
�1

Introduction to
Embedded Systems

Edward A. Lee & Sanjit A. Seshia
UC Berkeley

EECS 124

Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit A. Seshia, All rights reserved

Lecture 19: Execution Time Analysis

EECS 124, UC Berkeley: 2

Source

Material in this lecture is drawn from the following

sources:

� “The Worst-Case Execution Time Problem – Overview
of Methods and Survey of Tools”, R. Wilhelm et al., ACM
Transactions on Embedded Computing Systems, 2007.

� Chapter 9 of “Computer Systems: A Programmer's
Perspective”, R. E. Bryant and D. R. O’Hallaron,
Prentice-Hall, 2002.

� “Performance Analysis of Real-Time Embedded
Software,” Y-T. Li and S. Malik, Kluwer Academic Pub.,

1999.

�2

EECS 124, UC Berkeley: 3

Worst-Case Execution Time (WCET) of a Task

The longest time taken by a software task to execute

� Function of input data and environment conditions

BCET = Best-Case Execution Time

(shortest time taken by the task to execute)

EECS 124, UC Berkeley: 4

Worst-Case Execution Time (WCET) & BCET

Figure from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.

�3

EECS 124, UC Berkeley: 5

The WCET Problem

Given

� the code for a software task

� the platform (OS + hardware) that it will run on

Determine the WCET of the task.

Why is this problem important?

Can the WCET always be found?

The WCET is central in the design of RT Systems:

Needed for Correctness (does the task finish in time?) and

Scheduling (find optimal schedule for tasks, last Wed’s lecture)

In general, no, because the problem is undecidable.

EECS 124, UC Berkeley: 6

Typical WCET Problem

Task executes within an infinite loop

while(1) {

read_sensors();

compute();

write_to_actuators();

}

This code typically has:

� loops with finite bounds

� no recursion

Additional assumptions:

� runs uninterrupted

� single-threaded

�4

EECS 124, UC Berkeley: 7

Components of Execution Time Analysis

� Program path (Control flow) analysis

�Want to find longest path through the program

�Identify feasible paths through the program

� Find loop bounds

� Identify dependencies amongst different code fragments

� Processor behavior analysis

� For small code fragments (basic blocks), generate
bounds on run-times on the platform

� Model details of architecture, including cache behavior,
pipeline stalls, branch prediction, etc.

� Outputs of both analyses feed into each other

EECS 124, UC Berkeley: 8

Program Path Analysis: Path Explosion

for (Outer = 0; Outer < MAXSIZE; Outer++) {

/* MAXSIZE = 100 */

for (Inner = 0; Inner < MAXSIZE; Inner++) {

if (Array[Outer][Inner] >= 0) {

Ptotal += Array[Outer][Inner];

Pcnt++;

} else {

Ntotal += Array[Outer][Inner];

Ncnt++;

}

Postotal = Ptotal;

Poscnt = Pcnt;

Negtotal = Ntotal;

Negcnt = Ncnt;

}

Example cnt.c from WCET benchmarks, Malardalen Univ.

�5

EECS 124, UC Berkeley: 9

Program Path Analysis: Overall Approach

� Construct Control-Flow Graph (CFG) for the task

� Nodes represent Basic Blocks of the task

� Edges represent flow of control (jumps, branches, calls,

…)

� The problem is to identify the longest path in the CFG

� Note: CFG can have loops, so need to infer loop bounds
and unroll them

� This gives us a directed acyclic graph (DAG). How do
we find the longest path in this DAG?

EECS 124, UC Berkeley: 10

Example

N = 10;

q = 0;

while(q < N)

q++;

q = r;

B1:

N = 10;

q = 0;

B2:

while(q<N)

B4:

q = r;

B3:

q++;

x1

x2

x4 x3

d1

d2

d3

d4

d5

d6

xi � # times Bi is executed

dj � # times edge is executed

Example due to Y.T. Li and S. Malik

�6

EECS 124, UC Berkeley: 11

Program Path Analysis: Dependencies

void altitude_pid_run(void) {

float err = estimator_z - desired_altitude;

desired_climb = pre_climb + altitude_pgain * err;

if (desired_climb < -CLIMB_MAX)

desired_climb = -CLIMB_MAX;

if (desired_climb > CLIMB_MAX)

desired_climb = CLIMB_MAX;

}

Example from “PapaBench” UAV autopilot code, IRIT, France

Only one of these statements is executed

EECS 124, UC Berkeley: 12

Example, Revisited

B1:

N = 10;

q = 0;

B2:

while(q<N)

B4:

q = r;

B3:

q++;

x1

x2

x4 x3

d1

d2

d3

d4

d5

d6

xi � # times Bi is executed

dj � # times edge is executed

Ci � measured time taken by Bi

Want to

maximize ∑i Ci xi

subject to constraints

x1 = d1 = d2

x2 = d2+d4 = d3+d5

x3 = d3 = d4 = 10

x4 = d5 = d6

Example due to Y.T. Li and S. Malik

�7

EECS 124, UC Berkeley: 13

Timing Analysis and Compositionality

Consider a task T with two parts A and B composed in

sequence: T = A; B

Is WCET(T) = WCET(A) + WCET(B) ?

NO!

WCETs cannot simply be composed �

� Due to dependencies “through environment”

EECS 124, UC Berkeley: 14

Timing Anomalies

Scenario 1: Instr A hits in I-cache, triggers a branch
speculation, and prefetch of instructions, then predicted
branch is wrong, so Instr C must execute, but it’s been
evicted from I-cache, execution of C delayed.

Scenario 2: Instr A misses in I-cache, no branch prediction,
then C hits in I-cache, C completes.

[from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.]

�8

EECS 124, UC Berkeley: 15

How to Measure Run-Time

Several techniques, with varying accuracy:

� Instrument code to sample CPU cycle counter

� relatively easy to do, read processor documentation for

assembly instruction

� Use cycle-accurate simulator for processor

� useful when hardware is not available/ready

� Use Logic Analyzer

� non-intrusive measurement, more accurate

� …

EECS 124, UC Berkeley: 16

Cycle Counters

Most modern systems have built in registers that are

incremented every clock cycle

Special assembly code instruction to access

On Intel 32-bit x86 machines:

� 64 bit counter

� RDTSC instruction sets %edx to high order 32-bits, %eax

to low order 32-bits

Wrap-around time for 2 GHz machine

� Low order 32-bits every 2.1 seconds

� High order 64 bits every 293 years

[slide due to R. E. Bryant and D. R. O’Hallaron]

�9

EECS 124, UC Berkeley: 17

Measuring with Cycle Counter

Idea

� Get current value of cycle counter

• store as pair of unsigned’s cyc_hi and cyc_lo

� Compute something

� Get new value of cycle counter

� Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */

static unsigned cyc_hi = 0;

static unsigned cyc_lo = 0;

void start_counter()

{

/* Get current value of cycle counter */

access_counter(&cyc_hi, &cyc_lo);

}

[slide due to R. E. Bryant and D. R. O’Hallaron]

EECS 124, UC Berkeley: 18

Accessing the Cycle Counter

� GCC allows inline assembly code with mechanism for
matching registers with program variables

� Code only works on x86 machine compiling with GCC

�Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)

{

/* Get cycle counter */

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)

: /* No input */

: "%edx", "%eax");

}

[slide due to R. E. Bryant and D. R. O’Hallaron]

�10

EECS 124, UC Berkeley: 19

Completing Measurement

� Get new value of cycle counter

� Perform double precision subtraction to get elapsed
cycles

� Express as double to avoid overflow problems

double get_counter()

{

unsigned ncyc_hi, ncyc_lo

unsigned hi, lo, borrow;

/* Get cycle counter */

access_counter(&ncyc_hi, &ncyc_lo);

/* Do double precision subtraction */

lo = ncyc_lo - cyc_lo;

borrow = lo > ncyc_lo;

hi = ncyc_hi - cyc_hi - borrow;

return (double) hi * (1 << 30) * 4 + lo;

}

[slide due to R. E. Bryant and D. R. O’Hallaron]

EECS 124, UC Berkeley: 20

Timing With Cycle Counter

Time Function P

� First attempt: Simply count cycles for one execution of P

� What can go wrong here?

double tcycles;

start_counter();

P();

tcycles = get_counter();

[slide due to R. E. Bryant and D. R. O’Hallaron]

�11

EECS 124, UC Berkeley: 21

Measurement Pitfalls

� Instrumentation incurs small overhead

� measure long enough code sequence to compensate

� Cache effects can skew measurements

� “warm up” the cache before making measurement

� Multi-tasking effects: counter keeps going even when the

task of interest is inactive

� take multiple measurements and pick “k best” (cluster)

� Multicores/hyperthreading

� Need to ensure that task is ‘locked’ to a single core

� Power management effects

� CPU speed might change, timer could get reset during
hibernation

EECS 124, UC Berkeley: 22

Some WCET Estimation Tools

[R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.]

�12

EECS 124, UC Berkeley: 23

Open Problems

� Architectures are getting much more complex.

� Can we create processor behavior models without the

agonizing pain?

� Can we change the architecture to make timing analysis
easier? [See PRET machine project by Prof. Lee and

colleagues]

� Analysis methods are “Brittle” – small changes to code

and/or architecture can require completely re-doing the

WCET computation

� Need more reliable ways to measure execution time

