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Lecture 6: Hybrid Systems, Part |

Material drawn from notes by T. Henzinger, J. Lygeros, S. Sastry, C. Tomlin
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Topics in Today’s Lecture

o Examples of Hybrid Systems

o The Hybrid Automaton Model
properties of this kind of model

o Next time: focus on special case called Timed
Automata (TA), and bisimulation of TA with FSM
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A Thermostat

State has both discrete and continuous components:

reR temperature
h € {on, off} heating mode

Flow in each mode is:

h=onAx <82 &= K(100 — r)
h=off Ao > 68 +=—Kux

Jumps between modes: (happen instantaneously)

h=onAz >80 —  h := off
h=off A& <70 —  h:=on
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Dynamics of Thermostat
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Hybrid Automaton for Thermostat

h =on

Is this automaton deterministic?

EECS 124, UC Berkeley: 6

o3



Formal Representation of Hybrid Automaton

A hybrid automaton is atuple: (Q, X, ¥, U, Init, F, J, Inv)

Q finite set of modes

X finite set of continuous state variables {x1,29,...,2,}, 2, € R

b set of discrete input symbols

U set of continuous input signals, {uy,us,. .., ug}, u; € R

Init initial condition, Init € Q x R*

F flows, defining differential equations for each variable in each mode
J jumps, J: Q x Guards — () x Resets where

an element of Guards is a subset of ¥ x R* x R¥, and

Resets is a set of assignments of the form z; := expr(X,U)
Inv mode invariant, mapping a state to the subspace of R"

in which the X variables can take values

xr <70 /

h = off h =on
x> 68 r <82
i =Kz x> 80 &= K(100 — z)

EECS 124, UC Berkeley: 7

Where do Hybrid Systems arise?

o Digital controller of physical “plant”
thermostat
intelligent cruise control in cars
aircraft auto pilot

o Phased operation of natural phenomena
bouncing ball
biological cell growth

o Multi-agent systems
ground and air transportation systems
interacting robots (e.g., RoboSoccer)
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Hybrid Automaton for Bouncing Ball

U= —CU

r=0Av <0
x — vertical distance from ground (position)
v — velocity

¢ — coefficient of restitution, 0 < ¢ <1
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Simulation of Bouncing Ball Automaton:
Plot position x as a function of time ¢

What kind of plot would you expect?
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Simulation of Bouncing Ball Automaton in
Ptolemy Il / HyVisual

Position

height meters
B @ w@ o I ‘
S & S =]

Fs
o

&
S

4] 2 4 & 8 10 12 14 18 18 20 22 24 26 28 30
time (sec)

LUV 144, ULV DTINTITY. 11

Zeno Behavior

Informally:
The system makes an infinite number of jumps

in finite time
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A Run/Execution of a Hybrid Automaton
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Zeno Behavior: Formal Definition
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An execution of a hybrid automaton
with time set 7 is zeno
iff () = o but |7] < .
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Analysis of Zeno Behavior of Bouncing Ball

If ¢ < 1 all infinite executions are Zeno. The first
bounce occurs at time:

v(70) + v/ v2(70) + 2g2(70)
y

T1=To+

The second bounce occurs at time:

2u(T
=g 4y 4 20
g

where v(m1) = —cv(7) = V2 (70) + 292(70).

More generally, the Nth bounce occurs at time:

E : a—1
L4

=1

TN =To+ 71+

2v(1)
)

N

o0 =1 1
Force<[0,1), we have 3 =, ' = 4.
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Why does Zeno Behavior Arise?

Our model is a mathematical artifact

Zeno behavior is mathematically possible, but it is
infeasible in the real, physical world

Points to some unrealistic assumption in the model
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Hybrid Automaton for Bouncing Ball: What'’s
Unrealistic about this model?

U= —CU

r=0Av <0

x — vertical distance
v — velocity
¢ — coefficient of restitution, 0 < ¢ <1
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Eliminating Zeno Behavior: Regularization

An instantaneous mode change (jump) is unrealistic

What happens as € goes to 07
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Simulation for € = 0.3
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Simulation for € = 0.15
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Exercise: Construct a Hybrid Automaton Model of
iRobot Hill Climber
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