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Lecture 20: Scheduling Anomalies
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Source

This lecture draws heavily from:

Giorgio C. Buttazzo, Hard Real-Time Computing 
Systems, Springer, 2004.
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Review

Rate-Monotonic Scheduling
Earliest Deadline First
Execution Time Estimation (WCET)
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Outline

Precedences
Acyclic precedence graphs
LDF scheduling

Mutual exclusion
Priority inversion
Priority inheritance
Priority ceiling

Multiprocessor scheduling
Richard’s anomalies
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Precedence Constraints

A directed acyclic graph (DAG) shows precedences, 
which indicate which tasks must complete before other 
tasks start.
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DAG, showing that task 1 must complete 
before tasks 2 and 3 can be started, etc.
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Example: EDF Schedule

Is this feasible?  Is it optimal?
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C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6
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EDF is not optimal under precedence constraints

The EDF schedule chooses task 3 at time 1 because it 
has an earlier deadline. This choice results in task 4 
missing its deadline.

Is there a feasible schedule?
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LDF is optimal under precedence constraints

The LDF schedule shown at the bottom respects all 
precedences and meets all deadlines.
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Latest Deadline First (LDF)
(Lawler, 1973)

The LDF scheduling strategy builds a schedule 
backwards. Given a DAG, choose the leaf node with the 
latest deadline to be scheduled last, and work 
backwards.
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Latest Deadline First (LDF)
(Lawler, 1973)

LDF is optimal in the sense that it minimizes the 
maximum lateness.

It does not require preemption.

However, it requires that all tasks be available and their 
precedences known before any task is executed.
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EDF with Precedences

With a preemptive scheduler, EDF can be modified to 
account for precedences and to allow tasks to arrive at 
arbitrary times. Simply adjust the deadlines and arrival 
times according to the precedences.
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C1 = 1
d1 = 2 C3 = 1

d3 = 4

C2 = 1
d2 = 5

C4 = 1
d4 = 3

C5 = 1
d5 = 5

C6 = 1
d6 = 6

Recall that for the tasks at the left, EDF 
yields the schedule above, where task 4 
misses its deadline.
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EDF with Precedences
Modifying release times

Given n tasks with precedences and release times ri, if 
task i immediately precedes task j, then modify the 
release times as follows:
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C1 = 1
d1 = 2
r'1 = 0

C3 = 1
d3 = 4
r‘3 = 1

C2 = 1
d2 = 5
r‘2 = 1

C4 = 1
d4 = 3
r‘4 = 2

C5 = 1
d5 = 5
r‘5 = 2

C6 = 1
d6 = 6
r‘6 = 2

),max( iijj Crrr +=′

ri = 0
assume:
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EDF with Precedences
Modifying deadlines

Given n tasks with precedences and deadlines di, if task i
immediately precedes task j, then modify the deadlines 
as follows:
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C1 = 1
d1 = 2
r'1 = 0
d‘2 = 1

C3 = 1
d3 = 4
r‘3 = 1
d‘3 = 4

C2 = 1
d2 = 5
r‘2 = 1
d‘2 = 2

C4 = 1
d4 = 3
r‘4 = 2
d'4 = 3

C5 = 1
d5 = 5
r‘5 = 2
d‘5 = 5

C6 = 1
d6 = 6
r‘6 = 2
d‘6 = 6

Using the revised release times and 
deadlines, the above EDF schedule is 
optimal and meets all deadlines.

),min( jjii Cddd −′=′

ri = 0
assume:
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Optimality

EDF with precedences is optimal in the sense of 
minimizing the maximum lateness.
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Accounting for Mutual Exclusion

When threads access shared resources, they need to 
use mutexes to ensure data integrity. 

Mutexes can also complicate scheduling.
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Recall mutual exclusion 
mechanism in pthreads

#include <pthread.h>
...
pthread_mutex_t lock;

void* addListener(notify listener) {
pthread_mutex_lock(&lock);
...
pthread_mutex_unlock(&lock);

}

void* update(int newValue) {
pthread_mutex_lock(&lock);
value = newValue;
elementType* element = head;
while (element != 0) {

(*(element->listener))(newValue);
element = element->next;

}
pthread_mutex_unlock(&lock);

}

int main(void) {
pthread_mutex_init(&lock, NULL);
...

}

Whenever a data 
structure is shared across 
threads, access to the 
data structure must 
usually be atomic. This is 
enforced using mutexes, 
or mutual exclusion locks. 
The code executed while 
holding a lock is called a 
critical section.
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Priority Inversion: A Hazard with Mutexes

Task 1 has highest priority, task 3 lowest. Task 3 acquires a lock on 
a shared object, entering a critical section. It gets preempted by 
task 1, which then tries to acquire the lock and blocks. Task 2 
preempts task 3 at time 4, keeping the higher priority task 1 blocked 
for an unbounded amount of time. In effect, the priorities of tasks 1 
and 2 get inverted, since task 2 can keep task 1 waiting arbitrarily 
long.
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Mars Rover Pathfinder

The Mars Rover Pathfinder landed
on Mars on July 4th, 1997. A few days 
into the mission, the Pathfinder began 
sporadically missing deadlines, causing 
total system resets, each with loss of 
data. The problem was diagnosed on 
the ground as priority inversion, where 
a low priority meteorological task was 
holding a lock blocking a high-priority 
task while medium priority tasks 
executed.

Source: RISKS-19.49 on the 
comp.programming.threads
newsgroup, December 07, 1997, by 
Mike Jones (mbj@MICROSOFT.com).
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Priority Inheritance Protocol (PIP)
(Sha, Rajkumar, Lehoczky, 1990)

Task 1 has highest priority, task 3 lowest. Task 3 
acquires a lock on a shared object, entering a critical 
section. It gets preempted by task 1, which then tries to 
acquire the lock and blocks. Task inherits the priority of 
task 1, preventing preemption by task 2.
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Deadlock
#include <pthread.h>
...
pthread_mutex_t lock_a, lock_b;

void* thread_1_function(void* arg) {
pthread_mutex_lock(&lock_b);
...
pthread_mutex_lock(&lock_a);
...
pthread_mutex_unlock(&lock_a);
...
pthread_mutex_unlock(&lock_b);
...

}
void* thread_2_function(void* arg) {

pthread_mutex_lock(&lock_a);
...
pthread_mutex_lock(&lock_b);
...
pthread_mutex_unlock(&lock_b);
...
pthread_mutex_unlock(&lock_a);
...

}

The lower priority task starts 
first and acquires lock a, then 
gets preempted by the higher 
priority task, which acquires 
lock b and then blocks trying to 
acquire lock a. The lower 
priority task then blocks trying to 
acquire lock b, and no further 
progress is possible.
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Priority Ceiling Protocol (PCP)
(Sha, Rajkumar, Lehoczky, 1990)

Every lock or semaphore is assigned a priority ceiling equal to 
the priority of the highest-priority task that can lock it.

A task is preventing from acquiring a lock unless its priority is 
higher than the priority ceiling of all locks current held by other 
tasks.

This prevents deadlocks.

There are extensions supporting dynamic priorities and dynamic 
creations of locks (stack resource policy)
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Priority Ceiling Protocol

In this version, locks a and b 
have priority ceilings equal to the 
priority of task 1. At time 3, task 
1 attempts to lock b, but it can’t 
because task 2 currently holds 
lock a, which has priority ceiling 
equal to the priority of task 1.

#include <pthread.h>
...
pthread_mutex_t lock_a, lock_b;

void* thread_1_function(void* arg) {
pthread_mutex_lock(&lock_b);
...
pthread_mutex_lock(&lock_a);
...
pthread_mutex_unlock(&lock_a);
...
pthread_mutex_unlock(&lock_b);
...

}
void* thread_2_function(void* arg) {

pthread_mutex_lock(&lock_a);
...
pthread_mutex_lock(&lock_b);
...
pthread_mutex_unlock(&lock_b);
...
pthread_mutex_unlock(&lock_a);
...

}
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Brittleness

In general, all thread scheduling algorithms are brittle. 
Small changes can have big consequences.

I will illustrate this with multiprocessor (or multicore) 
schedules.

Theorem (Richard Graham, 1976): If a task set with fixed 
priorities, execution times, and precedence constraints is 
optimally scheduled on a fixed number of processors, 
then increasing the number of processors, reducing 
execution times, or weakening precedence constraints 
can increase the schedule length.
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Richard’s Anomalies

What happens if you increase the number of processors 
to four?
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9 tasks with precedences and the shown execution times, 
where lower numbered tasks have higher priority than higher 
numbered tasks. Optimal 3 processor schedule:
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C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4
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Richard’s Anomalies: 
Increasing the number of processors

The optimal 
schedule with four 
processors has a 
longer execution 
time.
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9 tasks with precedences and the shown execution times, 
where lower numbered tasks have higher priority than higher 
numbered tasks. Optimal 3 processor schedule:
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C1 = 3

C2 = 2

C3 = 2

C4 = 2

C9 = 9

C8 = 4

C7 = 4

C6 = 4

C5 = 4
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Richard’s Anomalies

What happens if you reduce all computation times by 1?

1

2

3

4

9

8
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where lower numbered tasks have higher priority than higher 
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C5 = 4
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Richard’s Anomalies: 
Reducing computation times

Reducing the 
computation times 
by 1 also results in 
a longer execution 
time.
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where lower numbered tasks have higher priority than higher 
numbered tasks. Optimal 3 processor schedule:
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C4 = 1

C9 = 8
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C6 = 3

C5 = 3
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Richard’s Anomalies

What happens if you remove the precedence constraints 
(4,8) and (4,7)?
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Richard’s Anomalies:
Weakening the precedence constraints

Weakening 
precedence 
constraints can also 
result in a longer 
schedule.
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Richard’s Anomalies with Mutexes:
Reducing Execution Time

Assume tasks 2 and 4 share the same resource in exclusive mode, 
and tasks are statically allocated to processors. Then if the 
execution time of task 1 is reduced, the schedule length increases:
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Conclusion

Timing behavior under all known task scheduling 
strategies is brittle. Small changes can have big (and 
unexpected) consequences.

Unfortunately, since execution times are so hard to 
predict, such brittleness can result in unexpected system 
failures.


