
1

Introduction to
Embedded Systems

Edward A. Lee & Sanjit Seshia
UC Berkeley
EECS 124
Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit Seshia, All rights reserved

Lecture 20: Scheduling Anomalies

EECS 124, UC Berkeley: 2

Source

This lecture draws heavily from:

Giorgio C. Buttazzo, Hard Real-Time Computing
Systems, Springer, 2004.

2

EECS 124, UC Berkeley: 3

Review

Rate-Monotonic Scheduling
Earliest Deadline First
Execution Time Estimation (WCET)

EECS 124, UC Berkeley: 4

Outline

Precedences
Acyclic precedence graphs
LDF scheduling

Mutual exclusion
Priority inversion
Priority inheritance
Priority ceiling

Multiprocessor scheduling
Richard’s anomalies

3

EECS 124, UC Berkeley: 5

Precedence Constraints

A directed acyclic graph (DAG) shows precedences,
which indicate which tasks must complete before other
tasks start.

1
2

3

4

5

6

DAG, showing that task 1 must complete
before tasks 2 and 3 can be started, etc.

EECS 124, UC Berkeley: 6

Example: EDF Schedule

Is this feasible? Is it optimal?

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

4

EECS 124, UC Berkeley: 7

EDF is not optimal under precedence constraints

The EDF schedule chooses task 3 at time 1 because it
has an earlier deadline. This choice results in task 4
missing its deadline.

Is there a feasible schedule?

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

EECS 124, UC Berkeley: 8

LDF is optimal under precedence constraints

The LDF schedule shown at the bottom respects all
precedences and meets all deadlines.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

5

EECS 124, UC Berkeley: 9

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

EECS 124, UC Berkeley: 10

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

6

EECS 124, UC Berkeley: 11

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

EECS 124, UC Berkeley: 12

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

7

EECS 124, UC Berkeley: 13

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

EECS 124, UC Berkeley: 14

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

8

EECS 124, UC Berkeley: 15

Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule
backwards. Given a DAG, choose the leaf node with the
latest deadline to be scheduled last, and work
backwards.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

EECS 124, UC Berkeley: 16

Latest Deadline First (LDF)
(Lawler, 1973)

LDF is optimal in the sense that it minimizes the
maximum lateness.

It does not require preemption.

However, it requires that all tasks be available and their
precedences known before any task is executed.

9

EECS 124, UC Berkeley: 17

EDF with Precedences

With a preemptive scheduler, EDF can be modified to
account for precedences and to allow tasks to arrive at
arbitrary times. Simply adjust the deadlines and arrival
times according to the precedences.

1
2

3

4

5

6
C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Recall that for the tasks at the left, EDF
yields the schedule above, where task 4
misses its deadline.

EECS 124, UC Berkeley: 18

EDF with Precedences
Modifying release times

Given n tasks with precedences and release times ri, if
task i immediately precedes task j, then modify the
release times as follows:

1
2

3

4

5

6
C1 = 1
d1 = 2
r'1 = 0

C3 = 1
d3 = 4
r‘3 = 1

C2 = 1
d2 = 5
r‘2 = 1

C4 = 1
d4 = 3
r‘4 = 2

C5 = 1
d5 = 5
r‘5 = 2

C6 = 1
d6 = 6
r‘6 = 2

),max(iijj Crrr +=′

ri = 0
assume:

10

EECS 124, UC Berkeley: 19

EDF with Precedences
Modifying deadlines

Given n tasks with precedences and deadlines di, if task i
immediately precedes task j, then modify the deadlines
as follows:

1
2

3

4

5

6
C1 = 1
d1 = 2
r'1 = 0
d‘2 = 1

C3 = 1
d3 = 4
r‘3 = 1
d‘3 = 4

C2 = 1
d2 = 5
r‘2 = 1
d‘2 = 2

C4 = 1
d4 = 3
r‘4 = 2
d'4 = 3

C5 = 1
d5 = 5
r‘5 = 2
d‘5 = 5

C6 = 1
d6 = 6
r‘6 = 2
d‘6 = 6

Using the revised release times and
deadlines, the above EDF schedule is
optimal and meets all deadlines.

),min(jjii Cddd −′=′

ri = 0
assume:

EECS 124, UC Berkeley: 20

Optimality

EDF with precedences is optimal in the sense of
minimizing the maximum lateness.

11

EECS 124, UC Berkeley: 21

Accounting for Mutual Exclusion

When threads access shared resources, they need to
use mutexes to ensure data integrity.

Mutexes can also complicate scheduling.

EECS 124, UC Berkeley: 22

Recall mutual exclusion
mechanism in pthreads

#include <pthread.h>
...
pthread_mutex_t lock;

void* addListener(notify listener) {
pthread_mutex_lock(&lock);
...
pthread_mutex_unlock(&lock);

}

void* update(int newValue) {
pthread_mutex_lock(&lock);
value = newValue;
elementType* element = head;
while (element != 0) {

(*(element->listener))(newValue);
element = element->next;

}
pthread_mutex_unlock(&lock);

}

int main(void) {
pthread_mutex_init(&lock, NULL);
...

}

Whenever a data
structure is shared across
threads, access to the
data structure must
usually be atomic. This is
enforced using mutexes,
or mutual exclusion locks.
The code executed while
holding a lock is called a
critical section.

12

EECS 124, UC Berkeley: 23

Priority Inversion: A Hazard with Mutexes

Task 1 has highest priority, task 3 lowest. Task 3 acquires a lock on
a shared object, entering a critical section. It gets preempted by
task 1, which then tries to acquire the lock and blocks. Task 2
preempts task 3 at time 4, keeping the higher priority task 1 blocked
for an unbounded amount of time. In effect, the priorities of tasks 1
and 2 get inverted, since task 2 can keep task 1 waiting arbitrarily
long.

EECS 124, UC Berkeley: 24

Mars Rover Pathfinder

The Mars Rover Pathfinder landed
on Mars on July 4th, 1997. A few days
into the mission, the Pathfinder began
sporadically missing deadlines, causing
total system resets, each with loss of
data. The problem was diagnosed on
the ground as priority inversion, where
a low priority meteorological task was
holding a lock blocking a high-priority
task while medium priority tasks
executed.

Source: RISKS-19.49 on the
comp.programming.threads
newsgroup, December 07, 1997, by
Mike Jones (mbj@MICROSOFT.com).

13

EECS 124, UC Berkeley: 25

Priority Inheritance Protocol (PIP)
(Sha, Rajkumar, Lehoczky, 1990)

Task 1 has highest priority, task 3 lowest. Task 3
acquires a lock on a shared object, entering a critical
section. It gets preempted by task 1, which then tries to
acquire the lock and blocks. Task inherits the priority of
task 1, preventing preemption by task 2.

EECS 124, UC Berkeley: 26

Deadlock
#include <pthread.h>
...
pthread_mutex_t lock_a, lock_b;

void* thread_1_function(void* arg) {
pthread_mutex_lock(&lock_b);
...
pthread_mutex_lock(&lock_a);
...
pthread_mutex_unlock(&lock_a);
...
pthread_mutex_unlock(&lock_b);
...

}
void* thread_2_function(void* arg) {

pthread_mutex_lock(&lock_a);
...
pthread_mutex_lock(&lock_b);
...
pthread_mutex_unlock(&lock_b);
...
pthread_mutex_unlock(&lock_a);
...

}

The lower priority task starts
first and acquires lock a, then
gets preempted by the higher
priority task, which acquires
lock b and then blocks trying to
acquire lock a. The lower
priority task then blocks trying to
acquire lock b, and no further
progress is possible.

14

EECS 124, UC Berkeley: 27

Priority Ceiling Protocol (PCP)
(Sha, Rajkumar, Lehoczky, 1990)

Every lock or semaphore is assigned a priority ceiling equal to
the priority of the highest-priority task that can lock it.

A task is preventing from acquiring a lock unless its priority is
higher than the priority ceiling of all locks current held by other
tasks.

This prevents deadlocks.

There are extensions supporting dynamic priorities and dynamic
creations of locks (stack resource policy)

EECS 124, UC Berkeley: 28

Priority Ceiling Protocol

In this version, locks a and b
have priority ceilings equal to the
priority of task 1. At time 3, task
1 attempts to lock b, but it can’t
because task 2 currently holds
lock a, which has priority ceiling
equal to the priority of task 1.

#include <pthread.h>
...
pthread_mutex_t lock_a, lock_b;

void* thread_1_function(void* arg) {
pthread_mutex_lock(&lock_b);
...
pthread_mutex_lock(&lock_a);
...
pthread_mutex_unlock(&lock_a);
...
pthread_mutex_unlock(&lock_b);
...

}
void* thread_2_function(void* arg) {

pthread_mutex_lock(&lock_a);
...
pthread_mutex_lock(&lock_b);
...
pthread_mutex_unlock(&lock_b);
...
pthread_mutex_unlock(&lock_a);
...

}

15

EECS 124, UC Berkeley: 29

Brittleness

In general, all thread scheduling algorithms are brittle.
Small changes can have big consequences.

I will illustrate this with multiprocessor (or multicore)
schedules.

Theorem (Richard Graham, 1976): If a task set with fixed
priorities, execution times, and precedence constraints is
optimally scheduled on a fixed number of processors,
then increasing the number of processors, reducing
execution times, or weakening precedence constraints
can increase the schedule length.

EECS 124, UC Berkeley: 30

Richard’s Anomalies

What happens if you increase the number of processors
to four?

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Optimal 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

16

EECS 124, UC Berkeley: 31

Richard’s Anomalies:
Increasing the number of processors

The optimal
schedule with four
processors has a
longer execution
time.

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Optimal 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

EECS 124, UC Berkeley: 32

Richard’s Anomalies

What happens if you reduce all computation times by 1?

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Optimal 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

17

EECS 124, UC Berkeley: 33

Richard’s Anomalies:
Reducing computation times

Reducing the
computation times
by 1 also results in
a longer execution
time.

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Optimal 3 processor schedule:

7

6

5

C1 = 2

C2 = 1

C3 = 1

C4 = 1

C9 = 8

C8 = 3

C7 = 3

C6 = 3

C5 = 3

EECS 124, UC Berkeley: 34

Richard’s Anomalies

What happens if you remove the precedence constraints
(4,8) and (4,7)?

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Optimal 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

18

EECS 124, UC Berkeley: 35

Richard’s Anomalies:
Weakening the precedence constraints

Weakening
precedence
constraints can also
result in a longer
schedule.

1

2

3

4

9

8

9 tasks with precedences and the shown execution times,
where lower numbered tasks have higher priority than higher
numbered tasks. Optimal 3 processor schedule:

7

6

5

C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4

EECS 124, UC Berkeley: 36

Richard’s Anomalies with Mutexes:
Reducing Execution Time

Assume tasks 2 and 4 share the same resource in exclusive mode,
and tasks are statically allocated to processors. Then if the
execution time of task 1 is reduced, the schedule length increases:

19

EECS 124, UC Berkeley: 37

Conclusion

Timing behavior under all known task scheduling
strategies is brittle. Small changes can have big (and
unexpected) consequences.

Unfortunately, since execution times are so hard to
predict, such brittleness can result in unexpected system
failures.

