
�1

Introduction to
Embedded Systems

Edward A. Lee & Sanjit A. Seshia
UC Berkeley

EECS 124

Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit A. Seshia, All rights reserved

Lecture 6: Simulation of Discrete-Event Systems

Material drawn from book by Banks et al., notes by M. Harchol-Balter

EECS 124, UC Berkeley: 2

Discrete-Event System

A dynamical system whose evolution is governed by the

occurrence of events at discrete time points, at possibly

irregularly-spaced intervals (Informal defn)

Many cyber-physical systems are modeled as discrete-

event systems:

� Communication networks

� Microprocessors

� Manufacturing facilities

� Communicating robots

�2

EECS 124, UC Berkeley: 3

Example: Communicating Robots/Sensor Nodes

Network can

fwd, corrupt, drop

packets

send

recv

EECS 124, UC Berkeley: 4

This Lecture

How to build a simulator for a discrete-event system

– the basics

Examples of such simulators:

� ns-2 (for simulating computer networks)

� ModelSim (for simulating digital circuit designs)

�3

EECS 124, UC Berkeley: 5

Simulating a Discrete-Event System (DES)

Discrete-Event

System

Input

Process

3.

How to

check Output?

2.

How to generate

random input?

i/p o/p

Environment

1.

How to simulate

the system

on an input?

EECS 124, UC Berkeley: 6

Simulating the System with an Event Queue

Simulation Timer, T = 0

Repeat while there are events in the event queue:

1. Dequeue event at head of queue (“imminent event”)

2. Advance simulation timer to time of imminent event

3. Execute imminent event: update system state

4. Generate future events and enqueue them

. . .

Event queue

t1
e1

t2
e2

t3
e3

timestamp

event record t1 < t2 < t3 < …

�4

EECS 124, UC Berkeley: 7

Example of Simulation with Event Queue

Network

1

2

3

e1 = send(1, 2, 00)

T = 0

. . .

Event queue

1.5

e1

e2 = send(3, 1, 10)

3.8

e2

EECS 124, UC Berkeley: 8

Example of Simulation with Event Queue

Network

1

2

3

e3 = fwd(2, 1, 00)

T = 1.5

. . .

Event queue

1.6

e3

e2 = send(3, 1, 10)

3.8

e2

�5

EECS 124, UC Berkeley: 9

Example of Simulation with Event Queue

Network

1

2

3

e4 = recv(2, 1, 00)

T = 1.6

. . .

Event queue

3.8

e2

e2 = send(3, 1, 10)

4.1

e4

EECS 124, UC Berkeley: 10

Implementing the Event Queue

� Event with smallest time-stamp must be dequeued

� New events must be inserted into sorted order

according to their timestamps

� Efficient Data Structure: Priority Queue

� Particular version: Calendar Queue

[R. Brown, Comm. of the ACM, 1988, vol. 31(10)]

�6

EECS 124, UC Berkeley: 11

Simulating a Discrete-Event System (DES)

Discrete-Event

System

Input

Process

3.

How to

check Output?

2.

How to generate

random input?

i/p o/p

Environment

1.

How to simulate

the system?

EECS 124, UC Berkeley: 12

Generating Random Inputs

Suppose we have an input signal taking values in a set of

“events”: {e1, e2, e3, …, en}

Suppose event ei occurs with probability pi

∑i pi = 1

How do we generate events randomly?

�7

EECS 124, UC Berkeley: 13

Inverse Transform Method

� Generate u in [0,1) – uniformly at random

� using your programming environment’s built-in

pseudo-random number generator

� e.g. drand48() in C

� Add up pi’s until we get to

∑i=1
j pi � u < ∑i=1

j+1 pi

� Generate input event ej+1

Is this an efficient procedure?

EECS 124, UC Berkeley: 14

Analysis of Inverse Transform Method

Inefficient if n is large

Why?

Because we need to compute many partial sums ∑i pi in
order to figure out where u lies

� worst case: n-1 such sums

There’s one special case where sampling from the pi’s is

easy: what is it?

�8

EECS 124, UC Berkeley: 15

Solution: The Accept/Reject Method

Easy to generate events uniformly at random efficiently

But in general, we have an arbitrary probability mass

function p1, p2, …, pn.

How can we leverage the ease of generating uniformly at

random to generate according to the pi’s?

� The accept/reject method gives us a way to do this

EECS 124, UC Berkeley: 16

General Setup

Given:

Efficient method for sampling from n events according to

p.m.f. {q1, q2, … qn}

� e.g. the pmf is uniform random, qi = 1/n for all i

Need:

Efficient method for sampling from same n events but

according to non-uniform p.m.f. {p1, p2, …, pn}

Constraint: ∀ i, qi > 0 iff pi > 0

Any ideas on how to do this?

�9

EECS 124, UC Berkeley: 17

Idea #1 for Accept/Reject Method

Do two steps:

1. Select index i randomly according to easy distribution

{q1, q2, …, qn}

2. Then accept the index i with probability pi

� generate event ei

� otherwise go back to step 1

How do we implement this?

EECS 124, UC Berkeley: 18

Idea #1 for Accept/Reject Method

Do two steps:

1. Select index i randomly according to easy distribution

{q1, q2, …, qn}

2. Then accept the index i with probability pi

� generate event ei

Two questions:

1. Is this correct?

� Are we really generating ei according to p1, p2, …,pn?

2. Is this efficient?

� What is the expected #trials before we generate ei?

YES, if each qi = 1/n

On the order of n

�10

EECS 124, UC Berkeley: 19

Idea #2 for Accept/Reject Method

Do three steps:

1. Initially: select c such that pi/qi � c ∀ i s.t. pi > 0

2. Select index i randomly according to easy distribution

{q1, q2, …, qn}

3. Then accept the index i with probability pi/(c qi)

� generate event ei

EECS 124, UC Berkeley: 20

Idea #2 for Accept/Reject Method

Do three steps:

1. Initially: select c such that pi/qi � c ∀ i s.t. pi > 0

2. Select index i randomly according to easy distribution

{q1, q2, …, qn}

3. Then accept the index i with probability pi/(c qi)

� generate event ei

Claim: This method is

� Correct: Pr(ej is generated) = pj

� Efficient: Expected #trials = c

�11

EECS 124, UC Berkeley: 21

Accept/Reject works the same way for
Continuous Random Variables, too!

Given: How to generate Y with “easy” probability density

function (pdf) fY(t)

Need: To generate X with pdf fX(t)

Constraint: ∀ t, fY(t) > 0 iff fX(t) > 0

Algorithm:

1. Pick constant c such that fX(t) � c fY(t) ∀ t s.t. fY(t) > 0

2. Sample t according to fY
3. Accept X = t with probability fX(t) / [c fY(t)]

Useful for generating inter-arrival times of events

EECS 124, UC Berkeley: 22

Simulating a Discrete-Event System (DES)

Discrete-Event

System

Input

Process

3.

How to

check Output?

2.

How to generate

random input?

i/p o/p

Environment

1.

How to simulate

the system?

�12

EECS 124, UC Berkeley: 23

How to check the output

First, we need to know WHAT to check

� i.e., what the system must do

Temporal Logic

A formal notation for specifying what the system must do

� specifies system properties over time

EECS 124, UC Berkeley: 24

Propositional Temporal Logic

Every send(1, 2) is eventually followed by a recv(2, 1)

G { send(1,2) ⇒ F recv(2, 1) }

At any point in time

If a send(1, 2) occurs

It is eventually followed by a recv(2, 1)

�13

EECS 124, UC Berkeley: 25

Propositional Temporal Logic

Every send(1, 2) is eventually followed by a recv(2, 1)

G { send(1,2) ⇒ F recv(2, 1) }

init
seen

send(1,2)

send(1,2)

recv(2, 1)

Should not get stuck in this state

EECS 124, UC Berkeley: 26

Real-Time Temporal Logic

Every send(1, 2) is followed by a recv(2, 1) within 2.5 ms

G { send(1,2) ⇒ F����2.5 recv(2, 1) }

init
seen
send(1,2)

send(1,2); x:=0

x � 2.5 ∧ recv(2, 1)

error

x > 2.5

�14

EECS 124, UC Berkeley: 27

Next Monday

More on Temporal Logic

Reachability Analysis

� foundation for algorithms for verification and control of

discrete and hybrid systems

