Introduction to
Embedded Systems

Edward A. Lee & Sanjit Seshia

UC Berkeley
EECS 124
Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit Seshia, All rights reserved

Lecture 8: Concurrency 1: Threads

Definition and Uses

Threads are sequential procedures that share memory.

Uses:
o Reacting to external events (interrupts)
o Exception handling (software interrupts)

o Creating the illusion of simultaneously running
different programs (multitasking)

o Exploiting parallelism in the hardware (e.g. multicore
machines).

EECS 124, UC Berkeley: 2

ol

Memory architectures: Issues

Persistence
Bounding the stack

Scratchpad memories
These issues loom

O O 0O 0O 0O 0 O

Caches \
) larger in embedded
Absolute and relative addresses systems than in
Virtual memory general-purpose
computing.

Heaps

allocation/deallocation

fragmentation

garbage collection
Segmented memory spaces

EECS 124, UC Berkeley: 3

Memory usage: Understanding the stack.
Find the flaw in this program

statically allocated: compiler assigns a memory location.

arguments on the stack

automatic variables on the stack

return &z;

}
int main(void)
int* result f00(10); program counter and copies of all
registers on the stack
}

This program returns a pointer to a variable on
the stack. What if another procedure call occurs
before the returned pointer is de-referenced?

EECS 124, UC Berkeley: 4

°?

ATMegal68 Architecture

Data Bus 8-bit

< T Example of a
b b [| microcontroller
16K bytes Memory architecture. Used in
Interrupt .
(14Y336 Instruction C?gn);rsal IRObOt Command
available. Pupeze [= module
Includes | Reosbes :
interrupt Instruction Watchdog
e I v
andboot .y
loader.) % 3
{ W Additional I/O in iRobot:
7¢ - « Two 8-bit timer/counters
Dam . 6Orl;3vll\ibr|1t timelr/counter
. channels
1 k bytes RAM .
Data Memory vt * 8-channel, 10-bit ADC
[32 fegsers] 0x0000 - 0x001F -w . (Z)ne Seria! lfARTf
0x0020 - 0x005F . -
62 O Registers | 010020 - 0x005F wire serial interface

0x0100
stack
0xD2FF/0x04FF/0xD4FF Source: ATmegal68 Reference Manual ~EECS 124, UC Berkeley: 5

5121102471024 x B

One more word on memory: Heaps

An operating system typically offers a way to dynamically
allocate memory on a “heap”.

Memory management (malloc() and free()) can lead to
many problems with embedded systems:

o Memory leaks (allocated memory is never freed)
o Memory fragmentation (allocatable pieces get smaller)

Automatic techniques (“garbage collection”) typically
require stopping everything and reorganizing the
allocated memory. This is deadly for real-time programs.

EECS 124, UC Berkeley: 6

o3

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
ATmegai68 is:

Address Labels Code Comments

FOCUS On 0x0000 Jmp RESET ; Reset Handler
0x0002 Jmp EXT_INTO ; IRQO Handler
0X0004 Jmp EXT INT1 ; IRQL Handler
COnCurrenCy’ 0X0006 Jmp PCINTO ; PCINTO Handler
. . 0x0008 jmp BCOINTL ; DCINT1 Handler
Startlng Wlth 0X000R jmp DCINT2 ; DPCINT2 Handler
0x000C jmp WDT ; Watchdog Timer Handler
H 0X000E Jmp TIM2_COMPA ; Timer2 Compare A Handler
Interru ptS 0x0010 Jmp TIM2 COMPE ; Timer2 compare B Handler
0x0012 Jmp TIM2 OVF ; Timer2z overflow Handler
0x0014 jmp TIM1_CAPT ; Timerl Capture Handler
Triggers: Source: ATmegal68 Reference Manual

o A level change on an interrupt request pin
o Writing to an interrupt pin configured as an output (“software interrupt”)

Responses:

o Disable interrupts.

o Push the current program counter onto the stack.

o Execute the instruction at a designated address in the flash memory.

Design of interrupt service routine:
o Save and restore any registers it uses.
o Re-enable interrupts before returning from interrupt.

EECS 124, UC Berkeley: 7

Example: Set up a timer on the iRobot Command
Module to trigger an interrupt every 1ms.

The frequency of the processor in the command module is
18.432 MHz. . .

o TCCR: Timer/Counter Control Register
1. Set up an interrupt to occur once every millisecond.

Toward the beginning of your program, set up and enable O OCR: output compare register

the timerl interrupt with the following code: .
o TIMSK: Timer Interrupt Mask
TCCR1A = @x88;

TCCR1B = 0x6C;

OCR1A = 71: The “prescaler” value divides the system
TIMSKL = @x02: clock to drive the timer.

The first two lines of the code put the timer in a mode in H _ i H

which it generates an interrupt and resets a counter when _Semng a non-zero bitin th_e timer

the timer value reaches the value of OCR1A, and select Interrupt mask causes an Interrupt to

a prescaler value of 256, meaning that the timer runs at
1/256th the speed of the processor. The third line sets
the reset value of the timer. To generate an interrupt every
1ms, the interrupt frequency will be 1000 Hz. To calculate
the value for OCR1A, use the following formula:

occur when the timer resets.

OCR1A = (processor_frequency / (prescaler *
interrupt_frequency)) - 1

OCRIA = (18432000 / (256 * 1860)) - 1 =71

The fourth line of the code enables the timer interrupt. See
the ATMegal168 datasheet for more information on these
control registers.

Source: iRobot Command Module Reference Manual v6

EECS 124, UC Berkeley: 8

o4

Setting up the timer interrupt hardware in C

#include <avr/io.h> Figure 16-1. 8-bit Timer/Counter Block Diagram
int main (void) { — -
0x00; mapped /‘LQ ma|
= ; ist [~ { Fom Prescale
TCCR1B = 0x0C; register == ggj
OCR1A = 71; l——' -
TIMSK1 = 0x02; s = —

-- . ocnB
Top :
|"-'*‘=“'

} : Mo | =
: —
2 P R
This code sets the hardware up I m?* I '?“
to trigger an interrupt every 1ms.
HOW dO we handle the interruptf) Source: ATmegal68 Reference Manual

EECS 124, UC Berkeley: 9

Example: Do something for 2 seconds then stop

de_<avr/interrupt.h>
‘ |nt16 t tlmer count = O: static variables: declared outside
imer_running = 0 } main() puts them in statically

PAR allocated memory (not on the
GNAL(S IG OUTPUT COM stack)

|f(t|mer count) {
timer_count--;

} else {

timer_running = 0O;

}

volatile: C keyword to tell the
compiler that this variable may
change at any time, not (entirely)
under the control of this program.

} macro defining an interrupt service
routine for interrupt vector that

nt main(void) { reacts to a timer interrupt. This
t ¥ b macro takes care of saving register
S Set up Trom above state (via compiler directives).
timer_count = 2000;

timer_running = 1;
while(timer_running) {

... code to run for 2 seconds
}

} Source: iRobot Command Module Reference Manual v6

-

EECS 124, UC Berkeley: 10

e5

Concurrency

#include <avr/interrupt.h>
volatile uintl6_t timer_count = 0;
volatile uint8_t timer_running = O;
SIGNAL(SIG_OUTPUT_COMPARE1A) {
if(timer_running) {
if(timer_count) {
timer_count--;

} else {

timer_running = O;
}

}

nt main(void) {
... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds
}

¥
1

} Source: iRobot Command Module Reference Manual v6

concurrent code: logically
runs at the same time. In
this case, between any
two machine instructions
in main() an interrupt can
occur and the upper code
can execute.

EECS 124, UC Berkeley: 11

Reasoning about concurrent code

#include <avr/interrupt.h>
volatile uintl6_t timer_count = 0;
volatile uint8_t timer_running = O;
SIGNAL(SIG_OUTPUT_COMPARE1A) {
if(timer_running) {
if(timer_count) {
timer_count--;
} else {
timer_running = 0O;
}
}

nt main(void) {
... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds

-

what if the interrupt occurs
right here?

} Source: iRobot Command Module Reference Manual v6

}

EECS 124, UC Berkeley: 12

(]3]

Reasoning about concurrent code

#include <avr/interrupt.h>
volatile uintl6_t timer_count = 0;
volatile uint8_t timer_running = O;
SIGNAL(SIG_OUTPUT_COMPARE1A) {
if(timer_running) {
if(timer_count) {
timer_count--;
} else {
timer_running = O;
} what if the interrupt occurs
3 right here?
}
int main(void) {
... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds

}
}

Source: iRobot Command Module Reference Manual v6

EECS 124, UC Berkeley: 13

Reasoning about concurrent code

#include <avr/interrupt.h>
volatile uintl6_t timer_count = 0;
volatile uint8_t timer_running = O;
SIGNAL(SIG_OUTPUT_COMPARE1A) {
if(timer_running) {
if(timer_count) {
timer_count--;
} else {
timer_running = 0O;
} what if the interrupt occurs
3 twice during the execution
of this code?

-

nt main(void) {
... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds

}
}

Source: iRobot Command Module Reference Manual v6

EECS 124, UC Berkeley: 14

o7/

Reasoning about concurrent code

#include <avr/interrupt.h>
volatile uintl6_t timer_count = 0;
volatile uint8_t timer_running = O;
SIGNAL(SIG_OUTPUT_COMPARE1A) {
if(timer_running) {
if(timer_count) {
timer_count--;

} else {
timer_running = O;
} can an interrupt occur
3 here? If it can, what
} happens?
int main(void) {

... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds
}
}

Source: iRobot Command Module Reference Manual v6

EECS 124, UC Berkeley: 15

Reasoning about concurrent code

#include <avr/interrupt.h>
volatile uintl6_t timer_count = 0;
volatile uint8_t timer_running = O;
SIGNAL(SIG_OUTPUT_COMPARE1A) {
if(timer_running) {
if(timer_count) {
timer_count--;
} else {
timer_running = 0O;
} What is it about this
3 code that makes it
work?

-

nt main(void) {
... set up from above
timer_count = 2000;
timer_running = 1;
while(timer_running) {
... code to run for 2 seconds

}
}

Source: iRobot Command Module Reference Manual v6

EECS 124, UC Berkeley: 16

o3

Summary

Interrupts introduce a great deal of nondeterminism into a
computation. Very careful reasoning about the design is
necessary.

EECS 124, UC Berkeley: 17

o9

