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Lee 20: 2

Basic Continuous-Time Modeling
A basic continuous-
time model describes 
an ordinary differential 
equation (ODE).
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Basic Continuous-Time Modeling
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A basic continuous-
time model describes 
an ordinary differential 
equation (ODE).
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Basic Continuous-Time Modeling

The state trajectory is modeled as a vector function of time,
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ODE Solvers

Numerical solution approximates the state trajectory of the ODE by 
estimating its value at discrete time points: 

tt0 t1 t2t3 ts...

Reasonable choices for these points depend on the function f.

Using such solvers, signals are discrete-event signals.
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Simple Example

This simple example integrates a ramp. In this case, it is 
easy to find a closed form solution,
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Trapezoidal Method: An example of an 
“implicit” method

Classical method 
estimates the area 
under the curve by 
calculating the 
area of trapezoids.

However, this 
method requires 
knowing          , 
which in a 
feedback system 
isn’t known until        
is known.
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Implicit Methods are Challenging with Feedback

Can’t know this at any time t
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Until this is known at time t
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Implicit Methods are Challenging with Feedback
We have a 
“causality loop.”

One possible approach 
is to iterate to a solution. 
Convergence and 
uniqueness are not 
always guaranteed.
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Forward Euler Solver:
An example of an “explicit method”

Given x(tn) and a time increment h, calculate:
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This method can be used in feedback systems. The 
solution is unique.
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Forward Euler on Simple Example

In this case, we have 
used a fixed step size 
h = 0.1. The result is 
close, but diverges 
over time.
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“Stiff” systems require small step sizes

For spring-mass damper, 
large stiffness constant k
makes the system “stiff.”

Variable step-size methods 
will dynamically modify the 
step size h in response to 
estimates of the integration 
error. Even these, however, 
run into trouble when 
stiffness varies over time. 
Extreme case of increasing 
stiffness results in Zeno 
behavior:
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Runge-Kutta 2-3 Solver (RK2-3):
Improving on Forward Euler

Given x(tn) and a time increment h, calculate

then let

Note that this requires three evaluations of f at three 
different times with three different inputs.
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Operational Requirements

In a software system, the blue box below can be specified by a 
program that, given x(t) and t calculates f (x(t), t ) . But this requires 
that the program be functional (have no side effects).
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For variable-step size RK2-3, have to 
be able to evaluate f at tn , tn + 0.5h , 
and tn + 0.75h without committing to 
the step size h . (Evaluation must 
have no side effects).
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Adjusting the Time Steps

For time step given by                   , let

If ε is less than the “error tolerance” e, then the step is 
deemed “successful” and the next time step is estimated 
at:

If ε is greater than the “error tolerance,” then the time 
step h is reduced and the whole thing is tried again.
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Comparing RK2-3 to Forward Euler

RK2-3:

Forward Euler:

For this example, RK2-3 with 
variable step size computes 
far fewer points and is exact 
at 3.0, while Forward Euler 
undershoots by a significant 
amount.
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Accumulating Errors

In feedback systems, the errors of forward Euler accumulate more
rapidly than those of RK2-3.
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Adjusting the Time Steps due to Discrete Events

A step size h may cause the model to skip over a point 
where the behavior of the system changes abruptly:

Such events must be detected and treated similarly as 
requiring a smaller step size.
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Bouncing Ball

note smaller 
step size 
where needed 
due to bump

note smaller step 
size where needed 
due to stiffness
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Continuous Time Model of Computation (MoC)

At each discrete time tn, given a time increment 
tn+1 = tn+ h, we can estimate x(tn+1) by repeatedly 
evaluating f with different values for the arguments. We 
may then decide that h is too large and reduce it and 
redo the process.
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How General Is This MoC?
Does it handle:

Systems without feedback? yes
External inputs? yes
State machines?
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How General Is This MoC?
Does it handle:

Systems without feedback?
External inputs? yes
State machines?
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The Model Itself as a Function

Note that the model function has the form:
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Is the MoC Compositional?
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For a model of computation to be compositional, it must be possible 
to turn a model into a component in another model.
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The Model Itself as a Function

Note that the model function has the form:

Which does not match the form:
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Given the model, we don’t actually know the function f.
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Consequently, the MoC is 
Not Compositional!
In general, the behavior of the inside dynamical system 
cannot be given by a function of form:

∫+=
t

t

dxtxtx
0

)()()( 0 ττ&x&
x

)),(( ttxf ∫+=
t

t

dxtxtx
0

)()()( 0 ττ&x&
x

mm RTRf →×:

To see this, just note that the output must depend only on 
the current value of the input and the time to conform 
with this form.
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So How General Is This MoC?
Does it handle:

External inputs?
Systems without feedback?
State machines? No… The model needs work…
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Since this model is itself a state machine, the inability to 
put a state machine in the left box explains the lack of 
compositionality.
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Bouncing Ball in a Decreasing 
Gravitational Field
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What Makes This Possible
Simple actor

Ss ∈1 Ss ∈2
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The new function f gives outputs in terms of inputs and the current 
state. The function g updates the state at the specified time.

state space

Actor with State
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Actors With State

Ss ∈1 Ss ∈2
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until the state no longer changes. We use 
the final state on any evaluation at later 
times.

At each  t ∈ T the output is a sequence
of one or more values where given the 
current state σ (t) ∈ Σ and the input s1(t)
we evaluate the procedure  


