
1

Introduction to
Embedded Systems

Edward A. Lee & Sanjit Seshia
UC Berkeley
EECS 124
Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit Seshia, All rights reserved

Lecture 17: Concurrency 2: Threads

EECS 124, UC Berkeley: 2

Definition and Uses

Threads are sequential procedures that share memory.

Uses:
Reacting to external events (interrupts)
Exception handling (software interrupts)
Creating the illusion of simultaneously running
different programs (multitasking)
Exploiting parallelism in the hardware (e.g. multicore
machines).
Dealing with real-time constraints.

2

EECS 124, UC Berkeley: 3

Thread Scheduling

Thread scheduling is an iffy proposition.

Without an OS, multithreading is achieved with interrupts. Timing is
determined by external events.

Generic OSs (Linux, Windows, OSX, …) provide thread libraries (like
“pthreads”) and provide no fixed guarantees about when threads will
execute.

Real-time operating systems (RTOSs), like QNX, VxWorks, RTLinux,
Windows CE, support a variety of ways of controlling when threads
execute (priorities, preemption policies, deadlines, …).

Processes are collections of threads with their own memory, not visible
to other processes. Segmentation faults are attempts to access
memory not allocated to the process. Communication between
processes must occur via OS facilities (like pipes or files).

EECS 124, UC Berkeley: 4

Posix Threads (PThreads)

PThreads is an API (Application Program Interface)
implemented by many operating systems, both real-time
and not. It is a library of C procedures.

Standardized by the IEEE in 1988 to unify variants of
Unix. Subsequently implemented in most other operating
systems.

An alternative is Java, which typically uses PThreads
under the hood, but provides thread constructs as part of
the programming language.

3

EECS 124, UC Berkeley: 5

Creating and Destroying Threads

#include <pthread.h>

void* threadFunction(void* arg) {
...

return pointerToSomething or NULL;

}

int main(void) {

pthread_t threadID;
void* exitStatus;

int value = something;

pthread_create(&threadID, NULL, threadFunction, &value);
...

pthread_join(threadID, &exitStatus);

return 0;
}

Can pass in pointers to shared variables.

Can return pointer to something.
Do not return a pointer to an automatic variable!

Return only after all threads have terminated.

Becomes arg parameter to
threadFunction.
Why is it OK that this an
automatic variable?

Create a thread (may or may not start running!)

EECS 124, UC Berkeley: 6

Notes

Threads may or may not beginning running when
created.
A thread may be suspended between any two atomic
instructions (typically, assembly instructions, not C
statements!) to execute another thread and/or
interrupt service routine.
Threads can often be given priorities, and these may
or may not be respected by the thread scheduler.
Threads may block on semaphores and mutexes (we
do this next).

4

EECS 124, UC Berkeley: 7

Modeling Threads

States or transitions represent atomic instructions

Interleaving semantics:
Choose one machine at
random.
Advance to a next state if
guards are satisfied.
Repeat.

For the machines at the left,
what are the reachable states?

EECS 124, UC Berkeley: 8

Typical thread programming problem

“The Observer pattern defines a one-to-many
dependency between a subject object and any number of
observer objects so that when the subject object changes
state, all its observer objects are notified and updated
automatically.”

Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John Vlissides
(Addison-Wesley Publishing Co., 1995. ISBN: 0201633612):

5

EECS 124, UC Berkeley: 9

Observer Pattern in C
// Value that when updated triggers notification
// of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void* addListener(notifyProcedure listener) {…}

// Procedure to update the value
void* update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

EECS 124, UC Berkeley: 10

Observer Pattern in C
// Value that when updated triggers notification of
registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void* addListener(notifyProcedure listener) {…}

// Procedure to update the value
void* update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

typedef void* notifyProcedure(int);
struct element {
notifyProcedure* listener;
struct element* next;

};
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

6

EECS 124, UC Berkeley: 11

Observer Pattern in C
// Value that when updated triggers notification of
registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void* addListener(notifyProcedure listener) {…}

// Procedure to update the value
void* update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to add a listener to the list.
void* addListener(notifyProcedure listener) {
if (head == 0) {
head = malloc(sizeof(elementType));
head->listener = listener;
head->next = 0;
tail = head;

} else {
tail->next = malloc(sizeof(elementType));
tail = tail->next;
tail->listener = listener;
tail->next = 0;

}
}

EECS 124, UC Berkeley: 12

Observer Pattern in C
// Value that when updated triggers notification of
registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void* addListener(notifyProcedure listener) {…}

// Procedure to update the value
void* update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to update the value
void* update(int newValue) {
value = newValue;
// Notify listeners.
elementType* element = head;
while (element != 0) {
(*(element->listener))(newValue);
element = element->next;

}
}

7

EECS 124, UC Berkeley: 13

Observer Pattern in C
// Value that when updated triggers notification of
registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void* addListener(notifyProcedure listener) {…}

// Procedure to update the value
void* update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Will this work in a
multithreaded context?

EECS 124, UC Berkeley: 14

Using Posix mutexes on
the observer pattern in C

#include <pthread.h>
...
pthread_mutex_t lock;

void* addListener(notify listener) {
pthread_mutex_lock(&lock);
...
pthread_mutex_unlock(&lock);

}

void* update(int newValue) {
pthread_mutex_lock(&lock);
value = newValue;
elementType* element = head;
while (element != 0) {

(*(element->listener))(newValue);
element = element->next;

}
pthread_mutex_unlock(&lock);

}

int main(void) {
pthread_mutex_init(&lock, NULL);
...

}

However, this carries a
significant deadlock risk.
The update procedure
holds the lock while it
calls the notify
procedures. If any of
those stalls trying to
acquire another lock, and
the thread holding that
lock tries to acquire this
lock, deadlock results.

8

EECS 124, UC Berkeley: 15

After years of use without problems, a Ptolemy Project code review found
code that was not thread safe. It was fixed in this way. Three days later, a
user in Germany reported a deadlock that had not shown up in the test suite.

EECS 124, UC Berkeley: 16

One possible “fix”#include <pthread.h>
...
pthread_mutex_t lock;

void* addListener(notify listener) {
pthread_mutex_lock(&lock);
...
pthread_mutex_unlock(&lock);

}

void* update(int newValue) {
pthread_mutex_lock(&lock);
value = newValue;
... copy the list of listeners ...
pthread_mutex_unlock(&lock);
elementType* element = headCopy;
while (element != 0) {

(*(element->listener))(newValue);
element = element->next;

}
}

int main(void) {
pthread_mutex_init(&lock, NULL);
...

}

What is wrong with this?

Notice that if multiple
threads call update(), the
updates will occur in
some order. But there is
no assurance that the
listeners will be notified in
the same order. Listeners
may be mislead about the
“final” value.

9

EECS 124, UC Berkeley: 17

This is a very simple, commonly used design
pattern. Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

“humans are quickly overwhelmed by concurrency and find
it much more difficult to reason about concurrent than
sequential code. Even careful people miss possible
interleavings among even simple collections of partially
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency revolution. ACM
Queue, 3(7), 2005.

EECS 124, UC Berkeley: 18

If concurrency were intrinsically hard, we
would not function well in the physical world

It is not
concurrency that
is hard…

10

EECS 124, UC Berkeley: 19

…It is Threads that are Hard!

Threads are sequential processes that share
memory. From the perspective of any thread, the
entire state of the universe can change between
any two atomic actions (itself an ill-defined
concept).

Imagine if the physical world did that…

EECS 124, UC Berkeley: 20

Problems with the Foundations

A model of computation:

Bits: B = {0, 1}
Set of finite sequences of bits: B∗

Computation: f : B∗→ B∗

Composition of computations: f • f '
Programs specify compositions of computations

Threads augment this model to admit concurrency.

But this model does not admit concurrency gracefully.

11

EECS 124, UC Berkeley: 21

Basic Sequential Computation

initial state: b0 ∈ B∗

final state: bN

sequential
composition

bn = fn (bn-1)

Formally, composition of computations is function composition.

EECS 124, UC Berkeley: 22

When There are Threads,
Everything Changes

suspend

A program no longer
computes a function.

resume

another thread can
change the state

bn = fn (bn-1)

b'n = fn (b'n-1)

Apparently, programmers find this
model appealing because nothing has
changed in the syntax.

12

EECS 124, UC Berkeley: 23

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the
nondeterminism by imposing constraints on execution
order (e.g., mutexes) and limiting shared data accesses
(e.g., OO design).

EECS 124, UC Berkeley: 24

Incremental Improvements to Threads

Object Oriented programming
Coding rules (Acquire locks in the same order…)
Libraries (Stapl, Java 5.0, …)
Transactions (Databases, …)
Patterns (MapReduce, …)
Formal verification (Blast, thread checkers, …)
Enhanced languages (Split-C, Cilk, Guava, …)
Enhanced mechanisms (Promises, futures, …)

