
1

Introduction to
Embedded Systems

Edward A. Lee & Sanjit Seshia
UC Berkeley
EECS 124
Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit Seshia, All rights reserved

Lecture 26: Concurrency Models 3

EECS 124, UC Berkeley: 2

Model-based design

models are abstractions of systems:

structural (OO design)
ontological (type systems)
imperative logic (“procedural epistemology”)
functional logic
actor-oriented (“dynamical systems”)

All of these have their place…

2

EECS 124, UC Berkeley: 3

Example: UML static structure diagrams

Used to design object-oriented structure. Can be a model or a meta model
(a model of a modeling technique). The above example is a meta model.

NamedObj

Entity

+Entity()
+Entity(name : String)
+Entity(w : Workspace, name : String)
+connectedPorts() : Enumeration
+connectionsChanged(p : Port)
+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()
#_addPort(p : Port)
#_removePort(p : Port)

-_portList : NamedList

Port

+Port()
+Port(w : Workspace)
+Port(container : Entity, name : String)
+connectedPorts() : Enumeration
+isLinked(r : Relation) : boolean
+isOpaque() : boolean
+linkedRelations() : Enumeration
+link(r : Relation)
+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)
+unlinkAll()
#_link(r : Relation)

-_container : Entity
-_relationsList : CrossRefList

0..n0..1

containee

container

Relation

+Relation()
+Relation(name : String)
+Relation(w : Workspace, name : String)
+linkedPorts() : Enumeration
+linkedPorts(except : Port) : Enumeration
+numLinks() : int
+unlinkAll()
#_checkPort(p : Port)
#_getPortList() : CrossRefList

-_portList : CrossRefList0..n

0..n

link

link

CrossRefList

1..1

1..1

1..1
1..1

EECS 124, UC Berkeley: 4

Example: UML Statecharts

Statecharts combine finite state machines with concurrent composition.
They are due to David Harel [1987]. The above example models a simple
traffic light system, and is due to Reinhard von Hanxleden [2007].

3

EECS 124, UC Berkeley: 5

Example: Synchronous Languages

Lustre/SCADE, from http://www.esterel-technologies.com/

Typical usage pattern:
specify tasks aligned to a master
“clock” and subclocks
clock calculus checks for
consistency and deadlock
decision logic is given with
hierarchical state machines.

synchronous signal value

state machine giving decision logic

EECS 124, UC Berkeley: 6

Example: Hardware Description Languages

entity latch is
port (s,r : in bit;

q,nq : out bit);
end latch;

architecture dataflow of latch is
begin
q<=r nor nq;
nq<=s nor q;

end dataflow;

e.g. VHDL:

4

EECS 124, UC Berkeley: 7

Example: PTIDES: Programming Temporally
Integrated Distributed Embedded Systems

Distributed execution under DE semantics, with “model time”
and “real time” bound at sensors and actuators.

Input time stamps are
≥ real time

Input time stamps are
≥ real time

Output time stamps
are ≤ real time

Output time stamps
are ≤ real time

EECS 124, UC Berkeley: 8

Example: Sensor Network Languages

Component 1

interface used

interface provided

Component 2

interface used

interface provided

command invoked

command implemented event signaled

event handled

Typical usage pattern:
hardware interrupt signals
an event.
event handler posts a
task.
tasks are executed when
machine is idle.
tasks execute atomically
w.r.t. one another.
tasks can invoke
commands and signal
events.
hardware interrupts can
interrupt tasks.
exactly one mutex,
implemented by disabling
interrupts.

Command
implementers can
invoke other
commands or
post tasks, but do
not trigger events.

e.g. nesC/TinyOS

5

EECS 124, UC Berkeley: 9

Example: Network Languages

Click (Kohler) with a visual syntax in Mescal (Keutzer)

push output port
push input port

pull output port

agnostic output port

Typical usage:

queues have
push input,
pull output.
schedulers
have pull
input, push
output.
thin wrappers
for hardware
have push
output or pull
input only.

EECS 124, UC Berkeley: 10

Example: Dataflow Languages

e.g. LabVIEW, Structured dataflow model of computation

6

EECS 124, UC Berkeley: 11

Example: Continuous-Time Languages

Typical usage pattern:
model the continuous dynamics
of the physical plant
model the discrete-time
controller
code generate the discrete-time
controller

continuous-time signal

Simulink + Real-Time Workshop

EECS 124, UC Berkeley: 12

Example: Time-Triggered Models

t+10ms
t+10mst t t+5ms t+5ms

Higher frequency Task

Lower frequency task:In time-triggered
models (e.g.
Giotto, TDL,
Simulink/RTW),
each actor has a
logical execution
time (LET). Its
actual execution
time always
appears to have
taken the time of
the LET.

7

EECS 124, UC Berkeley: 13

The LET (Logical Execution Time) Programming Model

Software Task

read sensor
input at time t

write actuator
output at time t+d,
for specified d

Examples: Giotto, TDL,

Slide from Tom Henzinger

EECS 124, UC Berkeley: 14

time t time t+d

real execution
on CPU buffer output

The LET (Logical Execution Time) Programming Model

Slide from Tom Henzinger

8

EECS 124, UC Berkeley: 15

50% CPU speedup

Portability

Slide from Tom Henzinger

EECS 124, UC Berkeley: 16

Task 2

Task 1

Composability

Slide from Tom Henzinger

9

EECS 124, UC Berkeley: 17

Timing predictability: minimal jitter
Function predictability: no race conditions

Determinism

Slide from Tom Henzinger

EECS 124, UC Berkeley: 18

make output available
as soon as ready

Contrast LET with Standard Practice

Slide from Tom Henzinger

10

EECS 124, UC Berkeley: 19

data race

Contrast LET with Standard Practice

Slide from Tom Henzinger

EECS 124, UC Berkeley: 20

Some efforts get confused:
IEC 61499

International Electrotechnical Commission
(IEC) 61499 is a standard established in
2005 for distributed control systems
software engineering for factory automation.

The standard is (apparently) inspired by formal composition of state
machines, and is intended to facilitate formal verification.

Regrettably, the standard essentially fails to give a concurrency model,
resulting in radically different behaviors of the same source code from on
runtime environments from different vendors, and (worse) highly
nondeterministic behaviors on runtimes from any given vendor.

See: Ĉengić, G., Ljungkrantz, O. and Åkesson, K., Formal Modeling of Function Block
Applications Running in IEC 61499 Execution Runtime. in 11th IEEE International Conference
on Emerging Technologies and Factory Automation, (Prague, Czech Republic 2006).

11

EECS 124, UC Berkeley: 21

There are many ways to view computation and its
integration with physical dynamics.

Concerns:
timeliness
modularity
composability
reliability
robustness
concurrency
resource usage (energy, time, …)

EECS 124, UC Berkeley: 22

A Story

In “fly by wire” aircraft, certification of the software is
extremely expensive. Regrettably, it is not the software
that is certified but the entire system. If a manufacturer
expects to produce a plane for 50 years, it needs a 50-
year stockpile of fly-by-wire components that are all
made from the same mask set on the same production
line. Even a slight change or “improvement” might affect
timing and require the software to be re-certified.

12

EECS 124, UC Berkeley: 23

Abstraction Layers
The purpose for an
abstraction is to
hide details of the
implementation
below and provide
a platform for
design from above.

EECS 124, UC Berkeley: 24

Abstraction Layers
Every abstraction
layer has failed in
the case of the fly-
by-wire control
system.

The design is the
implementation.

13

EECS 124, UC Berkeley: 25

Abstraction Layers
How about “raising the
level of abstraction” to
solve these problems?

EECS 124, UC Berkeley: 26

These higher abstractions rely on WCET, which is
increasingly problematic

Example of what it takes to do WCET analysis:

Ferdinand et al. determine the WCET of astonishingly simple
avionics code from Airbus running on a Motorola ColdFire
5307, a pipelined CPU with a unified code and data cache.
Despite the software consisting of a fixed set of non-
interacting tasks containing only simple control structures,
their solution required detailed modeling of the seven-stage
pipeline and its precise interaction with the cache, generating
a large integer linear programming problem. The technique
successfully computes WCET, but only with many caveats
that are increasingly rare in software.

Fundamentally, the ISA of the processor has failed to provide
an adequate abstraction.

C. Ferdinand et al., “Reliable and precise WCET determination
for a real-life processor.” EMSOFT 2001.

14

EECS 124, UC Berkeley: 27

A Key Problem

Electronics technology delivers highly and precise
timing…

… and the overlaying software abstractions discard it.

“Correct” execution of a C program has nothing to do with
how long it takes to do anything.

EECS 124, UC Berkeley: 28

Instead of a Program Specifying…

f : {0,1}∗ → {0,1}∗

… a (partial) function from bit
sequences to bit sequences …

15

EECS 124, UC Berkeley: 29

… A Program Should Specify

f : [T → {0,1}∗]P → [T → {0,1}∗]P

…where T is a (partially) ordered set
representing time, precedence ordering,
causality, synchronization, etc.

“signal” “signal”
“actor”

EECS 124, UC Berkeley: 30

This is the Basis for Actor-Oriented Models

Cascade connections
Parallel connections
Feedback connections

If actors are functions on signals, then the
nontrivial part of this is feedback.

Many of the Models of
Computation we have
seen fit this view:

• Time-Triggered
• Discrete Events
• Dataflow
• Rendezvous
• Synchronous/Reactive
• Continuous Time
• Mixtures of the above
• …

x ∈ [T → {0,1}*]

16

EECS 124, UC Berkeley: 31

Examples of Actor-Oriented “Languages”

CORBA event service (distributed push-pull)
LabVIEW (dataflow, National Instruments)
Modelica (continuous-time, Linkoping)
OPNET (discrete events, Opnet Technologies)
Occam (rendezvous)
ROOM and UML-2 (dataflow, Rational, IBM)
SCADE and synchronous languages (synchronous/reactive)
SDL (process networks)
Simulink (Continuous-time, The MathWorks)
SPW (synchronous dataflow, Cadence, CoWare)
VHDL, Verilog (discrete events, Cadence, Synopsys, ...)
…

Many of these are
domain specific.

Many of these
have visual
syntaxes.

The semantics of these differ considerably,
but all can be modeled as

f : [T → {0,1}∗]P → [T → {0,1}∗]P

with appropriate choices of the set T.

EECS 124, UC Berkeley: 32

The notion of time is not so easy to nail down

Is “current time” knowable to all players in a system?
Can cause and effect take zero time?
Does simultaneity imply nondeterminism?
What is concurrency?
Does concurrency imply nondeterminism?

