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Lecture 6: Hybrid Systems, Part Il

Material drawn from notes by R. Alur, P. Bouyer, C. Tomlin

Two Topics in this Lecture

o Timed Automata
sub-class of Hybrid Automata useful for modeling real-
time systems

o Analysis of Continuous Behavior by Discretization
from Timed Automaton, construct a bisimilar FSM
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Example: Capturing a “Double-Click” with a FSM
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Example: Capturing a “Double-Click” with a
Timed Automaton

absent click,x > 100

\

click; x:=0 x < 100

absent,
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Recall: Formal Representation of Hybrid Automaton
A hybrid automaton is atuple: (Q, X, %, U, I'nit, F, J, Inv)

X
X

[/‘.T
Init
F
J

Inv

finite set of modes

finite set of continuous state variables {xy,x9,...,2,}, z; €R
set of discrete input symbols
set of continuous input signals, {uy.us, ..., up b, u; € R

initial condition, Init € ) x R”

flows, defining differential equations for each variable in each mode
jumps, J : Q x Guards — () x Resets where

an element of Guards is a subset of ¥ x R™ x R¥, and

Resets is a set of assignments of the form =; := expr(X,U)

mode invariant, mapping a state to the subspace of R"

in which the X variables can take values

For a timed automaton: x;’s called “clock variables”

All flows are of the form x;=¢, ¢ a constant
All guards are sets of constraints of the form

x;>cor x;<c¢, c€Q

All resets are of the form x;:=0
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Flavors of Timed Automata

o Classic Timed Automata

RHS of all differential equations is 1
Single-speed clock that precisely tracks real time

o Multi-rate Automata

Can have clocks of different speeds
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Applications of Timed Automata

o Real-time controllers
o Self-timed circuits
o Network protocols with timing-dependent behavior

o Scheduling of jobs
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Example: A ‘Tick’ Generator

mode(t)
A
—l | S
ol 1 3 4 >
x=1/ x(1)
tick, x:=0 tick, x:=0 M/[/
out(t)
tick
What does x(¢) look like? abséf,,, 1 1 1 ;
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Timed Traces and Time-Abstract (Untimed) Traces

70 (90, %0)
T:O T o X, =X;+ (T, - T)
T (q1.x1)
T ~ (q1, %)) A time-abstract
! (untimed) trace
(0] .
£ : of M is a sequence
L q()a q1sq25
™ (gn, XN ) that can be extended
™ ~ (N, xy) to a timed trace of M
1
(think of g;’s as also including
input and output symbols)
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Untimed vs. Timed Automata

al (b a,x=0| |p, x>10

Do these automata have the same untimed traces?
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Two Problems

Verification
o Does the system do what it’s supposed to do?

Does the system satisfy its specifications?
Synthesis/Control
o Construct a system that satisfies its specifications

e.g. by synthesizing a controller

In both cases: we need to specify the objective
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Untimed Specifications

For many timed systems, we are interested in
specifications that do not mention time

e.g., parking meter reaches ‘safe’ state when coins are
added

parkingMeter

quarter | absent
s(t) =25

quarter | absent
s(t) ;= min(s(t) + 25, 60) vty e {gxpfrg{f)
absent}

—>

u(t) € {coins,
coin25, absent)

—>

L \“ nickel | absent
< ) ' 1) := min(s(7) + 5, 60)
sO =0 poour / expired o ﬂ}‘( A }
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Timed Automata > FSM

Rather than analyzing the original Timed Automaton,
can we construct an FSM
such that they both have the same untimed behaviors?

Then untimed verification/control problems can be
checked on this FSM representation

verification/control algorithms for FSMs are more
advanced than for hybrid automaton models

We will construct an FSM that is bisimilar to the original
TA
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Bisimulation (differences with simulation in red)

Let M; = (Sy, Iy, Oy, Uy, 840) and My = (S,, 15, Oy, Uy, 85)
wherel=1,=1,andO0 =0, =0,

We say M, bisimulates M, iff
there exists a set R C S1 X 82 such that

1. R(S10, S20)
2. For all (s, s,) € R, the following conditions hold:
Forallie I, and (t,, 0,) = Uy(s,, i),
there exists a (t,, 0,) = U,(s;, i) s.t.
(t;,0)eR and o0,=0;
Foralliel, and (t,, 0,) = U,(sy, i),
there exists a (t,, 0,) = U,(s,, i) S.t.
(t,,0,) e R and o0,=0;
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TA > FSM: Strategy

o Collect states of the TA into a finite set of regions
States of the FSM are these regions

o All states in a region must have the same mode

Hereafter focus on the continuous part of the state —
“points in R"

o All points in a region must behave alike w.r.t. flows
and jumps
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Conditions on Grouping Points into a Region

1. Enabling a Jump: A region should either be entirely
contained in a guard/invariant or not at all

2. Resets: When a clock reset is performed from all
points Region R, the resulting projected region R’
must lie entirely within some region T

3. Flows: If some point in region R1 can reach a point in
R2 by letting time elapse, then all points in R1 must
be able to reach some point in R2
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An Example

>4
]
-]

x1=1
X2=1

>
[y
I
o

xl<37x2<?2

Xl = 0

Il
—_

x1
x2=1
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Regions for the Example

Open line segments,
triangles, rectangles,
or single points

x2| x2 |
ql q2
2 2
1 1
x1<37x2<2 xl
ql T q2
xl:=0  {1= xl:=0 %1=1
x2:=0] K2=I X2=1
T xl<|
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A Region is an Equivalence Class of Points

1. Forall x; € X, define ¢, to be the largest constant that
X; is compared with in a guard or invariant
2. For all valuations v1, v2: v1(x) ~ v2(x) iff
1. For all x; € X,
either: v1(x;) > ¢; and v2(x,) > ¢
or: [v1(x)] = [v2(x)]
For all x;, x; € Xwhere vi(x;) < ¢; and v2(x;) < ¢,
fr(vi(x)) < fr(vi(x)) iff  fr(v2(x)) < fr(v2(x))
For all x; € X such that vi1(x;) < ¢,
fr(vi(x)) =0 iff fr(v2(x)) =0
o ~ is an equivalence relation (check this later)
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Summary: Timed Automaton > FSM

1. Collect constraints in guards and invariants, identify
regions

2. Each region becomes a state in the FSM

3. Initial state of FSM is (initial mode, 0)

4. Lets1 =(ql, R1), s2 =(g2, R2).

There is a transition from s1 to s2 on input symbol a if
there is a jump in the TA from g1 to g2

with a point in R1 going to a point in R2
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Extension: Multi-rate Timed Automata

X = ¢, for constant ¢
Does the regions graph construction work here?
x>5 and y <1

Ans: Yes, just re-scale the variables to make
the RHS of all differential equations = 1
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