

Simple Example: Spectrum Analysis

Time critical path
How do we keep the non-time critical path from interfering with the time-critical path?

EECS 124, UC Berkeley: 2

Abstracted Version of the Spectrum Example

Suppose that C requires 8 data values from A to execute. Suppose further that C takes much longer to execute than A or B. Then a schedule might look like this:

Dataflow

Each signal has form $x: \mathbb{N} \rightarrow R$. The function F maps such signals into such signals. The function f (the "firing function") maps prefixes of these signals into prefixes of the output. Operationally, the actor consumes some number of tokens and produces some number of tokens to construct the output signal(s) from the in-

Firing rules: the number of tokens required to fire an actor. put signal(s). If the number of tokens consumed and produced is a constant over all firings, then the actor is called a synchronous dataflow (SDF) actor.

Synchronous Dataflow (SDF)

If the number of tokens consumed and produced by the firing of an actor is constant, then static analysis can tell us whether we can schedule the firings to get a useful execution, and if so, then a finite representation of a schedule for such an execution can be created.

Balance Equations

Let q_{A}, q_{B} be the number of firings of actors A and B.
Let p_{C}, c_{C} be the number of token produced and consumed on a connection C.
Then the system is in balance if for all connections C

$$
q_{A} p_{C}=q_{B} c_{C}
$$

where A produces tokens on C and B consumes them.

Example

Consider this example, where actors and arcs are numbered:

The balance equations imply that actor 3 must fire twice as often as the other two actors.

Compactly Representing the Balance Equations

production/consumption matrix
Connector 1

$$
\Gamma=\underbrace{\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 2 & -1 \\
2 & 0 & -1
\end{array}\right]}_{\text {Actor } 1} q=\underset{\substack{q_{1} \\
q_{2} \\
q_{3} \\
\hline \\
\text { firing vector }}}{\left[\begin{array}{l}
q_{1}
\end{array}\right]}
$$

balance equations

EECS 124, UC Berkeley: 8

Example

A solution to balance equations:

$$
q=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \quad \Gamma=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 2 & -1 \\
2 & 0 & -1
\end{array}\right] \quad \Gamma q=\overrightarrow{0}
$$

Example

But there are many solutions to the balance equations:
$q=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right] \quad q=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \quad q=\left[\begin{array}{l}2 \\ 2 \\ 4\end{array}\right] \quad q=\left[\begin{array}{l}-1 \\ -1 \\ -2\end{array}\right] \quad q=\left[\begin{array}{c}\pi \\ \pi \\ 2 \pi\end{array}\right] \quad \Gamma q=\overrightarrow{0}$
For "well-behaved" models, there is a unique least positive integer solution.

Least Positive Solution to the Balance Equations

Note that if p_{C}, c_{C}, the number of tokens produced and consumed on a connection C , are non-negative integers, then the balance equation,

$$
q_{A} p_{C}=q_{B} c_{C}
$$

implies:

- q_{A} is rational if an only if q_{B} is rational.
- q_{A} is positive if an only if q_{B} is positive.

Consequence: Within any connected component, if there is any solution to the balance equations, then there is a unique least positive integer solution.

Rank of a Matrix

The rank of a matrix Γ is the number of linearly independent rows or columns. The equation

$$
\Gamma q=\overrightarrow{0}
$$

is forming a linear combination of the columns of G. Such a linear combination can only yield the zero vector if the columns are linearly dependent (this is what is means to be linearly dependent).

If Γ has a rows and b columns, the rank cannot exceed $\min (a, b)$. If the columns or rows of Γ are re-ordered, the resulting matrix has the same rank as Γ.

Rank of the Production/Consumption Matrix

Let a be the number of actors in a connected graph. Then the rank of the production/consumption matrix Γ must be a or $a-1$.
Γ has a columns and at least $a-1$ rows. If it has only $a-$ 1 columns, then it cannot have rank a.

If the model is a spanning tree (meaning that there are barely enough connections to make it connected) then Γ has a rows and $a-1$ columns. Its rank is $a-1$. (Prove by induction).

Consistent Models

Let a be the number of actors in a connected model. The model is consistent if Γ has rank $a-1$.

If the rank is a, then the balance equations have only a trivial solution (zero firings).

When Γ has rank $a-1$, then the balance equations always have a non-trivial solution.

Example of an Inconsistent Model:

 No Non-Trivial Solution to the Balance Equations

This production/consumption matrix has rank 3, so there are no nontrivial solutions to the balance equations.

Note that this model can execute forever, but it requires unbounded memory.

Deadlock

Some dataflow models cannot execute forever. In the above model, the feedback loop injects initial tokens, but not enough for the model to execute.

A Key Question: If More Than One Actor is Fireable in Step 2, How do I Select One?

Optimization criteria that might be applied:

- Minimize buffer sizes.
- Minimize the number of actor activations.
- Minimize the size of the representation of the schedule (code size).

See S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow Graphs, Kluwer Academic Press, 1996.

Beyond our scope here, but hints that it's an interesting problem...

Minimum Buffer Schedule

ABABCABCABABCABCDEAFFFFFBABCABCABABCDE AFFFFFBCABABCABCABABCDEAFFFFFBCABABCABC DEAFFFFFBABCABCABABCABCDEAFFFFFBABCABCA BABCDEAFFFFFBCABABCABCABABCDEAFFFFFEBCA FFFFFBABCABCDEAFFFFFBABCABCABABCABCDEAF FFFFBABCABCABABCDEAFFFFFBCABABCABCABABC DEAFFFFFBCABABCABCDEAFFFFFBABCABCABABCA BCDEAFFFFFBABCABCABABCDEAFFFFFEBCAFFFFFB ABCABCABABCDEAFFFFFBCABABCABCDEAFFFFFBA BCABCABABCABCDEAFFFFFBABCABCABABCDEAFFF FFBCABABCABCABABCDEAFFFFFBCABABCABCDEAF FFFFBABCABCABABCABCDEAFFFFFEBAFFFFFBCABC BABCABCDEAFFFFFBABCABCABABCABCDEAFFFFFB $A B C A B C A B A B C D E A F F F F F B C A B A B C A B C A B A B C D E A F$
ABCABCABABCDFABABCABCABABCABCDEAFFFFF
FFFFBCABABCABCDEFFFFFEFFFFF

Scheduling Tradeoffs

(Bhattacharyya, Parks, Pino)

Scheduling strategy	Code	Data
Minimum buffer schedule, no looping	13735	32
Minimum buffer schedule, with looping	9400	32
Worst minimum code size schedule	170	1021
Best minimum code size schedule	170	264

Source: Shuvra Bhattacharyya

Dynamic Dataflow

What consumption rate?

Imperative equivalent:

```
while (true)
```

 \(x=f 1()\);
 b = f7();
 if (b) \{
 \(y=f 3(x)\)
 \} else \{
 \(y=f 4(x)\)
 \}
 f6(y);
 \}

The if-then-else model is not SDF.
$y=f 3(x)$; But we can clearly give a bounded $y=f 4(x)$; quasi-static schedule for it:
\} \quad f6(y);
\}
(1, 7, 2, b?3,!b?4, 5, 6)
guard

Facts about dynamic dataflow

o Whether there exists a schedule that does not deadlock is undecidable.
o Whether there exists a schedule that executes forever with bounded memory is undecidable.

Undecidable means that there is no algorithm that can answer the question in finite time for all finite models.

Structured Dataflow

LabVIEW uses homogeneous SDF augmented with syntactically constrained forms of feedback and rate changes:

- While loops
- Conditionals
- Sequences

LabVIEW models are decidable.

Many other concurrent MoCs have been explored

- (Kahn) process networks
- Communicating sequential processes (rendezvous)
- Time-driven models
- More dataflow variants:
- cyclostatic
- heterochronous
- Petri nets

