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Lecture 1: Cyber Physical Systems
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2001 National Research Council Report
Embedded Everywhere

“Information technology (IT) is on the verge of another revolution. Driven 
by the increasing capabilities and ever declining costs of computing and 
communications devices, IT is being embedded into a growing range of 
physical devices linked together through networks and will become ever 
more pervasive as the component technologies become smaller, faster, 
and cheaper... These networked systems of embedded computers ... have 
the potential to change radically the way people interact with their 
environment by linking together a range of devices and sensors that will 
allow information to be collected, shared, and processed in unprecedented 
ways. ... The use of [these embedded computers] throughout society could 
well dwarf previous milestones in the information revolution.”



2

EECS 124, UC Berkeley: 3

What are Embedded Systems?

Computational systems
but not first-and-foremost a computer

Integral with physical processes
sensors, actuators, physical dynamics

Reactive
at the speed of the environment

Heterogeneous
hardware/software/networks, mixed architectures

Networked
concurrent, distributed, dynamic
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Example: Automotive electronics today

Up to 80 computers (electronic control units, ECUs) in a 
premium car today:

engine control, transmission, anti-lock brakes, electronic 
suspension, parking assistance, climate control, audio 
system, “body electronics” (seat belt, etc.), display and 
instrument panel, etc.
linked together by CAN bus (today), FlexRay (tomorrow) 
with up to 2km of wiring.
growing fraction of development costs, manufacturing 
costs, and fuel consumption.
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Traditionally, embedded systems was an industrial (not 
academic) problem, principally about resource limitations.

small memory
small data word sizes
relatively slow clocks

When these are the key problems, emphasize efficiency:
write software at a low level (in assembly code or C)
avoid operating systems with a rich suite of services
develop specialized computer architectures:

programmable DSPs
network processors

develop specialized networks
Can, FlexRay, TTP/C, MOST, etc.

This is how embedded SW has been designed for 30 years
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But embedded systems do have more fundamental 
differences from general-purpose computation:

time matters
“as fast as possible” is not good enough

concurrency is intrinsic
it’s not an illusion (as in time sharing), and
it’s not (necessarily) about exploiting parallelism

processor requirements can be specialized
predictable, repeatable timing
support for common operations (e.g. FIR filters)
need for specialized data types (fixed point, bit vectors)

programs need to run (essentially) forever
memory usage has to be bounded
rebooting is not acceptable



4

EECS 124, UC Berkeley: 7

Prevailing software engineering methods fall short
programming languages have no temporal semantics

“correct” execution of C has nothing to do with how long it takes.
emphasis on expressiveness over analyzability

programming languages are expected to be Turing complete
bounded memory usage is undecidable
termination is undecidable (we usually want non-termination)

emphasis on programmer convenience
automated memory management (garbage collection)

modularity methods focus on static structure
object-oriented design and type systems

performance optimization is not enough
behavior has to be repeatable and predictable

EECS 124, UC Berkeley: 8

One possibility is to augment standard software 
engineering with “non-functional properties”

Time
Security
Fault tolerance
Power consumption

(“quality of service”)

But the formulation of the question is very telling:

How is it that when a braking system applies the brakes is 
any less a function of the braking system than how much
braking it applies?
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What about “real time”?

Make it faster!

What if you need “absolutely positively on time”?

Today, most embedded software engineers write code, build your system, 
and test for timing. Model-based design seeks to specify dynamic behavior 
(including timing) and “compile” implementations that meet the behavior.
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Real-time systems should not be about “quality of 
service” but rather about “correctness of service.”

Traditionally, 
“faster is better.”

This is like saying 
that for a roller 
coaster, 
“stronger is 
better.”

We have to 
change the 
mindset to 
“not fast enough 
is wrong!”
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Prioritize and Pray!

Real-Time Multitasking?

All too often, real-time operating 
systems (RTOSs) are used in a 
rather ad hoc way. Without any 
particular principles, engineers 
tweak priorities until the 
prototype works under test.

The resulting system is brittle, 
meaning the small changes in 
the operating conditions (or in 
the design of the system) can 
cause big changes in behavior. 
For example, replacing the 
processor with a faster one can 
cause real-time failures.
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An engineer’s responsibility

Korean Air 747 in Guam, 200 deaths (1997)
30,000 deaths and 600,000 injuries from medical devices (1985-2005)

perhaps 8% due to software?

source: D. Jackson, M. Thomas, L. I. Millett, and the Committee on Certifiably 
Dependable Software Systems, "Software for Dependable Systems: Sufficient 
Evidence?," National Academies Press, May 9 2007.
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Beyond embedded systems:
Cyber-Physical Systems (CPS)

CPS: Orchestrating networked computational 
resources with physical systems.
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Some CPS applications:

telepresence
distributed physical games
traffic control and safety
financial networks
medical devices and systems
assisted living
advanced automotive systems,
energy conservation
environmental control
aviation systems
critical infrastructure (power, water) 
distributed robotics
military systems
smart structures
biosystems (morphogenesis,…)

Potential impact
social networking and games
safe/efficient transportation
fair financial networks
integrated medical systems
distributed micro power generation 
military dominance
economic dominance
disaster recovery
energy efficient buildings
alternative energy
pervasive adaptive communications
distributed service delivery
…

Dec. 11, 2006: Dancers 
in Berkeley dancing in 

real time with dancers in 
Urbana-Champagne
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Example: Toyota autonomous vehicle technology 
roadmap
Source: Toyota Web site
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DARPA Grand Challenge
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Current European “grand challenge”
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Where CPS Differs from
the traditional embedded systems problem:

The traditional embedded systems problem:
Embedded software is software on small computers. The 
technical problem is one of optimization (coping with 
limited resources).

The CPS problem:
Computation and networking integrated with physical 
processes. The technical problem is managing time and 
concurrency in networked computational systems.
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Model-based design

models are abstractions of systems:

structural (OO design)
ontological (type systems)
imperative logic (“procedural epistemology”)
functional logic
actor-oriented (“dynamical systems”)

All of these have their place…
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A premise in computing is the universality of the 
notion of “computability.” But is it really universal?

Correct execution of a program in C, C#, Java, 
Haskell, etc. has nothing to do with how long it 
takes to do anything. All our computation and 
networking abstractions are built on this premise.

Timing of programs is not repeatable, 
except at very coarse granularity. 

Programmers have to step outside the 
programming abstractions to specify 
timing behavior.
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A Story

In “fly by wire” aircraft, certification of the software is 
extremely expensive. Regrettably, it is not the software 
that is certified but the entire system. If a manufacturer 
expects to produce a plane for 50 years, it needs a 50-
year stockpile of fly-by-wire components that are all 
made from the same mask set on the same production 
line. Even a slight change or “improvement” might affect 
timing and require the software to be re-certified.


