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Lecture 16: Controller Synthesis
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Recap of Concepts from Last Time

Synthesis is a Game 

between the Robot (“System”) and its Environment

Goal:  F φ

Robot wins if it reaches φ

Environment wins otherwise

� Zero-sum game

Goal: G ¬ φ

Environment wins if φ is always false

Robot wins otherwise
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Controllable State (for the robot)

A state from which, no matter what the environment 

does, the robot can reach its goal.

If there is a start state that is also controllable, then the 

robot has a winning strategy.

φφφφ

start

Env_Moves = MAX_MOVES
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Environment & System Step Simultaneously

Example due to C. Tomlin

p

¬ ¬ ¬ ¬ p
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Rest of today’s lecture

� Discuss synthesis for G F p 

� How to synthesize a continuous trajectory 
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Handling other kinds of Temporal Logic Goals
G F p

Example: 

The iRobot must visit the charging station infinitely often

� Consider the FSM formed by 

composing the iRobot FSM with its Environment FSM

� Visualize this FSM as a directed graph

� Suppose that “visiting the charging station” is a state 

p in this graph

What graph property corresponds to visiting the state 

p infinitely often?
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Winning Strategy for G F p

The system must visit state p infinitely often

For benign environment (optimistic synthesis):

� The state graph must contain a cycle with state p

� How can we detect this if we have to build the graph on 

the fly? 
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Finding Winning Strategy for G F p

The system must visit state p infinitely often

For benign environment (optimistic synthesis):

� The state graph must contain a cycle with state p

� How can we detect this if we have to build the graph on 

the fly? 

Two steps:

1. Check if p is reachable from the initial state

2. Check if p is reachable from itself 
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Winning Strategy for G F p: Adversarial Setting

The system must visit state p infinitely often

How do we check this for an adversarial environment?

EECS 124, UC Berkeley: 10

Perform “Adversarial Reachability”!

Checking that p is reached infinitely often for an 

adversarial environment:

Two steps:

1. Check if p is reachable from the initial state,          

no matter what the adversary does

2. Check if p is reachable from itself,                     

no matter what the adversary does

For each of these steps, use the algorithm we used on 

slide 13 of the previous lecture
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Synthesizing a Continuous Trajectory

φφφφ

start

Suppose we have a discrete trajectory (path) to φ

How do we transform that into the 

desired continuous trajectory?

(assume static obstacles)
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Necessary Condition

φφφφ

start

φφφφ

start

If there exists a discrete trajectory, then there must also 

exist a continuous trajectory 
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The Other Condition

φφφφ

start

φφφφ

start

If there isn’t a discrete trajectory, it is possible/OK for

a continuous trajectory to exist? 
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Bisimulation (revisited)

The property we need is bisimulation.

Given: 

System = Robot + Environment

The original system H, which is a hybrid system

The discretized version D of H, which is an FSM

Claim:

If there is a bisimulation between D and H, that suffices 

to map a trajectory of D to one of H, and vice versa 
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Bisimulation for FSMs
Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I = I1 = I2 and O = O1 = O2

We say M1 bisimulates M2 iff
there exists a set R ⊆ S

1
× S

2
such that

1. R(s10, s20)

2. For all (s1, s2) ∈ R, the following conditions hold:    

For all i ∈ I, and (t2, o2) = U2(s2, i), 

there exists a (t1, o1) = U1(s1, i) s.t. 

(t1, o1) ∈ R      and     o2 = o1

For all i ∈ I, and (t1, o1) = U1(s1, i), 

there exists a (t2, o2) = U2(s2, i) s.t. 

(t2, o2) ∈ R      and     o2 = o1

i

U1

M2

M1

i

U2

R R
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Bisimulation between FSM and Hybrid System 
(HS)

Given:

Suppose the FSM M is obtained by partitioning up the 
continuous state space of the HS H into regions (e.g. 
rectangles)

� Let the partition be P : R2 � Q   

Then M bisimulates H if:

1. If P(x) = P(y), then points x and y are observationally 
equivalent

2. If P(x) = P(y), then 

for every x’ reachable from x, there is a y’ reachable from 

y s.t. P(x’) = P(y’)

and vice-versa
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Our Example

φφφφ

start

The grid above is a partition P of the 2-D space in the room

When is P a bisimulation?
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Zooming In: Bisimulation Condition 1

Sensors should work the same anywhere in a square
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Zooming In: Bisimulation Condition 2

Synthesize local control laws that mimic a discrete step

from square to adjacent square


