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Lecture 7: Modeling Modal Behavior, Part II
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Recap of the last lecture

� Finite-state machine represented as a 5-tuple

(States, Inputs, Outputs, update, initialState)

� determinacy, receptiveness

� Non-determinism, ND FSM

(States, Inputs, Outputs, possibleUpdates, initialStates)

� Behavior & trace
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Topic: Modeling with Finite-State Machines 
(FSMs)

Suppose that our only modeling formalism is the     
Finite-State Machine

Four questions:

� How to represent the system for:

� Mathematical analysis 

� So that a computer program can manipulate it

� How to model its environment?

� How to represent what the system MUST do – its 
specification?

� How to check whether the system satisfies its 
specification in its operating environment? 
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Stuttering

What happens when there is no input to the system?

i.e. at step n, ∀ input signals x,  x(n) = absent

The FSM’s state remains unchanged.                                

This is termed stuttering. 
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Stuttering

What happens when there is no input to the system?

i.e. at step n, ∀ input signals x,  x(n) = absent

The FSM’s state remains unchanged.                               

This is termed stuttering. 

We model this using the special input symbol: absent

� an absent output can also be modeled this way

update(s, absent) = (s, absent)

� Is this the only way to model a stuttering transition?
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Example: Discretized iRobot Hill Climber  
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FSM Controller for iRobot
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FSM Controller for iRobot

tilt drive

{level} / {drive_one_sq}

absent / {rotate}
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Two FSM Controllers for the iRobot

tilt drive

{level} / {drive_one_sq}

absent / {rotate}

tilt drive0

{level} / {drive_one_sq}

absent / {rotate}

drive1 drive2

Version 1: M1

Version 2: M2

Tries to track square’s y-coordinate
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Comparing state machines

Let M1 and M2 be two FSMs

– M2 obtained by implementing (adding more detail to) M1

Mathematically, what does it mean for                           

M2 to implement M1 ?
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Comparing state machines

Let M1 and M2 be two FSMs

– M2 obtained by implementing (adding more detail to) M1

Mathematically, what does it mean for                           

M2 to implement M1 ?

� Two possible answers:

1. Trace containment

2. Simulation

EECS 124, UC Berkeley: 12

Behavior/Trace containment

Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I1 ⊆ I2 and O1 ⊆ O2

L(M) = set of observable traces of M

� leave out states, only retain common inputs/outputs

Defn 1:  M2 implements M1 iff L(M2) ⊆ L(M1)

L(M2)

L(M1)
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Is L(M2) ⊆ L(M1) ?

tilt drive

{level} / {drive_one_sq}

absent / {rotate}

tilt drive0

{level} / {drive_one_sq}

absent / {rotate}

drive1 drive2

Version 1: M1

Version 2: M2
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Simulation

Intuition: a matching game between the two FSMs

Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I1 ⊆ I2 and O1 ⊆ O2

i
M2

U1

M1

i

U2

Correspondence: Common output 

signals take same values

n n+1
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Simulation

Intuition: a matching game between the two FSMs

Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I1 ⊆ I2 and O1 ⊆ O2

i

U1

M2

M1

i

U2

Defn2 :

M2 implements M1 iff

M1 simulates M2R R
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Formal definition of Simulation

Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I1 ⊆ I2 and O1 ⊆ O2

We say M1 simulates M2 iff
there exists a set R ⊆ S

1
× S

2
such that

1. R(s10, s20)

2. For all (s1, s2) ∈ R, the following condition holds:    

For all i ∈ I2, and (t2, o2) = U2(s2, i), 

there exists a (t1, o1) = U1(s1, i ∩ I1) s.t. 

(t1, o1) ∈ R      and     o2 ∩ O1 = o1

R is called the simulation relation
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Does M1 simulate M2? What’s R?

tilt drive

{level} / {drive_one_sq}

absent / {rotate}

tilt drive0

{level} / {drive_one_sq}

absent / {rotate}

drive1 drive2

Version 1: M1

Version 2: M2
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Bisimulation  (differences with simulation in red)

Let M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

where I = I1 = I2 and O = O1 = O2

We say M1 bisimulates M2 iff
there exists a set R ⊆ S

1
× S

2
such that

1. R(s10, s20)

2. For all (s1, s2) ∈ R, the following conditions hold:    

For all i ∈ I, and (t2, o2) = U2(s2, i), 

there exists a (t1, o1) = U1(s1, i) s.t. 

(t1, o1) ∈ R      and     o2 = o1

For all i ∈ I, and (t1, o1) = U1(s1, i), 

there exists a (t2, o2) = U2(s2, i) s.t. 

(t2, o2) ∈ R      and     o2 = o1
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Simulation and Trace Containment

Theorem: If M1 simulates M2, then L(M2) ⊆ L(M1) 

Note:  If L(M2) ⊆ L(M1) then M1 need not simulate M2
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Modeling Systems with Communicating

Finite-State Machines (FSMs)

Systems are made up of many                          

communicating components

How do we build an FSM model from                               

smaller component FSM models?

1. Composition – synchronous or asynchronous

2. Hierarchical modeling & Statecharts
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Example: Traffic Light Controller
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Environment of the Controller: Cars 

This FSM models the sensor input to the Controller; it has a 
single output signal isCar. As a modeling choice, we can 
introduce an input to this FSM as well.
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Composition of FSMs based on Connectivity

Side-by-side composition

Cascade composition

Feedback composition

(see Lee & Varaiya, Ch. 4 for more kinds of 

composition)
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Side-by-Side Composition
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Side-by-Side Composition
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Cascade Composition
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Feedback Composition

Can apply composition hierarchically

EECS 124, UC Berkeley: 28

Composition in the Traffic Light Example

Controller

Car Env

Timer
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Synchronous Composition

M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

M is the synchronous composition of M1 and M2

=

(S1 × S2,  I1 × I2, O1 × O2, U, (s10, s20))

where

U is defined exactly as in the side-by-side composition 

definition earlier

(Note: Inputs and Outputs of M1 and M2 can be 

interconnected)
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Asynchronous Composition

M1 = (S1, I1, O1, U1, s10) and M2 = (S2, I2, O2, U2, s20)

M is the asynchronous composition of M1 and M2

= (S1 × S2,  I1 × I2, O1 × O2, U, (s10, s20))

where

U((s1, s2), (i1, i2)) = ((s1’, s2’), (o1, o2))

and

(s1’, o1) = U1(s1, i1)  AND M2 stutters  

OR    (s2’, o2) = U2(s2, i2)  AND M1 stutters
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The Need for Hierarchical Representation

Suppose we have a network of communicating FSMs

We want to construct and analyze the synchronous 

composition of all of those FSMs

Is it easy to simply construct the composition (“flat”

representation) and work with that?
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Problems with Flat FSM Representation

� Exponential blow-up possible during composition

� Too much detail for humans

� Not a natural way of representing parallel composition

� Does not reflect modular (top-down or bottom-up) 

development

� Common structure cannot be easily extracted: e.g., 

what happens when an interrupt is received?
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Hierarchical Modeling and Statecharts

Modeling with

� Hierarchy

� Orthogonality (AND-states and OR-states)

� Broadcast (for communication)

Example due to Reinhard von Hanxleden


