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Model-based design

models are abstractions of systems:

structural (OO design)
ontological (type systems)
imperative logic (“procedural epistemology”)
functional logic
actor-oriented (“dynamical systems”)

All of these have their place…



2

EECS 124, UC Berkeley: 3

Example: UML static structure diagrams

Used to design object-oriented structure. Can be a model or a meta model
(a model of a modeling technique). The above example is a meta model.

NamedObj

Entity

+Entity()
+Entity(name : String)
+Entity(w : Workspace, name : String)
+connectedPorts() : Enumeration
+connectionsChanged(p : Port)
+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()
#_addPort(p : Port)
#_removePort(p : Port)

-_portList : NamedList

Port

+Port()
+Port(w : Workspace)
+Port(container : Entity, name : String)
+connectedPorts() : Enumeration
+isLinked(r : Relation) : boolean
+isOpaque() : boolean
+linkedRelations() : Enumeration
+link(r : Relation)
+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)
+unlinkAll()
#_link(r : Relation)

-_container : Entity
-_relationsList : CrossRefList
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+Relation()
+Relation(name : String)
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+linkedPorts(except : Port) : Enumeration
+numLinks() : int
+unlinkAll()
#_checkPort(p : Port)
#_getPortList() : CrossRefList

-_portList : CrossRefList0..n
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Example: UML Statecharts

Statecharts combine finite state machines with concurrent composition. 
They are due to David Harel [1987]. The above example models a simple 
traffic light system, and is due to Reinhard von Hanxleden [2007].
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Example: Synchronous Languages

Lustre/SCADE, from http://www.esterel-technologies.com/

Typical usage pattern:
specify tasks aligned to a master 
“clock” and subclocks
clock calculus checks for 
consistency and deadlock
decision logic is given with 
hierarchical state machines.

synchronous signal value

state machine giving decision logic
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Example: Hardware Description Languages

entity latch is
port (s,r : in bit;

q,nq : out bit);
end latch;

architecture dataflow of latch is
begin
q<=r nor nq;
nq<=s nor q;

end dataflow;

e.g. VHDL:
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Example: PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems

Distributed execution under DE semantics, with “model time”
and “real time” bound at sensors and actuators.

Input time stamps are 
≥ real time

Input time stamps are 
≥ real time

Output time stamps 
are ≤ real time

Output time stamps 
are ≤ real time

EECS 124, UC Berkeley: 8

Example: Sensor Network Languages

Component 1

interface used

interface provided

Component 2

interface used

interface provided

command invoked

command implemented event signaled

event handled

Typical usage pattern:
hardware interrupt signals 
an event.
event handler posts a 
task.
tasks are executed when 
machine is idle.
tasks execute atomically 
w.r.t. one another.
tasks can invoke 
commands and signal 
events.
hardware interrupts can 
interrupt tasks.
exactly one mutex, 
implemented by disabling 
interrupts.

Command 
implementers can 
invoke other 
commands or 
post tasks, but do 
not trigger events.

e.g. nesC/TinyOS



5

EECS 124, UC Berkeley: 9

Example: Network Languages

Click (Kohler) with a visual syntax in Mescal (Keutzer)

push output port
push input port

pull output port

agnostic output port

Typical usage:

queues have 
push input, 
pull output.
schedulers 
have pull 
input, push 
output.
thin wrappers 
for hardware 
have push 
output or pull 
input only.
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Example: Dataflow Languages

e.g. LabVIEW, Structured dataflow model of computation
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Example: Continuous-Time Languages 

Typical usage pattern:
model the continuous dynamics 
of the physical plant
model the discrete-time 
controller
code generate the discrete-time 
controller

continuous-time signal

Simulink + Real-Time Workshop
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Example: Time-Triggered Models

t+10ms
t+10mst t t+5ms t+5ms

Higher frequency Task

Lower frequency task:In time-triggered 
models (e.g. 
Giotto, TDL, 
Simulink/RTW), 
each actor has a 
logical execution 
time (LET). Its 
actual execution 
time always 
appears to have 
taken the time of 
the LET.
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The LET (Logical Execution Time) Programming Model

Software Task

read sensor 
input at time t

write actuator 
output at time t+d, 
for specified d

Examples: Giotto, TDL, 

Slide from Tom Henzinger
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time t time t+d

real execution 
on CPU buffer output

The LET (Logical Execution Time) Programming Model

Slide from Tom Henzinger
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50% CPU speedup

Portability

Slide from Tom Henzinger
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Task 2

Task 1

Composability

Slide from Tom Henzinger
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Timing predictability:     minimal jitter                       
Function predictability:  no race conditions                    

Determinism

Slide from Tom Henzinger
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make output available 
as soon as ready

Contrast LET with Standard Practice

Slide from Tom Henzinger
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data race

Contrast LET with Standard Practice

Slide from Tom Henzinger
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Some efforts get confused:
IEC 61499

International Electrotechnical Commission
(IEC) 61499 is a standard established in 
2005 for distributed control systems 
software engineering for factory automation.

The standard is (apparently) inspired by formal composition of state 
machines, and is intended to facilitate formal verification.

Regrettably, the standard essentially fails to give a concurrency model, 
resulting in radically different behaviors of the same source code from on 
runtime environments from different vendors, and (worse) highly 
nondeterministic behaviors on runtimes from any given vendor.

See: Ĉengić, G., Ljungkrantz, O. and Åkesson, K., Formal Modeling of Function Block 
Applications Running in IEC 61499 Execution Runtime. in 11th IEEE International Conference 
on Emerging Technologies and Factory Automation, (Prague, Czech Republic 2006).
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There are many ways to view computation and its 
integration with physical dynamics.

Concerns:
timeliness
modularity
composability
reliability
robustness
concurrency
resource usage (energy, time, …)
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A Story

In “fly by wire” aircraft, certification of the software is 
extremely expensive. Regrettably, it is not the software 
that is certified but the entire system. If a manufacturer 
expects to produce a plane for 50 years, it needs a 50-
year stockpile of fly-by-wire components that are all 
made from the same mask set on the same production 
line. Even a slight change or “improvement” might affect 
timing and require the software to be re-certified.
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Abstraction Layers
The purpose for an 
abstraction is to 
hide details of the 
implementation 
below and provide 
a platform for 
design from above.
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Abstraction Layers
Every abstraction 
layer has failed in 
the case of the fly-
by-wire control 
system.

The design is the 
implementation.
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Abstraction Layers
How about “raising the 
level of abstraction” to 
solve these problems?
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These higher abstractions rely on WCET, which is 
increasingly problematic

Example of what it takes to do WCET analysis:

Ferdinand et al. determine the WCET of astonishingly simple 
avionics code from Airbus running on a Motorola ColdFire
5307, a pipelined CPU with a unified code and data cache. 
Despite the software consisting of a fixed set of non-
interacting tasks containing only simple control structures, 
their solution required detailed modeling of the seven-stage 
pipeline and its precise interaction with the cache, generating 
a large integer linear programming problem. The technique 
successfully computes WCET, but only with many caveats 
that are increasingly rare in software. 

Fundamentally, the ISA of the processor has failed to provide 
an adequate abstraction.

C. Ferdinand et al., “Reliable and precise WCET determination 
for a real-life processor.” EMSOFT 2001.
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A Key Problem

Electronics technology delivers highly and precise 
timing…

… and the overlaying software abstractions discard it.

“Correct” execution of a C program has nothing to do with 
how long it takes to do anything.
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Instead of a Program Specifying…

f : {0,1}∗ → {0,1}∗

… a (partial) function from bit 
sequences to bit sequences …
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… A Program Should Specify

f : [T → {0,1}∗]P → [T → {0,1}∗]P

…where T is a (partially) ordered set 
representing time, precedence ordering, 
causality, synchronization, etc.

“signal” “signal”
“actor”
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This is the Basis for Actor-Oriented Models 

Cascade connections
Parallel connections
Feedback connections

If actors are functions on signals, then the 
nontrivial part of this is feedback.

Many of the Models of 
Computation we have 
seen fit this view:

• Time-Triggered
• Discrete Events
• Dataflow
• Rendezvous
• Synchronous/Reactive
• Continuous Time
• Mixtures of the above
• …

x ∈ [T → {0,1}*]
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Examples of Actor-Oriented “Languages”

CORBA event service (distributed push-pull)
LabVIEW (dataflow, National Instruments)
Modelica (continuous-time, Linkoping)
OPNET (discrete events, Opnet Technologies)
Occam (rendezvous)
ROOM and UML-2 (dataflow, Rational, IBM)
SCADE and synchronous languages (synchronous/reactive)
SDL (process networks)
Simulink (Continuous-time, The MathWorks)
SPW (synchronous dataflow, Cadence, CoWare)
VHDL, Verilog (discrete events, Cadence, Synopsys, ...)
…

Many of these are 
domain specific.

Many of these 
have visual 
syntaxes.

The semantics of these differ considerably, 
but all can be modeled as

f : [T → {0,1}∗]P → [T → {0,1}∗]P

with appropriate choices of the set T.
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The notion of time is not so easy to nail down

Is “current time” knowable to all players in a system?
Can cause and effect take zero time?
Does simultaneity imply nondeterminism?
What is concurrency?
Does concurrency imply nondeterminism?


