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Two Topics in this Lecture

� Timed Automata

� sub-class of Hybrid Automata useful for modeling real-
time systems

� Analysis of Continuous Behavior by Discretization

� from Timed Automaton, construct a bisimilar FSM
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Example: Capturing a “Double-Click” with a FSM

init 1click 2clicks

click

absent

click

click

absent

absent

click
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Example: Capturing a “Double-Click” with a 
Timed Automaton

init 1click 2clicks

click; x:=0

click,

absent, 

x > 100

absent

absent

x � 100

x > 100

click,

click; x:=0
x = 1
.

x = 0
.

x = 0
.
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Recall: Formal Representation of Hybrid Automaton

For a timed automaton: x
i
’s called “clock variables”

All flows are of the form   x
i
= c,  c a constant

All guards are sets of constraints of the form

x
i
≥ c or  x

i
� c, c ∈ Q

All resets are of the form   x
i
:= 0

.
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Flavors of Timed Automata

� Classic Timed Automata

� RHS of all differential equations is 1

� Single-speed clock that precisely tracks real time

� Multi-rate Automata

� Can have clocks of different speeds



�4

EECS 124, UC Berkeley: 7

Applications of Timed Automata

� Real-time controllers

� Self-timed circuits

� Network protocols with timing-dependent behavior

� Scheduling of jobs
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Example: A ‘Tick’ Generator

x := 0

x = 1 / 

tick, x:=0

x = 2 / 

tick, x:=0

x = 1
.

x = 1
.

m1

m2

x(t)

out(t)

What does x(t) look like?
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Timed Traces and Time-Abstract (Untimed) Traces
ti
m

e

x
i
’ = x

i
+ (τ

i
’ - τ

i
)

A time-abstract

(untimed) trace

of M is a sequence  

q0, q1, q2, …

that can be extended

to a timed trace of M            

(think of qi’s as also including 
input and output symbols)
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Untimed vs. Timed Automata

a b a, x:=0 b, x≥10

Do these automata have the same untimed traces?
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Two Problems

Verification

� Does the system do what it’s supposed to do?

� Does the system satisfy its specifications?

Synthesis/Control

� Construct a system that satisfies its specifications

� e.g. by synthesizing a controller

In both cases: we need to specify the objective
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Untimed Specifications

For many timed systems, we are interested in  
specifications that do not mention time

e.g., parking meter reaches ‘safe’ state when coins are 
added
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Timed Automata � FSM

Rather than analyzing the original Timed Automaton,      

can we construct an FSM                                         

such that they both have the same untimed behaviors?

Then untimed verification/control problems can be 

checked on this FSM representation

� verification/control algorithms for FSMs are more 
advanced than for hybrid automaton models

We will construct an FSM that is bisimilar to the original 

TA
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Bisimulation  (differences with simulation in red)

Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I = I1 = I2 and O = O1 = O2

We say M1 bisimulates M2 iff
there exists a set R ⊆ S

1
× S

2
such that

1. R(s10, s20)

2. For all (s1, s2) ∈ R, the following conditions hold:    

For all i ∈ I, and (t2, o2) = U2(s2, i), 

there exists a (t1, o1) = U1(s1, i) s.t. 

(t1, o1) ∈ R      and     o2 = o1

For all i ∈ I, and (t1, o1) = U1(s1, i), 

there exists a (t2, o2) = U2(s2, i) s.t. 

(t2, o2) ∈ R      and     o2 = o1



�8

EECS 124, UC Berkeley: 15

TA � FSM: Strategy

� Collect states of the TA into a finite set of regions

� States of the FSM are these regions

� All states in a region must have the same mode

� Hereafter focus on the continuous part of the state –
“points in Rn”

� All points in a region must behave alike w.r.t. flows 

and jumps 
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Conditions on Grouping Points into a Region

1. Enabling a Jump: A region should either be entirely 

contained in a guard/invariant or not at all

2. Resets: When a clock reset is performed from all 

points Region R, the resulting projected region R’

must lie entirely within some region T

3. Flows: If some point in region R1 can reach a point in 

R2 by letting time elapse, then all points in R1 must 

be able to reach some point in R2
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An Example
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Regions for the Example
Open line segments, 

triangles, rectangles, 

or single points
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A Region is an Equivalence Class of Points

1. For all xi ∈ X, define ci to be the largest constant that 

xi is compared with in a guard or invariant

2. For all valuations v1, v2:  v1(x) ~ v2(x) iff

1.  For all xi ∈ X, 

either: v1(xi) ≥ ci and v2(xi) ≥ ci

or: [v1(xi)] = [v2(xi)]

2. For all xi, xj ∈ X where v1(xi) � ci and v2(xi) � ci,  

fr(v1(xi)) � fr(v1(xj))   iff fr(v2(xi)) � fr(v2(xj)) 

3. For all xi ∈ X such that v1(xi) � ci,                                    

fr(v1(xi)) = 0   iff fr(v2(xi)) = 0

� ~  is an equivalence relation (check this later)
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Summary: Timed Automaton � FSM

1. Collect constraints in guards and invariants, identify 

regions

2. Each region becomes a state in the FSM

3. Initial state of FSM is (initial mode, 0)

4. Let s1 = (q1, R1), s2 =(q2, R2).  

There is a transition from s1 to s2 on input symbol a if 

there is a jump in the TA from q1 to q2 

with a point in R1 going to a point in R2
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Extension: Multi-rate Timed Automata

x = c, for constant c
.

Does the regions graph construction work here?

x = 2
y = 3

x>5 and y <1
.
.

Ans: Yes, just re-scale the variables to make 

the RHS of all differential equations = 1


