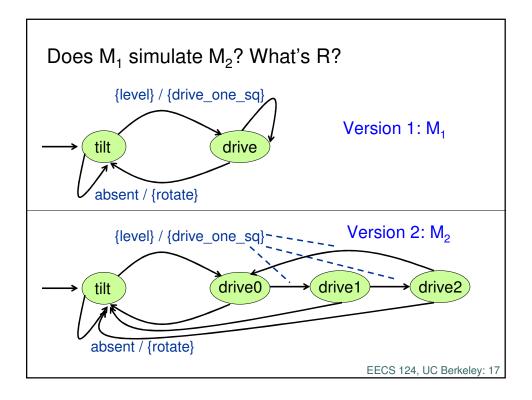


Formal definition of Simulation Let $M_1 = (S_1, I_1, O_1, U_1, s_{10})$ and $M_2 = (S_2, I_2, O_2, U_2, s_{20})$ where $I_1 \subseteq I_2$ and $O_1 \subseteq O_2$ We say M_1 simulates M_2 iff there exists a set $R \subseteq S_1 \times S_2$ such that 1. $R(s_{10}, s_{20})$ 2. For all $(s_1, s_2) \in R$, the following condition holds: For all $i \in I_2$, and $(t_2, o_2) = U_2(s_2, i)$, there exists a $(t_1, o_1) = U_1(s_1, i \cap I_1)$ s.t. $(t_1, o_1) \in R$ and $o_2 \cap O_1 = o_1$ R is called the *simulation relation*

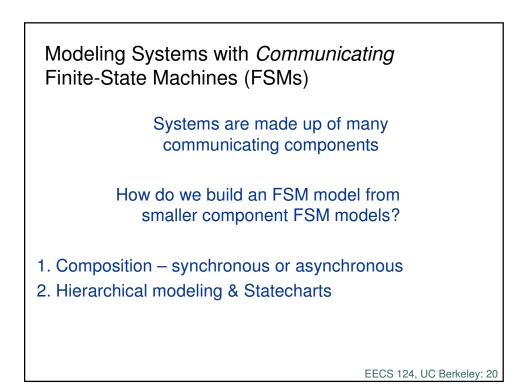


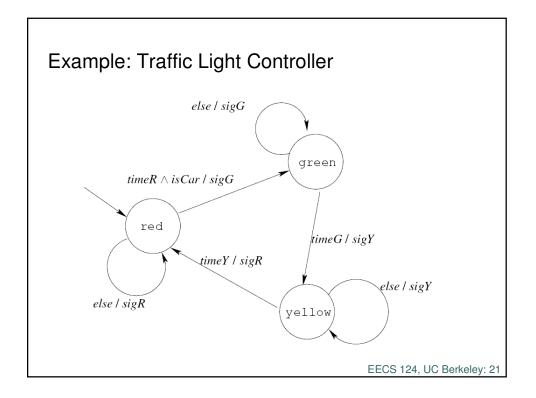
Bisimulation (differences with simulation in red) Let $M_1 = (S_1, I_1, O_1, U_1, s_{10})$ and $M_2 = (S_2, I_2, O_2, U_2, s_{20})$ where $I = I_1 = I_2$ and $O = O_1 = O_2$ We say M_1 bisimulates M_2 iff there exists a set $R \subseteq S_1 \times S_2$ such that 1. $R(s_{10}, s_{20})$ 2. For all $(s_1, s_2) \in R$, the following conditions hold: For all $i \in I$, and $(t_2, o_2) = U_2(s_2, i)$, there exists a $(t_1, o_1) = U_1(s_1, i)$ s.t. $(t_1, o_1) \in R$ and $o_2 = o_1$ For all $i \in I$, and $(t_1, o_1) = U_1(s_1, i)$, there exists a $(t_2, o_2) = U_2(s_2, i)$ s.t. $(t_2, o_2) \in R$ and $o_2 = o_1$ EECS 124, UC Berkeley: 18 Simulation and Trace Containment

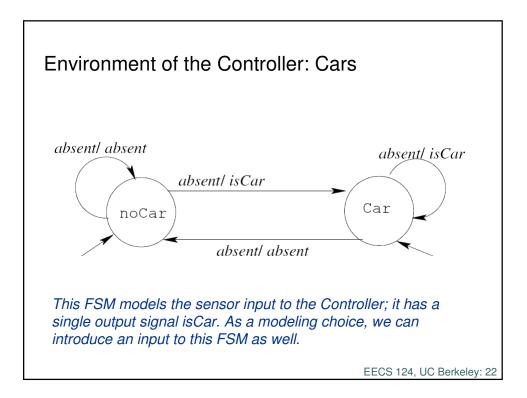
Theorem: If M_1 simulates M_2 , then $L(M_2) \subseteq L(M_1)$

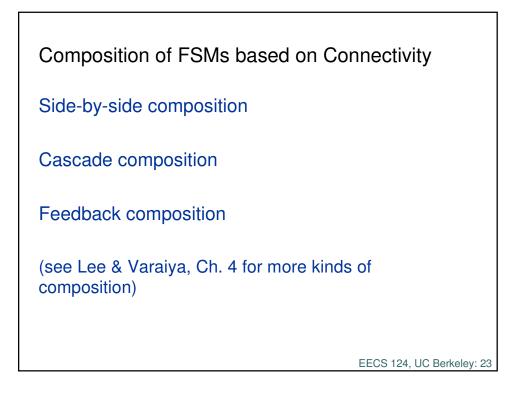
Note: If $L(M_2) \subseteq L(M_1)$ then M_1 need not simulate M_2

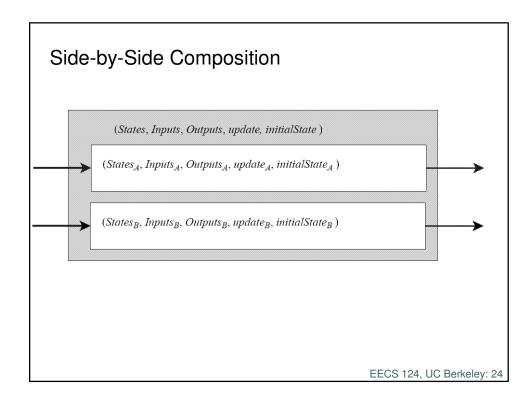
EECS 124, UC Berkeley: 19

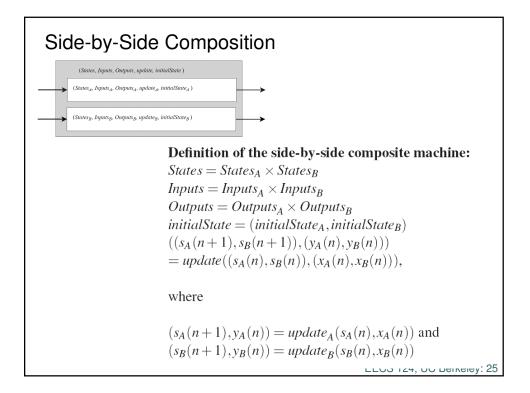


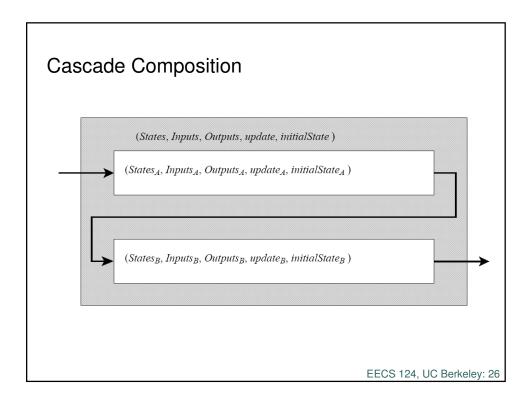


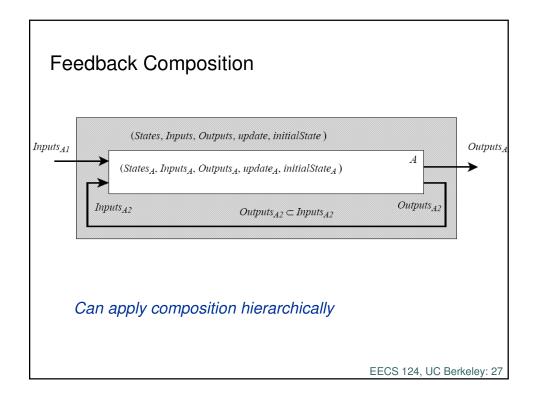


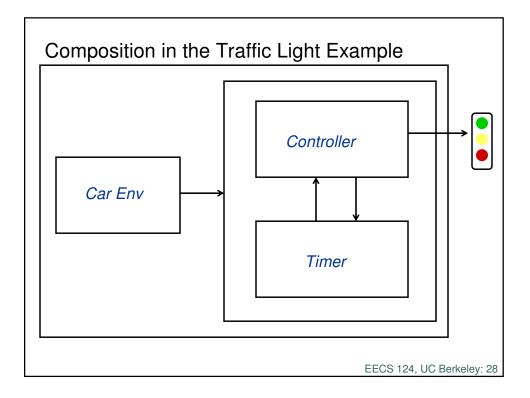


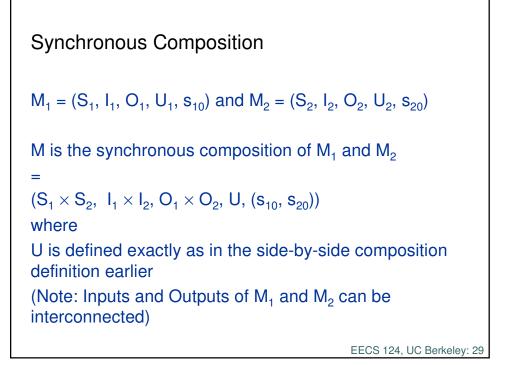


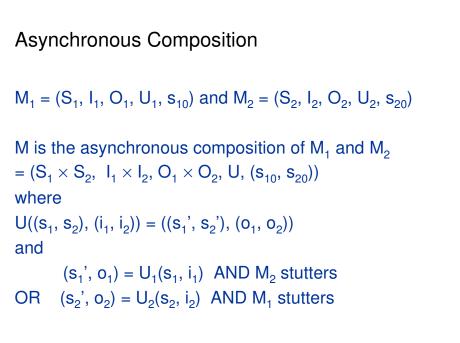












EECS 124, UC Berkeley: 30

