
1

Introduction to
Embedded Systems

Edward A. Lee & Sanjit Seshia
UC Berkeley
EECS 124
Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit Seshia, All rights reserved

Lecture 2: Model-Based Design

EECS 124, UC Berkeley: 2

Key Concepts in Model-Based Design

Models describe physical dynamics.
Specifications are executable models.
Models are composed to form designs.
Models evolve during design.
Deployed code may be generated from models.
Modeling languages have semantics.
Modeling languages themselves may be modeled (meta models)

For embedded systems, this is about
Time
Concurrency
Dynamics



2

EECS 124, UC Berkeley: 3

Modeling

Abstraction of physical and cyber dynamics:
(how things change)

Modeling physical motion
Modeling physical dynamics
Feedback control systems
Modeling modal behavior
Modeling sensors and actuators
Modeling software behavior
Modeling networks

EECS 124, UC Berkeley: 4

Modeling of Continuous Dynamics

Ordinary differential equations, Laplace
transforms, feedback control systems, stability 
analysis, robustness analysis, …



3

EECS 124, UC Berkeley: 5

Modeling Physical Motion

Six degrees of freedom:
Position: x, y, z
Orientation: pitch, yaw, roll

EECS 124, UC Berkeley: 6

Notation



4

EECS 124, UC Berkeley: 7

Notation

EECS 124, UC Berkeley: 8

Newton’s Second Law



5

EECS 124, UC Berkeley: 9

Orientation

EECS 124, UC Berkeley: 10

Angular version of force is torque.
For a point mass rotating around a fixed axis:

Just as force is a push or a pull, a torque is a twist.
Units: newton-meters/radian, Joules/radian

Note that radians are meters/meter (2π meters of circumference per 1 
meter of radius), so as units, are optional.

Ty(t ) = r f (t )
angular momentum, momentum



6

EECS 124, UC Berkeley: 11

Rotational Version of Newton’s Second Law

EECS 124, UC Berkeley: 12

Simple Example



7

EECS 124, UC Berkeley: 13

Feedback Control Problem

A helicopter without a tail rotor, like the one 
below, will spin uncontrollably due to the 
torque induced by friction in the rotor shaft.

Control system problem: 
Apply torque using the tail 
rotor to counterbalance 
the torque of the top rotor.

EECS 124, UC Berkeley: 14

Actor Model of Systems

A system is a function that 
accepts an input signal and 
yields an output signal.

The domain and range of 
the system function are 
sets of signals, which 
themselves are functions.

Parameters may affect the 
definition of the function S.



8

EECS 124, UC Berkeley: 15

Actor model of the helicopter

Input is the net torque of 
the tail rotor and the top 
rotor. Output is the angular 
velocity around the y axis.

Parameters of the 
model are shown in 
the box. The input 
and output relation is 
given by the equation 
to the right.

EECS 124, UC Berkeley: 16

Composition of actor models



9

EECS 124, UC Berkeley: 17

Actor models with multiple inputs

EECS 124, UC Berkeley: 18

Proportional controller

desired 
angular 
velocity

error
signal

net
torque

Note that the angular 
velocity appears on 
both sides, so this 
equation is not trivial to 
solve.



10

EECS 124, UC Berkeley: 19

Behavior of
the controller

EECS 124, UC Berkeley: 20

Exercise

Reformulate the helicopter model so that it has two 
inputs, the torque of the top rotor and the torque of the 
tail rotor.

Show (by simulation) that if the top rotor applies a 
constant torque, then our controller cannot keep the 
helicopter from rotating. Increasing the feedback gain, 
however, reduces the rate of rotation.

A better controller would include an integrator in the 
controller. Such controllers are studied in EECS 128.



11

EECS 124, UC Berkeley: 21

Questions

How do we measure the angular velocity?

Can this controller be implemented in software?

How does the behavior change when it is implemented 
in software?

EECS 124, UC Berkeley: 22

Discretized Model
A Step Towards Software

Numerical integration techniques provided sophisticated ways to get from the 
continuous idealizations to computable algorithms.
Discrete-time signal processing techniques offer the same sophisticated stability 
analysis as continuous-time methods.

But it’s not accurate for software controllers (fails on correctness)



12

EECS 124, UC Berkeley: 23

Hybrid Systems –
Union of Continuous & Discrete

A good starting point, but 
has limitations.
E.g. Consider building a 
hybrid system model for 
software running under a 
multitasking real-time OS.

EECS 124, UC Berkeley: 24

The Timing of Software is the
Wrong Thing to Model

An example, due to Jie Liu, has two controllers 
sharing a CPU under an RTOS. Under 
preemptive multitasking, only one can be made 
stable (depending on the relative priorities). 
Under non-preemptive multitasking, both can be 
made stable.

Theory for this is lacking…



13

EECS 124, UC Berkeley: 25

Model-based design techniques we will talk about

State machines
sequential decision logic
amenable to reachability analysis

Synchronous/reactive concurrent composition
concurrent computation
composes well with state machines

Dataflow models
exploitable parallelism
well suited to signal processing

Discrete-event models
explicit about time

Time-driven
suitable for periodic, timed actions

Continuous-time models
models of physical dynamics
extended to “hybrid systems” to embrace computation


