count--;

} else {
timer_running = 0;

}
}

}
int main(void) {

... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds

}
}

7

EECS 124, UC Berkeley: 13

Reasoning about concurrent code

what if the interrupt occurs
right here?

Source: iRobot Command Module Reference Manual v6

#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;
volatile uint8_t timer_running = 0;
SIGNAL(SIG_OUTPUT_COMPARE1A) {

if(timer_running) {
if(timer_count) {
timer_count--;

} else {
timer_running = 0;

}
}

}
int main(void) {

... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds

}
}

EECS 124, UC Berkeley: 14

Reasoning about concurrent code

what if the interrupt occurs
twice during the execution
of this code?

Source: iRobot Command Module Reference Manual v6

#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;
volatile uint8_t timer_running = 0;
SIGNAL(SIG_OUTPUT_COMPARE1A) {

if(timer_running) {
if(timer_count) {
timer_count--;

} else {
timer_running = 0;

}
}

}
int main(void) {

... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds

}
}

8

EECS 124, UC Berkeley: 15

Reasoning about concurrent code

can an interrupt occur
here? If it can, what
happens?

Source: iRobot Command Module Reference Manual v6

#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;
volatile uint8_t timer_running = 0;
SIGNAL(SIG_OUTPUT_COMPARE1A) {

if(timer_running) {
if(timer_count) {
timer_count--;

} else {
timer_running = 0;

}
}

}
int main(void) {

... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds

}
}

EECS 124, UC Berkeley: 16

Reasoning about concurrent code

What is it about this
code that makes it
work?

Source: iRobot Command Module Reference Manual v6

#include <avr/interrupt.h>
volatile uint16_t timer_count = 0;
volatile uint8_t timer_running = 0;
SIGNAL(SIG_OUTPUT_COMPARE1A) {

if(timer_running) {
if(timer_count) {
timer_count--;

} else {
timer_running = 0;

}
}

}
int main(void) {

... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds

}
}

9

EECS 124, UC Berkeley: 17

Summary

Interrupts introduce a great deal of nondeterminism into a
computation. Very careful reasoning about the design is
necessary.

