
1

Introduction to
Embedded Systems

Edward A. Lee & Sanjit Seshia
UC Berkeley
EECS 124
Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit Seshia, All rights reserved

Lecture 21: Concurrency Models 1

EECS 124, UC Berkeley: 2

Simple Example: Spectrum Analysis

How do we keep the 
non-time critical path 
from interfering with 
the time-critical path?

Time critical path

Not time
critical path



2

EECS 124, UC Berkeley: 3

Dataflow Models

Buffered communication between concurrent components (actors).
Static scheduling: Assign to each thread a sequence of actor 
invocations (firings) and repeat forever.
Dynamic scheduling: Each time dispatch() is called, determine 
which actor can fire (or is firing) and choose one.

May need to implement interlocks in the buffers.

Actor A
FIFO buffer

Actor B

EECS 124, UC Berkeley: 4

Buffers for Dataflow

Unbounded buffers require memory allocation and deallocation
schemes.
Bounded size buffers can be realized as circular buffers or ring 
buffers, in a statically allocated array.

A read pointer r is an index into the array referring to the first empty 
location. Increment this after each read.
A fill count n is unsigned number telling us how many data items are 
in the buffer.
The next location to write to is (r + n ) modulo buffer length.
The buffer is empty if n == 0
The buffer is full if n == buffer length
Can implement n as a semaphore, providing mutual exclusion for 
code that changes n or r.



3

EECS 124, UC Berkeley: 5

Abstracted Version of the Spectrum Example:
Non-preemptive scheduling

Suppose that C requires 8 data values from A to execute. 
Suppose further that C takes much longer to execute 
than A or B. Then a schedule might look like this:

…

Assume infinitely repeated 
invocations, triggered by 
availability of data at A.

EECS 124, UC Berkeley: 6

Uniformly Timed Schedule

A preferable schedule would space invocations of 
A and B uniformly in time, as in:

…

minimum latency



4

EECS 124, UC Berkeley: 7

Non-Concurrent Uniformly Timed Schedule

Notice that in this schedule, the rate at which A and B 
can be invoked is limited by the execution time of C.

…

EECS 124, UC Berkeley: 8

Concurrent Uniformly Timed Schedule:
Preemptive schedule

With preemption, the rate at which A and B can be 
invoked is limited only by total computation:

…

…preemptions

thread 1:

thread 2:

high priority

low priority



5

EECS 124, UC Berkeley: 9

Ignoring Initial Transients,
Abstract to Periodic Tasks

In steady-state, the execution follows a simple periodic 
pattern:

…

…

thread 1:

thread 2:

sampleTime = 1 sampleTime = 1

sampleTime = 8

This follows the 
principles of rate-
monotonic 
scheduling (RMS).

EECS 124, UC Berkeley: 10

Requirement 1 for Determinacy: Periodicity

If the execution of C runs longer than expected, data 
determinacy requires that thread 1 be delayed 
accordingly. This can be accomplished with semaphore 
synchronization. But there are alternatives:

Throw an exception to indicate timing failure.
“Anytime” computation: use incomplete results of C

…

…

thread 1:

thread 2:
sampleTime: 1 sampleTime: 1

sampleTime: 8

interlock



6

EECS 124, UC Berkeley: 11

Requirement 1 for Determinacy: Periodicity

If the execution of C runs shorter than expected, data 
determinacy requires that thread 2 be delayed 
accordingly. That is, it must not start the next execution 
of C before the data is available.

…

…

thread 1:

thread 2:
sampleTime: 1 sampleTime: 1

sampleTime: 8

interlock

EECS 124, UC Berkeley: 12

Semaphore Synchronization Required Exactly 
Twice Per Major Period

Note that semaphore synchronization is not required if 
actor B runs long because its thread has higher priority. 
Everything else is automatically delayed.

…

…

thread 1:

thread 2:
sampleTime: 1 sampleTime: 1

sampleTime: 8



7

EECS 124, UC Berkeley: 13

Simulink and Real-Time Workshop 
(The MathWorks)

Typical usage pattern:
model the continuous dynamics 
of the physical plant
model the discrete-time 
controller
code generate the discrete-time 
controller using RTW

continuous-time signal

Discrete signals semantically are piecewise 
constant. Discrete blocks have periodic 
execution with a specified “sample time.”

EECS 124, UC Berkeley: 14

Explicit Buffering is required in Simulink

In Simulink, unlike dataflow, there is no buffering of data. 
To get the effect of presenting to C 8 successive 
samples at once, we have to explicitly include a buffering 
actor that outputs an array.

sampleTime: 1

sampleTime: 8



8

EECS 124, UC Berkeley: 15

Requirement 2 for Determinacy: Data Integrity 
During Execution

It is essential that input data remains stable during one 
complete execution of C, something achieved in Simulink
with a zero-order hold (ZOH) block.

thread 1:

thread 2:

sampleTime: 1

sampleTime: 8

EECS 124, UC Berkeley: 16

Simulink Strategy for Preserving Determinacy

In “Multitasking Mode,” Simulink requires a Zero-Order 
Hold (ZOH) block at any downsampling point. The ZOH 
runs at the slow rate, but at the priority of the fast rate. 
The ZOH holds the input to C constant for an entire 
execution.

thread 1:

thread 2:

ZOH ZOH

sampleTime: 1

sampleTime: 8
RingBuffer

…



9

EECS 124, UC Berkeley: 17

In Dataflow, Interlocks and Built-in Buffering take 
care of these dependencies

For dataflow, a one-time interlock ensures sufficient data 
at the input of C:

…

…first-time interlock

thread 1:

thread 2:

high priority

low priority

periodic interlocks

No ZOH 
block is 
required!

EECS 124, UC Berkeley: 18

Consider a Low-Rate Actor Sending Data to a 
High-Rate Actor

Note that data precedences make it impossible to 
achieve uniform timing for A and C with the periodic non-
concurrent schedule indicated above.

sampleTime: 1 sampleTime: 4

sequential
schedule



10

EECS 124, UC Berkeley: 19

Overlapped Iterations Can Solve This Problem

This solution takes advantage of the intrinsic buffering 
provided by dataflow models.

For dataflow, this requires the initial interlock as before, 
and the same periodic interlocks.

produce/consume: 1 produce/consume: 4

thread 1:

thread 2:

EECS 124, UC Berkeley: 20

Simulink Strategy

Without buffering, the Delay provides just one initial 
sample to C (there is no buffering in Simulink). The Delay 
and ZOH run at the rates of the slow actor, but at the 
priority of the fast ones.
Part of the objective seems to be to have no initial 
transient. Why?

sampleTime: 1 sampleTime: 4

thread 1:

thread 2:

ZOH ZOHDelay Delay ZOHDelay



11

EECS 124, UC Berkeley: 21

Discussion Questions

What about more complicated rate conversions (e.g. a 
task with sampleTime 2 feeding one with sampleTime
3)?
How can these ideas be extended to non-periodic 
execution?


