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Simple Example: Spectrum Analysis

How do we keep the 
non-time critical path 
from interfering with 
the time-critical path?

Time critical path

Not time
critical path
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Abstracted Version of the Spectrum Example

Suppose that C requires 8 data values from A to execute. 
Suppose further that C takes much longer to execute 
than A or B. Then a schedule might look like this:

…
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Dataflow

Firing rules: 
the number of 
tokens 
required to fire 
an actor.  
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Synchronous Dataflow (SDF)

If the number of tokens consumed and produced by the 
firing of an actor is constant, then static analysis can tell 
us whether we can schedule the firings to get a useful 
execution, and if so, then a finite representation of a 
schedule for such an execution can be created.
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Balance Equations

Let qA, qB be the number of firings of actors A and B. 
Let pC, cC be the number of token produced and 
consumed on a connection C.
Then the system is in balance if for all connections C

qA pC = qB cC
where A produces tokens on C and B consumes them.
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Example

Consider this example, where actors and arcs are 
numbered:

The balance equations imply that actor 3 must fire twice 
as often as the other two actors.

EECS 124, UC Berkeley: 8

Compactly Representing the Balance Equations
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Example

A solution to balance equations:
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This tells us that actor 3 must fire twice as often as actors 1 and 2.
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Example

But there are many solutions to the balance equations:

For “well-behaved” models, there is a unique least 
positive integer solution.
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Least Positive Solution to the Balance Equations

Note that if pC, cC , the number of tokens produced and 
consumed on a connection C, are non-negative integers, 
then the balance equation,

qA pC = qB cC
implies:

qA is rational if an only if qB is rational.
qA is positive if an only if qB is positive.

Consequence: Within any connected component, if there 
is any solution to the balance equations, then there is a 
unique least positive integer solution.

EECS 124, UC Berkeley: 12

Rank of a Matrix

The rank of a matrix Γ is the number of linearly 
independent rows or columns. The equation

is forming a linear combination of the columns of G. Such 
a linear combination can only yield the zero vector if the 
columns are linearly dependent (this is what is means to 
be linearly dependent).

If Γ has a rows and b columns, the rank cannot exceed 
min( a, b). If the columns or rows of Γ are re-ordered, the 
resulting matrix has the same rank as Γ.

0
r

=Γq
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Rank of the Production/Consumption Matrix

Let a be the number of actors in a connected graph. Then 
the rank of the production/consumption matrix Γ must be 
a or a − 1.

Γ has a columns and at least a − 1 rows. If it has only a −
1 columns, then it cannot have rank a.

If the model is a spanning tree (meaning that there are 
barely enough connections to make it connected) then  Γ
has a rows and a − 1 columns. Its rank is a − 1. (Prove by 
induction). 
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Consistent Models

Let a be the number of actors in a connected model. The 
model is consistent if Γ has rank a − 1.

If the rank is a, then the balance equations have only a 
trivial solution (zero firings). 

When Γ has rank a − 1, then the balance equations 
always have a non-trivial solution.
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Example of an Inconsistent Model:
No Non-Trivial Solution to the Balance Equations

This production/consumption matrix has rank 3, so there 
are no nontrivial solutions to the balance equations.

Note that this model can execute forever, but it requires 
unbounded memory.
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Deadlock

Some dataflow models cannot execute forever. In the 
above model, the feedback loop injects initial tokens, but 
not enough for the model to execute.
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A Key Question: If More Than One Actor is 
Fireable in Step 2, How do I Select One?

Optimization criteria that might be applied:
Minimize buffer sizes.
Minimize the number of actor activations.
Minimize the size of the representation 
of the schedule (code size).

See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software 
Synthesis from Dataflow Graphs, Kluwer Academic Press, 1996.

Beyond our scope here, but hints that it’s an interesting problem…
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Minimum Buffer Schedule

A B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E
A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C
D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B A B C A B C A
B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F E B C A
F F F F F B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F
F F F F B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C
D E A F F F F F B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C A
B C D E A F F F F F B A B C A B C A B A B C D E A F F F F F E B C A F F F F F B
A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F F F F F B A
B C A B C A B A B C A B C D E A F F F F F B A B C A B C A B A B C D E A F F F
F F B C A B A B C A B C A B A B C D E A F F F F F B C A B A B C A B C D E A F
F F F F B A B C A B C A B A B C A B C D E A F F F F F E B A F F F F F B C A B C
A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F F F F F B C A
B A B C A B C D E A F F F F F B A B C A B C A B A B C A B C D E A F F F F F B
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F F F F B C A B A B C A B C D E F F F F F E F F F F F

Source: Shuvra Bhattacharyya
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Scheduling Tradeoffs
(Bhattacharyya, Parks, Pino)

264170Best minimum code size schedule

1021170Worst minimum code size schedule 

329400 Minimum buffer schedule, with looping

3213735 Minimum buffer schedule, no looping

DataCodeScheduling strategy

Source: Shuvra Bhattacharyya
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Dynamic Dataflow

Imperative
equivalent:

while (true) {
x = f1();
b = f7();
if (b) {

y = f3(x);
} else {

y = f4(x);
}
f6(y);

}

The if-then-else model is not SDF. 
But we can clearly give a bounded 
quasi-static schedule for it:
(1, 7, 2, b?3, !b?4, 5, 6)

What consumption rate?

What production rate?

guard
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Facts about dynamic dataflow

Whether there exists a schedule that does not 
deadlock is undecidable.

Whether there exists a schedule that executes forever 
with bounded memory is undecidable.

Undecidable means that there is no algorithm that can 
answer the question in finite time for all finite models.
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Structured Dataflow

LabVIEW uses homogeneous SDF augmented with 
syntactically constrained forms of feedback and rate 
changes:

While loops
Conditionals
Sequences

LabVIEW models are decidable.
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Many other concurrent MoCs have been explored

(Kahn) process networks
Communicating sequential processes (rendezvous)
Time-driven models
More dataflow variants:

cyclostatic
heterochronous

Petri nets


