Introduction to
Embedded Systems

Edward A. Lee & Sanjit Seshia

UC Berkeley
EECS 124
Spring 2008

Copyright © 2008, Edward A. Lee & Sanijit Seshia, All rights reserved

Lecture 2: Model-Based Design

Key Concepts in Model-Based Design

(o]
o
(o]
o
(o]
(o]
o

Models describe physical dynamics.

Specifications are executable models.

Models are composed to form designs.

Models evolve during design.

Deployed code may be generated from models.

Modeling languages have semantics.

Modeling languages themselves may be modeled (meta models)

For embedded systems, this is about

(o]
(¢]
o

Time
Concurrency
Dynamics

EECS 124, UC Berkeley: 2

ol

Modeling

Abstraction of physical and cyber dynamics:

(how things change)

Modeling physical motion
Modeling physical dynamics
Feedback control systems
Modeling modal behavior
Modeling sensors and actuators
Modeling software behavior
Modeling networks

O O 0O 0O 0O 0 O

EECS 124, UC Berkeley: 3

Modeling of Continuous Dynamics

Ordinary differential equations, Laplace
transforms, feedback control systems, stability
analysis, robustness analysis, ...

damper

spring

x € N L . | v
_*@» B =K+ K + Koo [) = pev € o
T PID controller Plant
=1
1+H H,

EECS 124, UC Berkeley: 4

°?

Modeling Physical Motion

Six degrees of freedom:
o Position: x,y, z
o Orientation: pitch, yaw, roll

y axis

\

Pitch

Z axis

EECS 124, UC Berkeley: 5

Notation

Position is given by three functions:

o R—-R

y:R—R

z:R—=R
where the domain R represents time and the co-domain
(range) R represents position along the axis. Collect-

ing into a vector:
x: R — R?

Position at time ¢ € R is x(t) € R®.

EECS 124, UC Berkeley: 6

o3

Notation

Velocity
x: R — R*

is the derivative, vVt € R,

(1) = (1)

= —X
dt

Acceleration %: R — R? is the second derivative,
jl(= —X
dt?

Force on an objectis F: R — R*.

EECS 124, UC Berkeley: 7

Newton’'s Second Law

Newton’s second law states vVt € R,
F(t) = Mx(t)

where M is the mass. To account for initial position
and velocity, convert this to an integral equation
t

x(t) = X((])+/.5((T)(IT

0

t 7
= x(0) +tx(0) + % /‘/F(u.')dn:d'rf

0 0

EECS 124, UC Berkeley: 8

Orientation

e Orientation: #: R — R*
e Angular velocity: #: R — R?
e Angular acceleration: : R — R*

e Torque: T: R — R

0,(t) roll
B(t)= | 0,(t) | = | yaw
0.(t) pitch

y axis

EECS 124, UC Berkeley: 9

Angular version of force is torque.

For a point mass rotating around a fixed axis:

e radius of the arm: r ¢ R
e force orthogonal to arm: f e R

e mass of the object: m ¢ R
=rf(t)

=

angular momentum, momentum

Just as force is a push or a pull, a torque is a twist.

Units: newton-meters/radian, Joules/radian

Note that radians are meters/meter (2n meters of circumference per 1

meter of radius), so as units, are optional.

EECS 124, UC Berkeley: 10

o5

Rotational Version of Newton’s Second Law

) = L (r(r)é(r)) _.
dt
where I(t) is a 3 x 3 matrix called the moment of in-
ertia tensor.

T, (t) p Leo(t) Ly(t) I.(1) 0.(1)
[T,(t)] == Lyu(t) Tyy(t) 1y (t)] { 0,(t)]
T.(t) ¢ w(t) Ly(t) La(t) | | 6.(t)

Here, for example, T,(t) is the net torque around the
y axis (which would cause changes in yaw), 7,.(t) is
the inertia that determines how acceleration around
the a axis is related to torque around the y axis.

EECS 124, UC Berkeley: 11

Simple Example

[

—@

Yaw dynamics:
T, (t) = 1,,0,(t)

To account for initial angular velocity, write as

t
b, (1) = 6,(0) + —— / T, (r)dr.
IH.U '\0

EECS 124, UC Berkeley: 12

Feedback Control Problem [

A helicopter without a tail rotor, like the one
below, will spin uncontrollably due to the
torque induced by friction in the rotor shatft.

Control system problem:
Apply torque using the tail
rotor to counterbalance
the torque of the top rotor.

EECS 124, UC Berkeley: 13

Actor Model of Systems

A system is a function that S
accepts an input signaland X parameters|
yields an output signal. —» pq

The domain and range of xR—R, yR—R
the system function are '
sets of signals, which S: X =Y
themselves are functions.

X=Y=(R—->R)

Parameters may affect the
definition of the function S.

EECS 124, UC Berkeley: 14

o7/

Actor model of the helicopter

Helicopter
Input is the net torque of T I 6
the tail rotor and the top y > . Yy b Yy
rotor. Output is the angular By(())

velocity around the y axis.

Parameters of the

model are shown in 1 2

the box. The mput | Qy(t) _ By(O) 4+ f Ty(T)dT
and output relation is liv

given by the equation
to the right.

0

EECS 124, UC Berkeley: 15

Helicopter

EECS 124, UC Berkeley: 16

o3

Actor models with multiple inputs

VieR, y()=xi(t)+x2(z)

EECS 124, UC Berkeley: 17

Proportional controller

Controller Helicopter
L I,!'J' e."
8,(0)
desired error net
angular signal torque
velocity

8,(r) = 6,(0)+ ! [T).('c)d‘c

Ty(1) = Ke(t)

Note that the angular
velocity appears on
both sides, so this
equation is not trivial to

= 0y(0)+-— [(w(1) —6y(t))dT solve.

EECS 124, UC Berkeley: 18

o9

Controller Helicopter

Behavior of Iy 6,

the controller 6,(0)

0,(6) = 0,0+ 7= [(w(r) = 0,(r)ar
S0

vy

Assume that helicopter is initially at rest,
6(0) = 0,
and that the desired signal is
W(t) = au(t)

for some constant a.
By calculus (see notes), the solution is

0,(t) = au(t)(1 — e~ Kt/ 1u)

EECS 124, UC Berkeley: 19

Exercise

Reformulate the helicopter model so that it has two
inputs, the torque of the top rotor and the torque of the
tail rotor.

Show (by simulation) that if the top rotor applies a
constant torque, then our controller cannot keep the
helicopter from rotating. Increasing the feedback gain,
however, reduces the rate of rotation.

A better controller would include an integrator in the
controller. Such controllers are studied in EECS 128.

EECS 124, UC Berkeley: 20

010

Questions

o How do we measure the angular velocity?
o Can this controller be implemented in software?

o How does the behavior change when it is implemented
in software?

EECS 124, UC Berkeley: 21

Discretized Model
A Step Towards Software

Numerical integration techniques provided sophisticated ways to get from the
continuous idealizations to computable algorithms.

Discrete-time signal processing techniques offer the same sophisticated stability
analysis as continuous-time methods.

But it's not accurate for software controllers (fails on correctness)

Ifm z

In general, z is an N-tuple, z = (2, --.zy), where z;: Reals , — Reals. The deriva-
tive of an N-tuple is simply the N-tuple of derivatives, z = (.- -.Zy). We know
from calculus that
. dz z(t+8) —z(t)
)= — = lm——F—=
df a0

two-sided anti-causal

and so, if & = 0 is a small number, we can approximate this derivative by

z(t +8) —z(t)
5 .

() =

Using this for the derivative in the lefi-hand side of (5.50) we get

z(r+8) —z(t) = dglz(r). vit)). (5.51)

EECS 124, UC Berkeley: 22

oll

Hybrid Systems —
Union of Continuous & Discrete

A gOOd starti ng pOint but §2ﬁ:f;'f§l? Sicwh:nse::aram,pz = P1; Separate.vi = V1; Separate.v2 = V1
has limitations. /—\

E.g. Consider building a
hybrid system model for
software running under a CTEmbedded This model gives two separate ordinary differential

multitasking real-time OS - equations, one for each point mass attached to a spring.

The ZeroCrossingDetector actor detects the collision
of the point masses and emits the "touched" event.

V1 integrator

) P1 integrator
Expression i

P1

V2 integrator

==Y |[==A1—

W1 and W2 are velocities,
ZeroCrossingDetector and P1 and P2 are positions

] of the two masses.

v2 P2 integrator

AddSubtract

The Timing of Software is the
Wrong Thing to Model

=k

Output of Plant 1

An example, due to Jie Liu, has two controllers v
sharing a CPU under an RTOS. Under

preemptive multitasking, only one can be made
stable (depending on the relative priorities). oo
Under non-preemptive multitasking, both can be = : i i i i -
made stable.

o2

oA

(=L

Output of Plant 2

Theory for this is lacking...

This moded shows ba {independant) cantrol kops whass controllers shars e same CPU The contrel
Ioops e chosen such that 1 is unstable f the comtrol signals are constantly delayed, By choosing

[re—— and TM schaduling poleius, difarnet stabasy of the hwe locgs may
appear. For example. 8 nonpreemptive scheduling can stabitn both control koops, bt none of the

prosmplive ones can. EECS 124, UC Berkeley: 24

el2

Model-based design techniques we will talk about

o State machines
sequential decision logic
amenable to reachability analysis
o Synchronous/reactive concurrent composition
concurrent computation
composes well with state machines
o Dataflow models
exploitable parallelism
well suited to signal processing
o Discrete-event models
explicit about time
o Time-driven
suitable for periodic, timed actions
o Continuous-time models
models of physical dynamics
extended to “hybrid systems” to embrace computation

EECS 124, UC Berkeley: 25

el3

