Introduction to
Embedded Systems

Edward A. Lee & Sanjit Seshia

UC Berkeley
EECS 124
Spring 2008

Copyright © 2008, Edward A. Lee & Sanijit Seshia, All rights reserved

Lecture 12: Simulation Strategies for Continuous and
Hybrid Models

Basic Continuous-Time Modeling

S s This model shows a nonlinear feedback A basic continuous-
:ZJ?;”EUZ';SQ’O ey time model describes
e crincusdsmiient | an ordinary differential
; modela knoen as. Lorans atracie. equation (ODE).
Exprassion Integratpr 1 F4 .Loranz. XY Plotter

sigma*(x2-x1) J EEEE

Strange Attractor

Inte: 2 %5
_Expression 2 n - gratpr

(lambda-B) x1-2 J 0

Integrator 3 18r
L Expression 3 T

& 006 =y

5

o

Author: Jie Liu

Lee 20: 2

ol

Basic Continuous-Time Modeling

Continuous-Time (CT) Solver

This model shows a nonlinear feedback A basic continuous-

» sigma: 10.0 system that exhibits chaatic behavior. H H
® lambda: 25.0 It is modeled in continuous time. The tlme mOdeI descrlbes
XY Plotter ob:20 CT director uses a sophisticated : ; H
r ordinary differential equation solver an Ordmary dlffe rentlal
B to execute the maodel. This particular H
X model is known as a Lorenz attractor. eCI Uat| on (O D E) .

AN
Wi

FA .Lorenz. XY Plotter

L=l

Author: Jie Liu

x(t) = f(x(t),t) ol
X(t) = X(to) + [X(r)dz | ©

L Lee 20: 3

Basic Continuous-Time Modeling

The state trajectory is modeled as a vector function of time,

X:T > R" T =[t,,©o)cR

f(x(t),t) | X MDzXﬂQ+jﬂﬂdr

X(t) = f(x(1),1)
f:R"xT —R"

Lee 20: 4

°?

ODE Solvers

Numerical solution approximates the state trajectory of the ODE by
estimating its value at discrete time points:

{t,.t,..}cT

tO tl t2t3 t t

Reasonable choices for these points depend on the function f.

Using such solvers, signals are discrete-event signals.

Lee 20: 5

Simple Example

This simple example integrates a ramp. In this case, it is
easy to find a closed form solution,

X(t)=t = x(t)=t*/2

CT Director ENFE

Exact
450

o] X(t)
il X(t)

0ar
oo

Integrator Approximate

0.0 05 1.0 1.8 2.0 248 3.0

o3

Trapezoidal Method: An example of an
“implicit” method

Classical method
estimates the area
under the curve by
calculating the
area of trapezoids.

However, this
method requires
knowing X(t,..),

which in a

feedback system h

isn’t known until X(t,,,)

Is known. X(ty,1) = X(t,) + h(x(t,) + X(t,,.)) /2

Lee 20: 7

Implicit Methods are Challenging with Feedback

Can’t know this at any time t

Until this is known at time/
/ Jx

f(x(t),t) | X M0=x60+jﬂﬂdr

X(t) = £ (x(1),1)
f:R"xT —R"

Lee 20: 8

o4

Implicit Methods are Challenging with Feedback

Continuous-Time (CT) Solver

This model shows a nonlinear feedback We have a

» sigma: 10.0 system that exhibits chaotic behavior.

woaw Sh3e . rpeestnnmesieTe | “causality loop.”
([R e
model is known as a Lorenz attractor.
eI Integratpr 1 FA Loranz. XY Plotter
] Sigmﬁ‘[xz.xl) J erange Attractor EEEE
B Integratpr 2 2% ’ ! ! !
- (lambda-x3)"x1-x2 j 20
Expression 3 Imfagratm:‘: I
L-
L 5
Author: Jie Liu J
One possible approach ‘:_
is to iterate to a solution. N
Convergence and 0
uniqueness are not e
always guaranteed. . Lee 20: 9
Forward Euler Solver:
An example of an “explicit method”
Given x(t,) and a time increment h, calculate:
t.,=t +h
X(tn+1) = X(tn) + h f (X(tn)’tn)
This method can be used in feedback systems. The
solution is unique.
Lee 20: 10

o5

Forward Euler on Simple Example

=1l

Approximate

In this case, we have ol XA
used a fixed step size ol i
h=0.1. The result is o X(t)

close, but diverges el

over time. R T —

T Dy - =01

Integrator Approximate

| X(t)

I L L L I L
05 1.0 1.5 2.0 25 30

Lee 20: 11

“Stiff” systems require small step sizes

Force due to spring extension:
Fi(t) =k(p—=z(t))
Force due to viscous damping:
Fy(t) = —ci(t)
Newton'’s second law:
Fi(t) + Fo(t) = Mi(t)

or
M#(t) + ci(t) + ka(t) = kp.

For spring-mass damper,
large stiffness constant k

makes the system “stiff.”

Variable step-size methods
will dynamically modify the
step size h in response to
estimates of the integration
error. Even these, however,
run into trouble when
stiffness varies over time.
Extreme case of increasing
stiffness results in Zeno
behavior:

Lee 20: 12

o6

Runge-Kutta 2-3 Solver (RK2-3):
Improving on Forward Euler

Given x(t,) and a time increment h, calculate

) s,
Ko = f (X(tn)’tn) es(timite of

K, = f(x(t,)+0.5hK,,t, +0.5h) X(t, +0.5h)
_ . estimate of
K, = f(x(t,)+0.75hK,,t +0.75h) %(t. +0.75h)
then let
t.,=t +h
X(t,.,) =X(t,)+(2/9)hK, +(3/9)hK, + (4/9)hK,

Note that this requires three evaluations of f at three
different times with three different inputs.

Lee 20: 13

Operational Requirements

In a software system, the blue box below can be specified by a
program that, given x(t) and t calculates f (x(t), t) . But this requires
that the program be functional (have no side effects).

t X
Lf(x(t),t) X x() = x(t) + |)'((T)dz'J

. For variable-step size RK2-3, have to

X(t) = f(X(t),t) be able to evaluate fatt,, t. +0.5h,
and t, + 0.75h without committing to

f:R"xT > R™ the step size h . (Evaluation must

have no side effects). oo 20: 14

o/

Adjusting the Time Steps

For time step given by t

K3 = f(X(tn+l)ltn+l)
£=N((-5/72)K, + (1/12)K, + 1/ 9K, + (-1/8)K,)

=t +h, let

n+l

If £is less than the “error tolerance” e, then the step is
deemed “successful” and the next time step is estimated
at:

h'=0.83/el/¢

If £is greater than the “error tolerance,” then the time
step h is reduced and the whole thing is tried again.

Lee 20: 15

Comparing RK2-3 to Forward Euler

| Al
Approximate EEE @E@@

] Approximate

a5fF T i

... Forward Euler:
ol
2O
181
1.0

0sr
oo

450
445

1 4.40
il 435F
| 430l
) 425
| wanf
w15)

= : _Bpproximate @EED For this example, RK2-3 with
‘ol _] variable step size computes
sop RK2-3: far fewer points and is exact
il] at 3.0, while Forward Euler
20f 1 undershoots by a significant
ol] amount.
03|

EI‘U UTS 1TU 1?5 Z‘U 2?5 3‘U Lee 20 16

o8

Accumulating Errors

In feedback systems, the errors of forward Euler accumulate more
rapidly than those of RK2-3.

t X
Lf(x(t),t) X xa)—X@Q+fﬂﬂer

X(t) = 1 (x(1),1)
f:R"xT —R"

Lee 20: 17

Adjusting the Time Steps due to Discrete Events

A step size h may cause the model to skip over a point
where the behavior of the system changes abruptly:

LevelCrossingDetector
:‘00

Such events must be detected and treated similarly as
requiring a smaller step size.

Lee 20: 18

o9

S

Position

Bouncing Ball of

height meters

guard:
abs{position) < stoppedThreshold
&& abs(velocity) < stoppedThreshold

L A L =T\ -
10 15 20 25 30
time (sec)

ote smaller
step size

where needed
due tobump

guard: true

sat:
free.initialPosition = initialPosition;
free.initialVelocity = 0.0

Constant:
Gravitational velacity
acceleration velocity

note smaller step
size where needed
due to stiffness

ZeroCrossingDetector

bump

position

Continuous Time Model of Computation (MoC)

f(x(t),t) X x(t):x(t0)+j>'<(r)dr

At each discrete time t,, given a time increment

t.., = t,+ h, we can estimate x(t,,,) by repeatedly
evaluating f with different values for the arguments. We
may then decide that h is too large and reduce it and

redo the process.

Lee 20: 20

010

How General Is This MoC?

Does it handle:
Systems without feedback? yes

D X x(t)x(0)+j>'<(r)er

X(t) = f(x(t),t)

Lee 20: 21

How General Is This MoC?

Does it handle:

External inputs? yes

u t
Dl@ X x(t) = x(0) + [x()dz J
f 0

(1) = T (x(t),1) = g(u(t), x(t),t)

Lee 20: 22

oll

The Model Itself as a Function

Note that the model function has the form:

F:(T>R")—> (T —>R"

Lee 20: 23

Is the MoC Compositional?

t Jy:u
=Y () = y() + [Y()de

to

For a model of computation to be compositional, it must be possible
to turn a model into a component in another model. Lee 20: 24

el12

The Model Itself as a Function

Note that the model function has the form:
F:MT->R"—> (T —>R")
Which does not match the form:
f:R"xT ->R"

E X x(t):x(0)+j;)'((r)dr X

=

Given the model, we don’t actually know the function f.

Lee 20: 25

Consequently, the MoC is
Not Compositional!

In general, the behavior of the inside dynamical system
cannot be given by a function of form:

f:R"xT - R"

. X
L (X x®) = x(t)+ | X(r)de
ty

To see this, just note that the output must depend only on
the current value of the input and the time to conform
with this form. Lee 20: 26

el3

So How General Is This
Does it handle:

MoC?

State machines? No... The model needs work...

X

X x(t) = x(0) +.t[)'((z')dr

Since this model is itself a state machine, the inability to
put a state machine in the left box explains the lack of

compositionality. e 20 27
)) . - =
Bouncing Ball in a Decreasing of Position -
Gravitational Field
Al
TimedPlotter g
Ball Model . . *g &
Z 40
Integrator Scale2
A
| o
7 1] 5 10 15 20 25 30
tirne (sec)
stop I
guard; .
it g (i iy Nl .
Position ZeroCrossingDetector ER
free guard: true

free.initialPosition = initialPosition;
free initialVelocity = 0.0

guarnd
bump_isPrasant
set;

free.initialVelocity = -elasticity * velocity;
free.initial Position = position

position

Lee 20: 28

el4

What Makes This Possible

Simple actor Actor with State

LE Stateful Actor
S, €S S, €S S, €S S, €S
S=(T —>R) S=(TxN—>R)
f:R"xT > R" f:ZxR"xT > R"

VteT, s,(t)=f(s(t),t) g:ZxR"xT -3
state space

V(t,n)eTxN, s,(t,n)="?

The new function f gives outputs in terms of inputs and the current
state. The function g updates the state at the specified time.

Lee 20: 29
Actors With State
StatefulActor At each t e T the output is a sequence
— f g ——— ofone or more values where given the
S, € S S, € S current state o (t) € £ and the input s,(t)
we evaluate the procedure
S=[TxN-R] 5,(10) = (o(1),5,(t0), 1)
. m m
FIExRTXT - R o1(t) = 9(0(1),5,(t0).1)
g:ZxR"XT > X 5,(t.D) = f (o (1), 5,(t.2),1)

o,(t) = g(0, (1), 5, (t.1),1)

until the state no longer changes. We use
the final state on any evaluation at later
times.

Lee 20: 30

el5

