
1

Introduction to
Embedded Systems

Edward A. Lee & Sanjit Seshia
UC Berkeley
EECS 124
Spring 2008

Copyright © 2008, Edward A. Lee & Sanjit Seshia, All rights reserved

Lecture 12: Simulation Strategies for Continuous and
Hybrid Models

Lee 20: 2

Basic Continuous-Time Modeling
A basic continuous-
time model describes
an ordinary differential
equation (ODE).

2

Lee 20: 3

Basic Continuous-Time Modeling

)),(()(ttxftx =&

)),((ttxf

x

∫

∫+=
t

t

dxtxtx
0

)()()(0 ττ&

A basic continuous-
time model describes
an ordinary differential
equation (ODE).

Lee 20: 4

Basic Continuous-Time Modeling

The state trajectory is modeled as a vector function of time,

)),(()(ttxftx =&

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττ&x&
x

nRTx →:

mm RTRf →×:

RtT ⊂∞=),[0

3

Lee 20: 5

ODE Solvers

Numerical solution approximates the state trajectory of the ODE by
estimating its value at discrete time points:

tt0 t1 t2t3 ts...

Reasonable choices for these points depend on the function f.

Using such solvers, signals are discrete-event signals.

Ttt ⊂,...},{ 10

Lee 20: 6

Simple Example

This simple example integrates a ramp. In this case, it is
easy to find a closed form solution,

)(tx

)(tx&

2/)()(2ttxttx =⇒=&

4

Lee 20: 7

Trapezoidal Method: An example of an
“implicit” method

Classical method
estimates the area
under the curve by
calculating the
area of trapezoids.

However, this
method requires
knowing ,
which in a
feedback system
isn’t known until
is known.

)(tx

)(ntx&

)(1+ntx&

2/))()(()()(11 ++ ++= nnnn txtxhtxtx &&

h

)(1+ntx&

)(1+ntx

Lee 20: 8

Implicit Methods are Challenging with Feedback

Can’t know this at any time t

)),(()(ttxftx =&

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττ&x&
x

mm RTRf →×:

Until this is known at time t

5

Lee 20: 9

Implicit Methods are Challenging with Feedback
We have a
“causality loop.”

One possible approach
is to iterate to a solution.
Convergence and
uniqueness are not
always guaranteed.

Lee 20: 10

Forward Euler Solver:
An example of an “explicit method”

Given x(tn) and a time increment h, calculate:

)),(()()(1

1

nnnn

nn

ttxfhtxtx
htt

+=
+=

+

+

This method can be used in feedback systems. The
solution is unique.

6

Lee 20: 11

Forward Euler on Simple Example

In this case, we have
used a fixed step size
h = 0.1. The result is
close, but diverges
over time.

)(tx

)(tx&

)(tx&

)(~ tx

Lee 20: 12

“Stiff” systems require small step sizes

For spring-mass damper,
large stiffness constant k
makes the system “stiff.”

Variable step-size methods
will dynamically modify the
step size h in response to
estimates of the integration
error. Even these, however,
run into trouble when
stiffness varies over time.
Extreme case of increasing
stiffness results in Zeno
behavior:

7

Lee 20: 13

Runge-Kutta 2-3 Solver (RK2-3):
Improving on Forward Euler

Given x(tn) and a time increment h, calculate

then let

Note that this requires three evaluations of f at three
different times with three different inputs.

)75.0,75.0)((
)5.0,5.0)((

)),((

12

01

0

hthKtxfK
hthKtxfK

ttxfK

nn

nn

nn

++=
++=

=
)(ntx&

)5.0(htx n +&

)75.0(htx n +&

estimate of

estimate of

2101

1

)9/4()9/3()9/2()()(hKhKhKtxtx
htt

nn

nn

+++=
+=

+

+

Lee 20: 14

Operational Requirements

In a software system, the blue box below can be specified by a
program that, given x(t) and t calculates f (x(t), t) . But this requires
that the program be functional (have no side effects).

)),(()(ttxftx =&

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττ&x&
x

mm RTRf →×:

For variable-step size RK2-3, have to
be able to evaluate f at tn , tn + 0.5h ,
and tn + 0.75h without committing to
the step size h . (Evaluation must
have no side effects).

8

Lee 20: 15

Adjusting the Time Steps

For time step given by , let

If ε is less than the “error tolerance” e, then the step is
deemed “successful” and the next time step is estimated
at:

If ε is greater than the “error tolerance,” then the time
step h is reduced and the whole thing is tried again.

htt nn +=+1

))8/1()9/1()12/1()72/5((
)),((

3210

113

KKKKh
ttxfK nn

−+++−=
= ++

ε

3 /8.0 εeh =′

Lee 20: 16

Comparing RK2-3 to Forward Euler

RK2-3:

Forward Euler:

For this example, RK2-3 with
variable step size computes
far fewer points and is exact
at 3.0, while Forward Euler
undershoots by a significant
amount.

9

Lee 20: 17

Accumulating Errors

In feedback systems, the errors of forward Euler accumulate more
rapidly than those of RK2-3.

)),(()(ttxftx =&

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττ&x&
x

mm RTRf →×:

Lee 20: 18

Adjusting the Time Steps due to Discrete Events

A step size h may cause the model to skip over a point
where the behavior of the system changes abruptly:

Such events must be detected and treated similarly as
requiring a smaller step size.

10

Lee 20: 19

Bouncing Ball

note smaller
step size
where needed
due to bump

note smaller step
size where needed
due to stiffness

Lee 20: 20

Continuous Time Model of Computation (MoC)

At each discrete time tn, given a time increment
tn+1 = tn+ h, we can estimate x(tn+1) by repeatedly
evaluating f with different values for the arguments. We
may then decide that h is too large and reduce it and
redo the process.

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττ&x&
x

11

Lee 20: 21

How General Is This MoC?
Does it handle:

Systems without feedback? yes
External inputs? yes
State machines?

)),(()(ttxftx =&

f
∫+=
t

dxxtx
0

)()0()(ττ&x&

x

Lee 20: 22

How General Is This MoC?
Does it handle:

Systems without feedback?
External inputs? yes
State machines?

)),(),(()),(()(ttxtugttxftx ==&

f
∫+=
t

dxxtx
0

)()0()(ττ&x&

x

g
u

12

Lee 20: 23

The Model Itself as a Function

Note that the model function has the form:

)()(: mm RTRTF →→→

f
∫+=
t

dxxtx
0

)()0()(ττ&x& xg
u

F

Lee 20: 24

Is the MoC Compositional?

∫+=
t

t

dytyty
0

)()()(0 ττ&
xy =&

uy =
)),((ttxf ∫+=

t

t

dxtxtx
0

)()()(0 ττ&x&
x

For a model of computation to be compositional, it must be possible
to turn a model into a component in another model.

f
∫+=
t

dxxtx
0

)()0()(ττ&x& xg
u

F

13

Lee 20: 25

The Model Itself as a Function

Note that the model function has the form:

Which does not match the form:
)()(: mm RTRTF →→→

f
∫+=
t

dxxtx
0

)()0()(ττ&x& xg
u

F

mm RTRf →×:

Given the model, we don’t actually know the function f.

Lee 20: 26

Consequently, the MoC is
Not Compositional!
In general, the behavior of the inside dynamical system
cannot be given by a function of form:

∫+=
t

t

dxtxtx
0

)()()(0 ττ&x&
x

)),((ttxf ∫+=
t

t

dxtxtx
0

)()()(0 ττ&x&
x

mm RTRf →×:

To see this, just note that the output must depend only on
the current value of the input and the time to conform
with this form.

14

Lee 20: 27

So How General Is This MoC?
Does it handle:

External inputs?
Systems without feedback?
State machines? No… The model needs work…

∫+=
t

dxxtx
0

)()0()(ττ&x&

x

Since this model is itself a state machine, the inability to
put a state machine in the left box explains the lack of
compositionality.

Lee 20: 28

Bouncing Ball in a Decreasing
Gravitational Field

15

Lee 20: 29

What Makes This Possible
Simple actor

Ss ∈1 Ss ∈2

)(RNTS →×=

The new function f gives outputs in terms of inputs and the current
state. The function g updates the state at the specified time.

state space

Actor with State

mm RTRf →××Σ:
)(RTS →=

Σ→××Σ TRg m:

mm RTRf →×:

Ss ∈1 Ss ∈2

)),(()(, 12 ttsftsTt =∈∀

?),(,),(2 =×∈∀ ntsNTnt

Lee 20: 30

Actors With State

Ss ∈1 Ss ∈2

][RNTS →×=
mm RTRf →××Σ:

Σ→××Σ TRg m:

...
)),1,(),(()(
)),1,(),(()1,(

)),0,(),(()(
)),0,(),(()0,(

112

112

11

12

ttstgt
ttstfts

ttstgt
ttstfts

σσ
σ
σσ
σ

=
=
=
=

until the state no longer changes. We use
the final state on any evaluation at later
times.

At each t ∈ T the output is a sequence
of one or more values where given the
current state σ (t) ∈ Σ and the input s1(t)
we evaluate the procedure

