
�1

Introduction to
Embedded Systems

Edward A. Lee & Sanjit A. Seshia
UC Berkeley

EECS 124

Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit A. Seshia, All rights reserved

Lecture 7: Modeling Modal Behavior, Part II

EECS 124, UC Berkeley: 2

Recap of the last lecture

� Finite-state machine represented as a 5-tuple

(States, Inputs, Outputs, update, initialState)

� determinacy, receptiveness

� Non-determinism, ND FSM

(States, Inputs, Outputs, possibleUpdates, initialStates)

� Behavior & trace

�2

EECS 124, UC Berkeley: 3

Topic: Modeling with Finite-State Machines
(FSMs)

Suppose that our only modeling formalism is the
Finite-State Machine

Four questions:

� How to represent the system for:

� Mathematical analysis

� So that a computer program can manipulate it

� How to model its environment?

� How to represent what the system MUST do – its
specification?

� How to check whether the system satisfies its
specification in its operating environment?

EECS 124, UC Berkeley: 4

Stuttering

What happens when there is no input to the system?

i.e. at step n, ∀ input signals x, x(n) = absent

The FSM’s state remains unchanged.

This is termed stuttering.

�3

EECS 124, UC Berkeley: 5

Stuttering

What happens when there is no input to the system?

i.e. at step n, ∀ input signals x, x(n) = absent

The FSM’s state remains unchanged.

This is termed stuttering.

We model this using the special input symbol: absent

� an absent output can also be modeled this way

update(s, absent) = (s, absent)

� Is this the only way to model a stuttering transition?

EECS 124, UC Berkeley: 6

Example: Discretized iRobot Hill Climber

�4

EECS 124, UC Berkeley: 7

FSM Controller for iRobot

EECS 124, UC Berkeley: 8

FSM Controller for iRobot

tilt drive

{level} / {drive_one_sq}

absent / {rotate}

�5

EECS 124, UC Berkeley: 9

Two FSM Controllers for the iRobot

tilt drive

{level} / {drive_one_sq}

absent / {rotate}

tilt drive0

{level} / {drive_one_sq}

absent / {rotate}

drive1 drive2

Version 1: M1

Version 2: M2

Tries to track square’s y-coordinate

EECS 124, UC Berkeley: 10

Comparing state machines

Let M1 and M2 be two FSMs

– M2 obtained by implementing (adding more detail to) M1

Mathematically, what does it mean for

M2 to implement M1 ?

�6

EECS 124, UC Berkeley: 11

Comparing state machines

Let M1 and M2 be two FSMs

– M2 obtained by implementing (adding more detail to) M1

Mathematically, what does it mean for

M2 to implement M1 ?

� Two possible answers:

1. Trace containment

2. Simulation

EECS 124, UC Berkeley: 12

Behavior/Trace containment

Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I1 ⊆ I2 and O1 ⊆ O2

L(M) = set of observable traces of M

� leave out states, only retain common inputs/outputs

Defn 1: M2 implements M1 iff L(M2) ⊆ L(M1)

L(M2)

L(M1)

�7

EECS 124, UC Berkeley: 13

Is L(M2) ⊆ L(M1) ?

tilt drive

{level} / {drive_one_sq}

absent / {rotate}

tilt drive0

{level} / {drive_one_sq}

absent / {rotate}

drive1 drive2

Version 1: M1

Version 2: M2

EECS 124, UC Berkeley: 14

Simulation

Intuition: a matching game between the two FSMs

Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I1 ⊆ I2 and O1 ⊆ O2

i
M2

U1

M1

i

U2

Correspondence: Common output

signals take same values

n n+1

�8

EECS 124, UC Berkeley: 15

Simulation

Intuition: a matching game between the two FSMs

Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I1 ⊆ I2 and O1 ⊆ O2

i

U1

M2

M1

i

U2

Defn2 :

M2 implements M1 iff

M1 simulates M2R R

EECS 124, UC Berkeley: 16

Formal definition of Simulation

Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I1 ⊆ I2 and O1 ⊆ O2

We say M1 simulates M2 iff
there exists a set R ⊆ S

1
× S

2
such that

1. R(s10, s20)

2. For all (s1, s2) ∈ R, the following condition holds:

For all i ∈ I2, and (t2, o2) = U2(s2, i),

there exists a (t1, o1) = U1(s1, i ∩ I1) s.t.

(t1, o1) ∈ R and o2 ∩ O1 = o1

R is called the simulation relation

�9

EECS 124, UC Berkeley: 17

Does M1 simulate M2? What’s R?

tilt drive

{level} / {drive_one_sq}

absent / {rotate}

tilt drive0

{level} / {drive_one_sq}

absent / {rotate}

drive1 drive2

Version 1: M1

Version 2: M2

EECS 124, UC Berkeley: 18

Bisimulation (differences with simulation in red)

Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I = I1 = I2 and O = O1 = O2

We say M1 bisimulates M2 iff
there exists a set R ⊆ S

1
× S

2
such that

1. R(s10, s20)

2. For all (s1, s2) ∈ R, the following conditions hold:

For all i ∈ I, and (t2, o2) = U2(s2, i),

there exists a (t1, o1) = U1(s1, i) s.t.

(t1, o1) ∈ R and o2 = o1

For all i ∈ I, and (t1, o1) = U1(s1, i),

there exists a (t2, o2) = U2(s2, i) s.t.

(t2, o2) ∈ R and o2 = o1

�10

EECS 124, UC Berkeley: 19

Simulation and Trace Containment

Theorem: If M1 simulates M2, then L(M2) ⊆ L(M1)

Note: If L(M2) ⊆ L(M1) then M1 need not simulate M2

EECS 124, UC Berkeley: 20

Modeling Systems with Communicating

Finite-State Machines (FSMs)

Systems are made up of many

communicating components

How do we build an FSM model from

smaller component FSM models?

1. Composition – synchronous or asynchronous

2. Hierarchical modeling & Statecharts

�11

EECS 124, UC Berkeley: 21

Example: Traffic Light Controller

EECS 124, UC Berkeley: 22

Environment of the Controller: Cars

This FSM models the sensor input to the Controller; it has a
single output signal isCar. As a modeling choice, we can
introduce an input to this FSM as well.

�12

EECS 124, UC Berkeley: 23

Composition of FSMs based on Connectivity

Side-by-side composition

Cascade composition

Feedback composition

(see Lee & Varaiya, Ch. 4 for more kinds of

composition)

EECS 124, UC Berkeley: 24

Side-by-Side Composition

�13

EECS 124, UC Berkeley: 25

Side-by-Side Composition

EECS 124, UC Berkeley: 26

Cascade Composition

�14

EECS 124, UC Berkeley: 27

Feedback Composition

Can apply composition hierarchically

EECS 124, UC Berkeley: 28

Composition in the Traffic Light Example

Controller

Car Env

Timer

�15

EECS 124, UC Berkeley: 29

Synchronous Composition

M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

M is the synchronous composition of M1 and M2

=

(S1 × S2, I1 × I2, O1 × O2, U, (s10, s20))

where

U is defined exactly as in the side-by-side composition

definition earlier

(Note: Inputs and Outputs of M1 and M2 can be

interconnected)

EECS 124, UC Berkeley: 30

Asynchronous Composition

M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

M is the asynchronous composition of M1 and M2

= (S1 × S2, I1 × I2, O1 × O2, U, (s10, s20))

where

U((s1, s2), (i1, i2)) = ((s1’, s2’), (o1, o2))

and

(s1’, o1) = U1(s1, i1) AND M2 stutters

OR (s2’, o2) = U2(s2, i2) AND M1 stutters

�16

EECS 124, UC Berkeley: 31

The Need for Hierarchical Representation

Suppose we have a network of communicating FSMs

We want to construct and analyze the synchronous

composition of all of those FSMs

Is it easy to simply construct the composition (“flat”

representation) and work with that?

EECS 124, UC Berkeley: 32

Problems with Flat FSM Representation

� Exponential blow-up possible during composition

� Too much detail for humans

� Not a natural way of representing parallel composition

� Does not reflect modular (top-down or bottom-up)

development

� Common structure cannot be easily extracted: e.g.,

what happens when an interrupt is received?

�17

EECS 124, UC Berkeley: 33

Hierarchical Modeling and Statecharts

Modeling with

� Hierarchy

� Orthogonality (AND-states and OR-states)

� Broadcast (for communication)

Example due to Reinhard von Hanxleden

