
© National Instruments Corporation 1 Introduction to LabVIEW Hands-On



This is a list of the objectives of the course.

This course prepares you to do the following:

• Use LabVIEW to create applications.

• Understand front panels, block diagrams, and icons and connector panes.

• Use built-in LabVIEW functions.

• Create and save programs in LabVIEW so you can use them as subroutines.

• Create applications that use plug-in DAQ devices.

This course does not describe any of the following:

• Programming theory

• Every built-in LabVIEW function or object

• Analog-to-digital (A/D) theory

NI does provide free reference materials on the above topics on ni.com. 

The LabVIEW Help is also very helpful:

LabVIEW»Help»Search the LabVIEW Help…

Introduction to LabVIEW Hands-On 2 ni.com



National Instruments LabVIEW is an industry-leading software tool for designing test, 

measurement, and control systems. Since its introduction in 1986, engineers and 

scientists worldwide who have relied on NI LabVIEW graphical development for 

projects throughout the product design cycle have gained improved quality, shorter time 

to market, and greater engineering and manufacturing efficiency. By using the 

integrated LabVIEW environment to interface with real-world signals, analyze data for 

meaningful information, and share results, you can boost productivity throughout your 

organization. Because LabVIEW has the flexibility of a programming language 

combined with built-in tools designed specifically for test, measurement, and control, 

you can create applications that range from simple temperature monitoring to 

sophisticated simulation and control systems. No matter what your project is, LabVIEW 

has the tools necessary to make you successful quickly. 

Some of the applications have the following in common:

- Physical measurements

- Analysis and signal processing

- Decision making

- Data logging

- Report generation

Introduction to LabVIEW Hands-On 4 ni.com



Virtual Instrumentation

For more than 25 years, National Instruments has revolutionized the way engineers and 

scientists in industry, government, and academia approach measurement and 

automation. Leveraging PCs and commercial technologies, virtual instrumentation 

increases productivity and lowers costs for test, control, and design applications 

through easy-to-integrate software, such as NI LabVIEW, and modular measurement 

and control hardware for PXI, PCI, USB, and Ethernet. 

With virtual instrumentation, engineers use graphical programming software to create 

user-defined solutions that meet their specific needs, which is a great alternative to 

proprietary, fixed functionality traditional instruments. Additionally, virtual 

instrumentation capitalizes on the ever-increasing performance of personal computers. 

For example, in test, measurement, and control, engineers have used virtual 

instrumentation to downsize automated test equipment (ATE) while experiencing up to 

a 10 times increase in productivity gains at a fraction of the cost of traditional 

instrument solutions. Last year 25,000 companies in 90 countries invested in more than 

6 million virtual instrumentation channels from National Instruments. 

© National Instruments Corporation 3 Introduction to LabVIEW Hands-On



Virtual Instrumentation Applications

Virtual instrumentation is applicable in many different types of applications, starting from design 

to prototyping and deployment. The LabVIEW platform provides specific tools and models to 

solve specific applications ranging from designing signal processing algorithms to making 

voltage measurements and can target any number of platforms from the desktop to embedded 

devices – with an intuitive, powerful graphical paradigm.

With version 8, LabVIEW scales from design and development on PCs to several embedded 

targets from ruggedized toaster size prototypes to embedded systems on chips. LabVIEW 

streamlines system design with a single graphical development platform. In doing so, 

LabVIEW encompasses better management of distributed, networked systems because as the 

targets for LabVIEW grow varied and embedded, you will need to be able to more easily 

distribute and communicate between various LabVIEW code pieces in your system. 

© National Instruments Corporation 5 Introduction to LabVIEW Hands-On



Integrated Hardware Platforms

A virtual instrument consists of an industry-standard computer or workstation equipped 

with powerful application software, cost-effective hardware such as plug-in boards, and 

driver software, which together perform the functions of traditional instruments. 

Virtual instruments represent a fundamental shift from traditional hardware-centered 

instrumentation systems to software-centered systems that exploit the computing power, 

productivity, display, and connectivity capabilities of popular desktop computers and 

workstations. 

Although the PC and integrated circuit technology have experienced significant 

advances in the last two decades, software truly offers the flexibility to build on this 

powerful hardware foundation to create virtual instruments, providing better ways to 

innovate and significantly reduce cost. With virtual instruments, engineers and scientists 

build measurement and automation systems that suit their needs exactly (user-defined) 

instead of being limited by traditional fixed-function instruments (vendor-defined).

Introduction to LabVIEW Hands-On 6 ni.com



LabVIEW is a graphical system design platform that provides many techniques for 

solving problems in a single development environment.

Many of you may not be aware of this, but if you can program in LabVIEW, then you 

can program much more than desktop systems.  

Quiz the audience as to who has used LV on Mac, Linux, RT, FPGA, Embedded, etc

The ability to create applications using a combination of development techniques 

enables scientist and engineers to choose best technique for each aspect of their 

application.  The ability to deploy the applications to variety of custom and off-the-shelf 

IO hardware targets enables the domain expert to not only design their application, but 

implement it in the real-world.



© National Instruments Corporation 7 Introduction to LabVIEW Hands-On



This LabVIEW course is designed for audiences with or without access to National 

Instruments hardware. 

Each exercise is divided into three tracks, A, B, and C:

Track A is designed to be used with hardware supported by the National Instruments 

DAQmx driver. This includes most USB, PCI, and PXI data acquisition devices with 

analog input. Some signal conditioning and excitation is required to use a microphone 

with a DAQ device. (Some sensors, like microphones, require external power to work 

(excitation)).

Track B is designed to be used with no hardware. Hardware can be simulated with the 

NI-DAQmx Driver Version 7.5 and newer. A simulated NI-DAQmx device is a replica 

of a device created using the NI-DAQmx Simulated Device option in the Create New 

menu of MAX for the purpose of operating a function or program without hardware. An 

NI-DAQmx simulated device behaves similar to a real device. Its driver is loaded, and 

programs using it are fully verified. 

Track C is designed to be used with a standard sound card and microphone. LabVIEW 

includes simple VIs for analog input and analog output using the soundcard built into 

many PCs. (This is very convenient for laptops because the soundcard and microphone 

are usually already built-in.)

Introduction to LabVIEW Hands-On 8 ni.com



Track A – NI Data Acqusion with Microphone: USB-6009 with Microphone & LED

Suggested Hardware:

The following schematic was drawn with Multisim, a widely used SPICE schematic capture and 

simulation tool. Visit http://www.electronicsworkbench.com for more info.

Setting-Up Your Hardware for Your Selected Track

Qty Part Number Description Supplier

1 779321-22 Low-cost USB DAQ National Instruments

1 270-092 Electret Microphone RadioShack

1 100 Ohm Resistor RadioShack

1 220 Ohm Resistor RadioShack

1 276-307 Light Emitting Diode (LED) RadioShack

Track B – Simulated NI Data Acqusion: NI-DAQ Software version 8.0 or newer

Track C – Third-party Soundcard: Soundcard and Microphone

Suggested Hardware:

* Laptops often have a built-in microphone (no plug-in microphone is required)

Qty Part Number Description Supplier

1 Standard Plug-in PC 

Microphone*

RadioShack

© National Instruments Corporation 9 Introduction to LabVIEW Hands-On



What type of device should I use?

There are many types of data acquisition and control devices on the market. A few have been 

highlighted above. The trade-off usually falls between sampling rate (samples/second), 

resolution (bits), number of channels, and data transfer rate (usually limited by ―bus‖ type: 

USB, PCI, PXI, etc.). Multifunction DAQ (data acqusion) devices are ideal because they can 

be used in a wide range of applications.

USB-6008 & USB-6009 Low-Cost USB DAQ

The National Instruments USB-6009 provides basic 

data acquisition functionality for applications such as 

simple data logging, portable measurements, and 

academic lab experiments. The NI USB-6008 and NI 

USB-6009 are ideal for students. Create your own 

measurement application by programming the NI 

USB-6009 using LabVIEW and NI-DAQmx driver 

software for Windows. For Mac OS X and Linux 

users, download and use the NI-DAQmx Base driver.

NI USB-6009 Specifications:

• Eight 14-bit analog inputs

• 12 digital I/O lines

• 2 analog outputs

• 1 counter

http://www.ni.com/daq/

Introduction to LabVIEW Hands-On 10 ni.com



The next level of software we are concerned with is called Measurement & Automation 

Explorer (MAX). MAX is a software interface that gives you access to all of your 

National Instruments DAQ, GPIB, IMAQ, IVI, Motion, VISA, and VXI devices. The 

shortcut to MAX will be placed on your desktop after installation. A picture of the icon 

is shown above. MAX is mainly used to configure and test your National Instruments 

hardware, but it does offer other functionality such as checking to see if you have the 

latest version of NI-DAQ installed. When you run an application using NI-DAQmx, the 

software reads the MAX configuration to determine the devices you have configured. 

Therefore, you must configure DAQ devices first with MAX.

The functionality of MAX is broken into seven categories:

• Data Neighborhood

• Devices and Interfaces

• IVI Instruments

• Scales

• Historical Data

• Software

• VI Logger Tasks

For this course, we will focus on Data Neighborhood, Devices and Interfaces, Scales, 

and Software. We will now step through each one of these categories and learn about 

the functionality each one offers. 

© National Instruments Corporation 11 Introduction to LabVIEW Hands-On



Exercise 1 – Testing Your Device (Track A)

In this exercise you will use Measurement and Automation Explorer (MAX) to test

your NI USB-6009 DAQ device. 

1. Launch MAX by double-clicking the icon on the desktop or by selecting 

Start»Programs»National Instruments»Measurement & Automation.

2. Expand the Devices and Interfaces section to view the installed National 

Instruments devices. MAX displays the National Instruments hardware and software 

in the computer. 

3. Expand the NI-DAQmx Devices section to view the installed hardware that is 

compatible with NI-DAQmx. The device number appears in quotes following the 

device name. The data acquisition VIs use this device number to determine which 

device performs DAQ operations. You will see your hardware listed as NI USB-

6009: ―Dev1‖.

4. Perform a self-test on the device by right-clicking it in the configuration tree and 

choosing Self-Test or clicking ―Self-Test‖ along the top of the window. This tests 

the system resources assigned to the device. The device should pass the test because 

it is already configured. 

5. Check the pinout for your device. Right-click the device in the configuration tree 

and select Device Pinouts or click ―Device Pinouts‖ along the top of the center 

window. 

6. Open the test panels. Right-click the device in the configuration tree and select Test 

Panels… or click ―Test Panels…‖ along the top of the center window. The test 

panels allow you to test the available functionality of your device, analog 

input/output, digital input/output, and counter input/output without doing any 

programming. 

7. On the Analog Input tab of the test panels, change Mode to ―Continuous‖ and 

Rate to 10,000 Hz. Click ―Start‖ and hum or whistle into your microphone to 

observe the signal that is plotted. Click ―Finish‖ when you are done. 

8. On the Digital I/O tab notice that initially the port is configured to be all input. 

Observe under Select State the LEDs that represent the state of the input lines. 

Click the ―All Output‖ button under Select Direction. Notice you now have 

switches under Select State to specify the output state of the different lines. Toggle 

line 0 and watch the LED light up. Click ―Close‖ to close the test panels.

9. Close MAX.

Introduction to LabVIEW Hands-On 12 ni.com



(End of Exercise)

© National Instruments Corporation 13 Introduction to LabVIEW Hands-On



Exercise 1 – Setting Up Your Device (Track B)

In this exercise you will use Measurement and Automation Explorer (MAX) to 

configure a simulated DAQ device. 

1. Launch MAX by double-clicking the icon on the desktop or by selecting 

Start»Programs»National Instruments»Measurement & Automation.

2. Expand the Devices and Interfaces section to view the installed National 

Instruments devices. MAX displays the National Instruments hardware and software 

in the computer. The device number appears in quotes following the device name. 

The data acquisition VIs use this device number to determine which device 

performs DAQ operations. 

3. Create a simulated DAQ device for use later in this course. Simulated devices are a 

powerful tool for development without having hardware physically installed in your 

computer. Right-click Devices and Interfaces and select Create New…»NI-

DAQmx Simulated Device. Click ―Finish‖.

4. Expand the M Series DAQ section. Select PCI-6220 or any other PCI device of 

your choice. Click ―OK‖.

5. The NI-DAQmx Devices folder will expand and you will see a new entry for PCI-

6220: ―Dev1‖. You have now created a simulated device!

6. Perform a self-test on the device by right-clicking it in the configuration tree and 

choosing Self-Test or clicking ―Self-Test‖ along the top of the window. This tests 

the system resources assigned to the device. The device should pass the test because 

it is already configured. 

7. Check the pinout for your device. Right-click the device in the configuration tree 

and select Device Pinouts or click ―Device Pinouts‖ along the top of the center 

window. 

8. Open the test panels. Right-click the device in the configuration tree and select Test 

Panels… or click ―Test Panels…‖ along the top of the center window. The test 

panels allow you to test the available functionality of your device, analog 

input/output, digital input/output, and counter input/output without doing any 

programming. 

9. On the Analog Input tab of the test panels, change Mode to ―Continuous‖. Click 

―Start‖ and observe the signal that is plotted. Click ―Stop‖ when you are done. 

Introduction to LabVIEW Hands-On 14 ni.com



10. On the Digital I/O tab notice that initially the port is configured to be all input. 

Observe under Select State the LEDs that represent the state of the input lines. 

Click the ―All Output‖ button under Select Direction. Notice you now have 

switches under Select State to specify the output state of the different lines. Click 

―Close‖ to close the test panels.

11. Close MAX.

(End of Exercise)

© National Instruments Corporation 15 Introduction to LabVIEW Hands-On



Exercise 1 – Setting Up Your Device (Track C)

In this exercise, you will use Windows utilities to verify your sound card and prepare it 

for use with a microphone. 

1. Prepare your microphone for use. Double-click the volume control icon on the task 

bar to open up the configuration window. The sound configuration window can also 

be found from the Windows Control Panel: Start Menu»Control Panel»Sounds 

and Audio Devices»Advanced.

2. If you do not see a microphone section, go to Options»Properties»Recording and 

place a checkmark in the box next to Microphone. This will display the 

Microphone volume control. Click ―OK‖.

3. Uncheck the Mute box if it is not already unchecked. Make sure that the volume is 

turned up. 

1. Close the volume control configuration window.

2. Open the Sound Recorder by selecting 

Start»Programs»Accessories»Entertainment»Sound Recorder.

3. Click the record button and speak into your microphone. Notice how the sound 

signal is displayed in the Sound Recorder. 

4. Click stop and close the Sound Recorder without saving changes when you are 

finished. 

Uncheck Mute

(End of Exercise)

Introduction to LabVIEW Hands-On 16 ni.com



LabVIEW

LabVIEW is a graphical programming language that uses icons instead of lines of 

text to create applications. In contrast to text-based programming languages, where 

instructions determine program execution, LabVIEW uses dataflow programming, 

where the flow of data determines execution order.

You can purchase several add-on software toolkits for developing specialized 

applications. All the toolkits integrate seamlessly in LabVIEW. Refer to the 

National Instruments Web site for more information about these toolkits. 

LabVIEW also includes several wizards to help you quickly configure your DAQ 

devices and computer-based instruments and build applications.

LabVIEW Example Finder

LabVIEW includes hundreds of example VIs you can use and incorporate into VIs 

that you create. In addition to the example VIs that ship with LabVIEW, you also 

can access hundreds of example VIs on the NI Developer Zone (zone.ni.com). 

You can modify an example VI to fit an application, or you can copy and paste 

from one or more examples into a VI that you create.

© National Instruments Corporation 17 Introduction to LabVIEW Hands-On



LabVIEW programs are called virtual instruments (VIs).

Controls are inputs and indicators are outputs.

Each VI contains three main parts:

• Front Panel – How the user interacts with the VI.

• Block Diagram – The code that controls the program.

• Icon/Connector – Means of connecting a VI to other VIs.

In LabVIEW, you build a user interface by using a set of tools and objects. The user 

interface is known as the front panel. You then add code using graphical representations 

of functions to control the front panel objects. The block diagram contains this code. In 

some ways, the block diagram resembles a flowchart.

Users interact with the Front Panel when the program is running. Users can control the 

program, change inputs, and see data updated in real time. Controls are used for inputs 

such as, adjusting a slide control to set an alarm value, turning a switch on or off, or to 

stop a program. Indicators are used as outputs. Thermometers, lights, and other 

indicators display output values from the program. These may include data, program 

states, and other information.

Every front panel control or indicator has a corresponding terminal on the block 

diagram. When a VI is run, values from controls flow through the block diagram, where 

they are used in the functions on the diagram, and the results are passed into other 

functions or indicators through wires.

Introduction to LabVIEW Hands-On 18 ni.com



20

Acquire-Analyze on Block Diagram

Present on Front Panel

LabVIEW programs are called virtual instruments (VIs).

Controls are inputs and indicators are outputs.

Each VI contains three main parts:

•Front Panel – How the user interacts with the VI.

•Block Diagram – The code that controls the program.

•Icon/Connector – Means of connecting a VI to other VIs.

In LabVIEW, you build a user interface by using a set of tools and 

objects. The user interface is known as the front panel. You then add code using 

graphical representations of functions to control the front panel objects. The block 

diagram contains this code. In some ways, the block diagram resembles a flowchart.

Users interact with the Front Panel when the program is running. Users 

can control the program, change inputs, and see data updated in real time. Controls are 

used for inputs such as, adjusting a slide control to set an alarm value, turning a switch 

on or off, or to stop a program. Indicators are used as outputs. Thermometers, lights, and 

other indicators display output values from the program. These may include data, 

program states, and other information.

Every front panel control or indicator has a corresponding terminal on 

the block diagram. When a VI is run, values from controls flow through the block 

diagram, where they are used in the functions on the diagram, and the results are passed 

into other functions or indicators through wires.



Use the Controls palette to place controls and indicators on the front panel. The 

Controls palette is available only on the front panel. To view the palette, select 

Window»Show Controls Palette. You also can display the Controls palette by right-

clicking an open area on the front panel. Tack down the Controls palette by clicking the 

pushpin on the top left corner of the palette.

© National Instruments Corporation 19 Introduction to LabVIEW Hands-On



Use the Functions palette to build the block diagram. The Functions palette is available 

only on the block diagram. To view the palette, select Window»Show Functions 

Palette. You also can display the Functions palette by right-clicking an open area on 

the block diagram. Tack down the Functions palette by clicking the pushpin on the top 

left corner of the palette.

Introduction to LabVIEW Hands-On 20 ni.com



If automatic tool selection is enabled and you move the cursor over objects on the front 

panel or block diagram, LabVIEW automatically selects the corresponding tool from the 

Tools palette. Toggle automatic tool selection by clicking the Automatic Tool 

Selection button in the Tools palette. 

Use the Operating tool to change the values of a control or select the text within a 

control. 

Use the Positioning tool to select, move, or resize objects. The Positioning tool changes 

shape when it moves over a corner of a resizable object.

Use the Labeling tool to edit text and create free labels. The Labeling tool changes to a 

cursor when you create free labels.

Use the Wiring tool to wire objects together on the block diagram.

Other important tools:

© National Instruments Corporation 21 Introduction to LabVIEW Hands-On



• Click the Run button to run the VI. While the VI runs, the Run button appears with a 
black arrow if the VI is a top-level VI, meaning it has no callers and therefore is not a 
subVI.

• Click the Continuous Run button to run the VI until you abort or pause it. You also can 
click the button again to disable continuous running.

• While the VI runs, the Abort Execution button appears. Click this button to stop the VI 
immediately.

Note: Avoid using the Abort Execution button to stop a VI. Either let the VI complete its 
data flow or design a method to stop the VI programmatically. By doing so, the VI is at a 
known state. For example, place a button on the front panel that stops the VI when you 
click it.

• Click the Pause button to pause a running VI. When you click the Pause button, 
LabVIEW highlights on the block diagram the location where you paused execution. Click 
the Pause button again to continue running the VI.

• Select the Text Settings pull-down menu to change the font settings for the VI, including 
size, style, and color.

• Select the Align Objects pull-down menu to align objects along axes, including vertical, 
top edge, left, and so on.

• Select the Distribute Objects pull-down menu to space objects evenly, including gaps, 
compression, and so on.

• Select the Resize Objects pull-down menu to change the width and height of front panel 
objects.

Introduction to LabVIEW Hands-On 22 ni.com



• Select the Reorder pull-down menu when you have objects that overlap each other 

and you want to define which one is in front or back of another. Select one of the 

objects with the Positioning tool and then select from Move Forward, Move 

Backward, Move To Front, and Move To Back.

Note: The following items only appear on the block diagram toolbar.

• Click the Highlight Execution button to see the flow of data through the block 

diagram. Click the button again to disable execution highlighting.

• Click Retain Wire Values button to save the wire values at each point in the flow 

of execution so that when you place a probe on a wire, you can immediately obtain 

the most recent value of the data that passed through the wire. 

• Click the Step Into button to single-step into a loop, subVI, and so on. Single-

stepping through a VI steps through the VI node to node. Each node blinks to 

denote when it is ready to execute. By stepping into the node, you are ready to 

single-step inside the node.

• Click the Step Over button to step over a loop, subVI, and so on. By stepping over 

the node, you execute the node without single-stepping through the node.

• Click the Step Out button to step out of a loop, subVI, and so on. By stepping out 

of a node, you complete single-stepping through the node and go to the next node.

Additional Tools:

Retain Wire 

Values

© National Instruments Corporation 23 Introduction to LabVIEW Hands-On



When you create an object on the Front Panel, a terminal will be created on the Block 

Diagram. These terminals give you access to the Front Panel objects from the Block 

Diagram code.

Each terminal contains useful information about the Front Panel object it corresponds to. 

For example, the color and symbols provide information about the data type. For 

example: The dynamic data type is a polymorphic data type represented by dark blue 

terminals. Boolean terminals are green with TF lettering.

In general, blue terminals should wire to blue terminals, green to green, and so on. This 

is not a hard-and-fast rule; LabVIEW will allow a user to connect a blue terminal 

(dynamic data) to an orange terminal (fractional value), for example. But in most cases, 

look for a match in colors.

Controls have an arrow on the right side and have a thick border. Indicators have an 

arrow on the left and a thin border. Logic rules apply to wiring in LabVIEW: Each wire 

must have one (but only one) source (or control), and each wire may have multiple 

destinations (or indicators).

Introduction to LabVIEW Hands-On 24 ni.com



LabVIEW follows a dataflow model for running VIs. A block diagram node executes 

when all its inputs are available. When a node completes execution, it supplies data to 

its output terminals and passes the output data to the next node in the dataflow path. 

Visual Basic, C++, JAVA, and most other text-based programming languages follow a 

control flow model of program execution. In control flow, the sequential order of 

program elements determines the execution order of a program.

Consider the block diagram above. It adds two numbers and then multiplies by 2 from 

the result of the addition. In this case, the block diagram executes from left to right, not 

because the objects are placed in that order, but because one of the inputs of the 

Multiply function is not valid until the Add function has finished executing and passed 

the data to the Multiply function. Remember that a node executes only when data are 

available at all of its input terminals, and it supplies data to its output terminals only 

when it finishes execution. In the second piece of code, the Simulate Signal Express VI 

receives input from the controls and passes its result to the Graph. 

You may consider the add-multiply and the simulate signal code to co-exist on the same 

block diagram in parallel. This means that they will both begin executing at the same 

time and run independent of one another. If the computer running this code had multiple 

processors, these two pieces of code could run independent of one another (each on its 

own processor) without any additional coding.

© National Instruments Corporation 25 Introduction to LabVIEW Hands-On



When your VI is not executable, a broken arrow is displayed in the Run button in the 

palette.

• Finding Errors: To list errors, click on the broken arrow. To locate the bad object, 

click on the error message.

• Execution Highlighting: Animates the diagram and traces the flow of the data, 

allowing you to view intermediate values. Click on the light bulb on the toolbar.

• Probe: Used to view values in arrays and clusters. Click on wires with the Probe 

tool or right-click on the wire to set probes.

• Retain Wire Values: Used in conjunction with probes to view the values from the 

last iteration of the program. 

• Breakpoint: Set pauses at different locations on the diagram. Click on wires or 

objects with the Breakpoint tool to set breakpoints.

Introduction to LabVIEW Hands-On 26 ni.com



Exercise 2 – Acquiring a Signal with DAQ (Track A)

Note: Before beginning this exercise, copy the Exercises and Solutions Folders to the 

desktop of your computer.

Complete the following steps to create a VI that acquires data continuously from your 

DAQ device. 

1. Launch LabVIEW.

2. In the Getting Started window, click the New or VI from Template link to display 

the New dialog box. 

3. Open a data acquisition template. From the Create New list, select VI»From 

Template»DAQ»Data Acquisition with NI-DAQmx.vi and click ―OK‖. 

4. Display the block diagram by clicking it or by selecting Window»Show Block 

Diagram. Read the instructions written there about how to complete the program. 

5. Double-click the DAQ Assistant to launch the configuration wizard. 

6. Configure an analog input operation. 

a. Choose Analog Input»Voltage. 

b. Choose Dev1 (USB-6009)»ai0 to acquire data on analog input channel 0 and 

click ―Finish.‖ 

c. In the next window you define parameters of your analog input operation. 

To choose an input range that works well with your microphone, on the settings 

tab enter 2 Volts for the maximum and –2 Volts for the minimum. On the task 

timing tab, choose ―Continuous‖ for the acquisition mode and enter 10000 for 

the rate. Leave all other choices set to their default values. Click ―OK‖ to exit 

the wizard.

7. Place the Filter Express VI to the right of the DAQ Assistant on the block diagram. 

From the functions palette, select Express»Signal Analysis»Filter and place it on 

the block diagram inside the while loop. When you bring up the functions palette, 

press the small push pin in the upper left hand corner of the palette. This will tack 

down the palette so that it doesn‘t disappear. This step will be omitted in the 

following exercises, but should be repeated. In the configuration window under 

Filtering Type, choose ―Highpass.‖ Under Cutoff Frequency, use a value of 300 Hz. 

Click ―OK.‖ 

© National Instruments Corporation 27 Introduction to LabVIEW Hands-On



8. Make the following connections on the block diagram by hovering your mouse over the terminal 

so that it becomes the wiring tool and clicking once on each of the terminals you wish to connect:

a. Connect the ―Data‖ output terminal of the DAQ Assistant VI to the ―Signal‖ input of the Filter 

VI. 

b. Create a graph indicator for the filtered signal by right-clicking on the ―Filtered Signal‖ output 

terminal and choose Create»Graph Indicator.

9. Return to the front panel by selecting Window»Show Front Panel or by pressing <Ctrl+E>. 

10. Run your program by clicking the run button. Hum or whistle into the microphone to observe the 

changing voltage on the graph.

11. Click stop once you are finished. 

12. Save the VI as ―Exercise 2 – Acquire.vi‖ in your Exercises folder and close it.

Note: The solution to this exercise is printed in the back of this manual.

Tip: You can place the DAQ 

Assistant on your block diagram 

from the Functions Palette. Right-

click the block diagram to open 

the Functions Palette and go to 

Express»Input to find it.

(End of Exercise)

Introduction to LabVIEW Hands-On 28 ni.com



Exercise 2 – Acquiring a Signal with DAQ (Track B)

Note: Before beginning this exercise, copy the Exercises and Solutions Folders to the 
desktop 

of your computer. 

Complete the following steps to create a VI that acquires data continuously from your 
simulated DAQ device. 

1. Launch LabVIEW.

2. In the Getting Started window, click the New or VI from Template link to display 
the New dialog box. 

3. Open a data acquisition template. From the Create New list, select VI»From 
Template»DAQ»Data Acquisition with NI-DAQmx.vi and click ―OK‖. 

4. Display the block diagram by clicking it or by selecting Window»Show Block 
Diagram. Read the instructions written there about how to complete the program. 

5. Double-click the DAQ Assistant to launch the configuration wizard. 

6. Configure an analog input operation. 

a. Choose Analog Input»Voltage. 

b. Choose Dev1 (PCI-6220)»ai0 to acquire data on analog input channel 0

and click ―Finish.‖ 

c. In the next window you define parameters of your analog input operation.

On the task timing tab, choose ―Continuous‖ for the acquisition mode,

enter 1000 for samples to read, and 10000 for the rate. Leave all other
choices set to their default values. Click ―OK‖ to exit the wizard.

7. On the block diagram, right-click the black arrow to the right of where it says ―data.‖ 
Choose Create»Graph Indicator from the right-click menu.

8. Return to the front panel by selecting Window»Show Front Panel or by pressing 
<Ctrl+E>. 

9. Run your program by clicking the run button. Observe the simulated sine wave on the 
graph. 

10. Click stop once you are finished. 

11. Save the VI as ―Exercise 2 – Acquire.vi‖ in the Exercises folder. Close the VI.

Notes: 

• The solution to this exercise is printed in the back of this manual.

• You can place the DAQ Assistant on your block diagram from the Functions Palette. 
Right-click the block diagram to open the Functions Palette and go to Express»Input 
to find it. When you bring up the functions palette, press the small push pin in the 
upper left hand corner of the palette. This will tack down the palette so that it doesn‘t 
disappear. This step will be omitted in the following exercises, but should be repeated. 

© National Instruments Corporation 29 Introduction to LabVIEW Hands-On



(End of Exercise)

Introduction to LabVIEW Hands-On 30 ni.com



Exercise 2 – Acquiring a Signal with the Sound Card (Track C)

Note: Before beginning this exercise, copy the Exercises and Solutions Folders to

the desktop of your computer.

Complete the following steps to create a VI that acquires data from your sound card. 

1. Launch LabVIEW.

2. In the Getting Started window, click the Blank VI link. 

3. Display the block diagram by pressing <Ctrl+E> or selecting Window»Show Block 

Diagram.

4. Place the Acquire Sound Express VI on the block diagram. Right-click to open the 

functions palette and select Express»Input»Acquire Sound. Place the Express VI 

on the block diagram. 

5. In the configuration window under #Channels, select 1 from the drop-down list and 

click ―OK‖. 

6. Place the Filter Express VI to the right of the Acquire Signal VI on the block 

diagram. From the functions palette, select Express»Signal Analysis»Filter and 

place it on the block diagram. In the configuration window under Filtering Type, 

choose ―Highpass.‖ Under Cutoff Frequency, use a value of 300 Hz. Click ―OK.‖ 

7. Make the following connections on the block diagram by hovering your mouse over 

the terminal so that it becomes the wiring tool and clicking once on each of the 

terminals you wish to connect:

a. Connect the ―Data‖ output terminal of the Acquire Signal VI to the ―Signal‖ input 

of the Filter VI. 

b. Create a graph indicator for the filtered signal by right-clicking on the ―Filtered 

Signal‖ output terminal and choose Create»Graph Indicator.

8. Return to the front panel by pressing <Ctrl+E> or Window»Show Front Panel.

9. Run your program by clicking the run button. Hum or whistle into your microphone 

and observe the data you acquire from your sound card. 

10. Save the VI as ―Exercise 2 – Acquire.vi‖ in the Exercises folder.

11. Close the VI. 

Note: The solution to this exercise is printed in the back of this manual.

(End of Exercise)

© National Instruments Corporation 31 Introduction to LabVIEW Hands-On



The Context Help window displays basic information about LabVIEW objects when 
you move the cursor over each object. Objects with context help information include 
VIs, functions, constants, structures, palettes, properties, methods, events, and dialog 
box components.

To display the Context Help window, select Help»Show Context Help, press the 
<Ctrl+H> keys, or press the Show Context Help Window button in the toolbar

Connections displayed in Context Help:

Required – bold
Recommended – normal
Optional – dimmed

Additional Help

• VI, Function, & How-To Help is also available.

– Help» VI, Function, & How-To Help

– Right-click the VI icon and choose Help, or 

– Choose ―Detailed Help.‖ on the context help window.

• LabVIEW Help – reference style help

– Help»Search the LabVIEW Help…

Introduction to LabVIEW Hands-On 32 ni.com



LabVIEW has many keystroke shortcuts that make working easier. The most common 

shortcuts are listed above.

While the Automatic Selection Tool is great for choosing the tool you would like to use 

in LabVIEW, there are sometimes cases when you want manual control. Once the 

Automatic Selection Tool is turned off, use the Tab key to toggle between the four most 

common tools (Operate Value, Position/Size/Select, Edit Text, Set Color on Front Panel 

and Operate Value, Position/Size/Select, Edit Text, Connect Wire on Block Diagram). 

Once you are finished with the tool you choose, you can press <Shift+Tab> to turn the 

Automatic Selection Tool back on.

In the Tools»Options… dialog, there are many configurable options for customizing 

your Front Panel, Block Diagram, Colors, Printing, and much more.

Similar to the LabVIEW Options, you can configure VI specific properties by going to 

File»VI Properties… There you can document the VI, change the appearance of the 

window, and customize it in several other ways.

© National Instruments Corporation 33 Introduction to LabVIEW Hands-On





© National Instruments Corporation 35 Introduction to LabVIEW Hands-On



Both the While and For Loops are located on the Functions»Structures palette. The 

For Loop differs from the While Loop in that the For Loop executes a set number of 

times. A While Loop stops executing the subdiagram only if the value at the conditional 

terminal exists.

While Loops

Similar to a Do Loop or a Repeat-Until Loop in text-based programming languages, a 

While Loop, shown at the top right, executes a subdiagram until a condition is met. The 

While Loop executes the sub diagram until the conditional terminal, an input terminal, 

receives a specific Boolean value. The default behavior and appearance of the 

conditional terminal is Stop If True. When a conditional terminal is Stop If True, the 

While Loop executes its subdiagram until the conditional terminal receives a TRUE 

value. The iteration terminal (an output terminal), shown at left, contains the number of 

completed iterations. The iteration count always starts at zero. During the first iteration, 

the iteration terminal returns 0.

For Loops

A For Loop, shown above, executes a subdiagram a set number of times. The value in 

the count terminal (an input terminal) represented by the N, indicates how many times to 

repeat the subdiagram. The iteration terminal (an output terminal), shown at left, 

contains the number of completed iterations. The iteration count always starts at zero. 

During the first iteration, the iteration terminal returns 0.

Introduction to LabVIEW Hands-On 36 ni.com



Place loops in your diagram by selecting them from the Structures palette of the Functions 

palette:

• When selected, the mouse cursor becomes a special pointer that you use to enclose the 

section of code you want to repeat.

• Click the mouse button to define the top-left corner, click the mouse button again at the 

bottom-right corner, and the While Loop boundary is created around the selected code.

• Drag or drop additional nodes in the While Loop if needed.

© National Instruments Corporation 37 Introduction to LabVIEW Hands-On



LabVIEW 7.0 introduced a new type of subVI called Express VIs. These are interactive 

VIs that have a configuration dialog box that allows the user to customize the 

functionality of the Express VI. LabVIEW then generates a subVI based on these 

settings.

SubVIs are VIs (consisting of a front panel and a block diagram) that are used within 

another VI.

Functions are the building blocks of all VIs. Functions do not have a front panel or a 

block diagram.

Introduction to LabVIEW Hands-On 38 ni.com



LabVIEW includes several hundreds of pre-built functions that help you to acquire, 

analyze, and present data. You would generally use these functions as outlined on the 

slide above.

LabVIEW Toolkits

Additional toolkits are available for adding domain specific functionality to LabVIEW. 

These toolkits include:

Application Deployment and 

Targeting Modules

* LabVIEW PDA Module

* LabVIEW Real-Time Module

* LabVIEW FPGA Module

* LabVIEW Vision Development 

Module 

Embedded System Deployment

* DSP Test Integration Toolkit

* Embedded Test Integration Toolkit

* Digital Filter Design Toolkit

* LabVIEW FPGA Module

Signal Processing and Analysis

* Sound and Vibration Toolkit

* Advanced Signal Processing Toolkit

* Modulation Toolkit

* Spectral Measurements Toolkit

* Order Analysis Toolkit

* Digital Filter Design Toolkit

Software Engineering and

Optimization Tools

* Execution Trace Toolkit for

LabVIEW Real-Time

* Express VI Development Toolkit

* State Diagram Toolkit

* VI Analyzer Toolkit

Control Design and Simulation

* Control Design and Simulation 

Bundle

* LabVIEW Real-Time Module

* System Identification Toolkit

* Control Design Toolkit

* LabVIEW Simulation Module

* State Diagram Toolkit

Image Processing and Acquisition

* LabVIEW Vision Development 

Module

* NI Vision Builder for Automated 

Inspection

* NI-IMAQ for IEEE 1394

http://www.ni.com/toolkits/

© National Instruments Corporation 39 Introduction to LabVIEW Hands-On



Use the buttons on top of the palette windows to navigate, search, and edit the palettes.

You can search for controls, VIs, and functions that either contain certain words or start with 

certain words. Double clicking a search result opens the palette that contains the search result. 

You also can click and drag the name of the control, VI, or function directly to the front panel or 

block diagram.

Introduction to LabVIEW Hands-On 40 ni.com



Creating SubVIs

After you build a VI, you can use it in another VI. A VI called from the block diagram of another 

VI is called a subVI. You can reuse a subVI in other VIs. To create a subVI, you need to build a 

connector pane and create an icon.

A subVI node corresponds to a subroutine call in text-based programming languages. A block 

diagram that contains several identical subVI nodes calls the same subVI several times.

The subVI controls and indicators receive data from and return data to the block diagram of the 

calling VI. Click the Select a VI icon or text on the Functions palette, navigate to and double-

click a VI, and place the VI on a block diagram to create a subVI call to that VI. 

A subVI input and output terminals and the icon can be easily customized. Follow the 

instructions below to quickly create a subVI.

Creating SubVIs from Sections of a VI

Convert a section of a VI into a subVI by using the Positioning tool to select the section of the 

block diagram you want to reuse and selecting Edit»Create SubVI. An icon for the new subVI 

replaces the selected section of the block diagram. LabVIEW creates controls and indicators for 

the new subVI, automatically configures the connector pane based on the number of control and 

indicator terminals you selected, and wires the subVI to the existing wires. 

See Help»Search the LabVIEW Help…»SubVIs for more information.

© National Instruments Corporation 41 Introduction to LabVIEW Hands-On



A subVI node corresponds to a subroutine call in text-based programming languages. The node 

is not the subVI itself, just as a subroutine call statement in a program is not the subroutine itself. 

A block diagram that contains several identical subVI nodes calls the same subVI several times.

The modular approach makes applications easier to debug and maintain.

The functionality of the subVI does not matter for this example. The important point is the 

passing of two numeric inputs and one numeric output.

Introduction to LabVIEW Hands-On 42 ni.com



Exercise 3.1 – Analysis (Track A, B, & C)

Create a VI that produces a sine wave with a specified frequency and displays the data

on a Waveform Chart until stopped by the user. 

1. Open a blank VI from the Getting Started screen. 

2. Place a chart on the front panel. Right-click to open the controls palette and select 

Controls»Modern»Graph»Waveform Chart. 

3. Place a dial control on the front panel. From the controls palette, select 

Controls»Modern »Numeric»Dial. Notice that when you first place the control on 

the front panel, the label text is highlighted. While this text is highlighted, type 

―Frequency In‖ to give a name to this control. 

4. Go to the block diagram (<Ctrl+E>) and place a while loop down. Right-click to 

open the functions palette and select Express»Execution Control»While Loop. 

Click and drag on the block diagram to make the while loop the correct size. Select 

the waveform chart and dial and drag them inside the while loop if they are not 

already. Notice that a stop button is already connected to the conditional terminal of 

the while loop. 

5. Place the Simulate Signal Express VI on the block diagram. From the functions 

palette, select Express»Signal Analysis»Simulate Signal and place it on the block 

diagram inside the while loop. In the configuration window under Timing, choose 

―Simulate acquisition timing.‖ Click ―OK.‖

6. Place a Tone Measurements Express VI on the block diagram (Express»Signal 

Analysis»Tone Measurements). In the configuration window, choose Amplitude 

and Frequency measurements in the Single Tone Measurements section. Click 

―OK.‖

© National Instruments Corporation 43 Introduction to LabVIEW Hands-On



7. Make the following connections on the block diagram by hovering your mouse over 

the terminal so that it becomes the wiring tool and clicking once on each of the 

terminals you wish to connect:

a. Connect the ―Sine‖ output terminal of the Simulate Signal VI to the 

―Signals‖ input of the Tone Measurements VI. 

b. Connect the ―Sine‖ output to the Waveform Chart.

c. Create indicators for the amplitude and frequency measurements by right-clicking 

on each of the terminals of the Tone Measurements Express VI and selecting 

Create»Numeric Indicator. 

d. Connect the ―Frequency In‖ control to the ―Frequency‖ terminal of the 

Simulate Signal VI.

8. Return to the front panel and run the VI. Move the ―Frequency In‖ dial and observe 

the frequency of the signal. Click the stop button once you are finished. 

9. Save the VI as ―Exercise 3.1 – Simulated.vi‖.

10. Close the VI.

Notes

• When you bring up the functions palette, press the small push pin in the upper left 

hand corner of the palette. This will tack down the palette so that it doesn‘t 

disappear. This step will be omitted in the following exercises, but should be 

repeated. 

• The solution to this exercise is printed in the back of this manual.

(End of Exercise)

Introduction to LabVIEW Hands-On 44 ni.com



Exercise 3.2 – Analysis (Track A & B)

Create a VI that measures the frequency and amplitude of the signal from your 

(simulated) DAQ device and displays the acquired signal on a waveform chart. The 

instructions are the same as in Exercise 3.1, but a DAQ Assistant is used in place of the 

Simulate Signal VI. Try to do this without following the instructions! 

1. Open a blank VI.

2. Place a chart on the front panel. Right click to open the controls palette and select 

Controls»Modern»Graph»Waveform Chart.

3. Go to the block diagram and place a while loop down (Express»Execution 

Control»While Loop).

4. Place a DAQ Assistant on the block diagram (Express»Input»DAQ Assistant). 

Choose analog input on channel ai0 of your (simulated) device and click ―Finish.‖ 

On the task timing tab, choose ―continuous‖ for the acquisition mode. If you are 

using the USB-6009, change the Input Range to -2 to 2 and the number of Samples 

to Read to 100.

5. Place the Filter Express VI to the right of the DAQ Assistant on the block diagram. 

From the functions palette, select Express»Signal Analysis»Filter and place it on 

the block diagram inside the while loop. In the configuration window under 

Filtering Type, choose ―Highpass.‖ Under Cutoff Frequency, use a value of 300 Hz. 

Click ―OK.‖ 

6. Connect the ―Data‖ output terminal of the DAQ Assistant VI to the ―Signal‖ input 

of the Filter VI. 

7. Connect the ―Filtered Signal‖ terminal on the Filter VI to the Waveform Chart.

8. Place a Tone Measurements Express VI on the block diagram (Express»Signal 

Analysis»Tone). In the configuration window, choose Amplitude and Frequency 

measurements in the Single Tone Measurements section.

9. Create indicators for the amplitude and frequency measurements by right clicking 

on each of the terminals of the Tone Measurements Express VI and selecting 

Create»Numeric Indicator. 

10. Connect the output of the Filter VI to the ―Signals‖ input of the Tone Measurements 

Express VI. 

11. Return to the front panel and run the VI. Observe your acquired signal and its 

frequency and amplitude. Hum or whistle into the microphone if you have a USB-

6009 and observe the amplitude and frequency that you are producing.

12. Save the VI as ―Exercise 3.2 - Data.vi‖.

13. Close the VI.

Note: The solution to this exercise is printed in the back of this manual.

(End of Exercise)

© National Instruments Corporation 45 Introduction to LabVIEW Hands-On



Exercise 3.2 – Analysis (Track C)

Create a VI that measures the frequency and amplitude of the signal from your sound 

card

and displays the acquired signal on a waveform chart. The instructions are the same as 

in 

Exercise 3.1, but the Sound Signal VI is used in place of the Simulate Signal VI. Try to 

do 

this without following the instructions! 

1. Open a blank VI.

2. Go to the block diagram and place a While Loop down (Express»Execution 

Control»While Loop).

3. Place the Acquire Sound Express VI on the block diagram (Express»Input» 

Acquire Sound). 

4. Place a Filter Express VI on the block diagram. In the configuration window choose 

a highpass filter and a cutoff frequency of 300 Hz. 

5. Place a Tone Measurements Express VI on the block diagram (Express»Signal 

Analysis»Tone). In the configuration window, choose Amplitude and Frequency 

measurements in the Single Tone Measurements section.

6. Create indicators for the amplitude and frequency measurements by right-clicking 

on each of the terminals of the Tone Measurements Express VI and selecting 

Create»Numeric Indicator.

7. Connect the ―Data‖ terminal of the Acquire Sound Express VI to the ―Signal‖ input 

of the Filter VI. 

8. Connect the ―Filtered Signal‖ terminal of the Filter VI to the ―Signals‖ input of the 

Tone Measurements VI. 

9. Create a graph indicator for the Filtered Signal by right-clicking on the ―Filtered 

Signal‖ terminal and selecting Create»Graph Indicator.

10. Return to the front panel and run the VI. Observe the signal from your sound card 

and its amplitude and frequency. Hum or whistle into the microphone and observe 

the amplitude and frequency you are producing.

11. Save the VI as ―Exercise 3.2-Data.vi‖. Close the VI.

Note: The solution to this exercise is printed in the back of this manual.

(End of Exercise)

Introduction to LabVIEW Hands-On 46 ni.com



Case Structure

The Case Structure has one or more subdiagrams, or cases, exactly one of which 

executes when the structure executes. The value wired to the selector terminal 

determines which case to execute and can be boolean, string, integer, or enumerated 

type. Right-click the structure border to add or delete cases. Use the Labeling tool to 

enter value(s) in the case selector label and configure the value(s) handled by each case. 

It is found at Functions»Programming»Structures»Case Structure.

Select 

Returns the value wired to the t input or f input, depending on the value of s. If s is 

TRUE, this function returns the value wired to t. If s is FALSE, this function returns the 

value wired to f. The connector pane displays the default data types for this polymorphic 

function. It is found at Functions»Programming» Comparison»Select.

• Example a: Boolean input: Simple if-then case. If the Boolean input is TRUE, the 

true case will execute; otherwise the FALSE case will execute. 

• Example b: Numeric input. The input value determines which box to execute. If out 

of range of the cases, LabVIEW will choose the default case.

• Example c: When the Boolean passes a TRUE value to the Select VI, the value 5 is 

passed to the indicator. When the Boolean passes a FALSE value to the Select VI, 0 

is passed to the indicator.

© National Instruments Corporation 47 Introduction to LabVIEW Hands-On



Use LabVIEW measurement data files to save data that the Write Measurement File 

Express VI generates. The LabVIEW data file is a tab-delimited text file you can open 

with a spreadsheet application or a text-editing application. In addition to the data an 

Express VI generates, the .lvm file includes information about the data, such as the date 

and time the data was generated. 

File I/O operations pass data from memory to and from files. In LabVIEW, you can use 

File I/O functions to:

• Open and close data files

• Read data from and write data to files

• Read from and write to spreadsheet-formatted files

• Move and rename files and directories

• Change file characteristics

• Create, modify, and read a configuration file

• Write to or read from LabVIEW Measurements files.

In the next example we will examine how to write to or read from LabVIEW 

Measurements files (*.lvm files). 

Introduction to LabVIEW Hands-On 48 ni.com



Exercise 3.3 – Decision Making and Saving Data (Track A, B, & C)

Create a VI that allows you to save your data to file if the frequency of your data

goes below a user-controlled limit. 

1. Open Exercise 3.2 – Data.vi.

2. Go to File»Save As… and save it as ―Exercise 3.3 – Decision Making and Saving 

Data‖. In the ―Save As‖ dialog box, make sure substitute copy for original is 

selected and click ―Continue…‖. 

3. Add a case structure to the block diagram inside the while loop 

(Functions»Programming»Structures»Case Structure). 

4. Inside the ―true‖ case of the case structure, add a Write to Measurement File 

Express VI (Functions»Programming»File I/O»Write to Measurement File).

a.   In the configuration window that opens, choose ―Save to series of files

(multiple files).‖ Note the default location your file will be saved to and change 

it if you wish. 

b.   Click ―Settings…‖ and choose ―Use next available file name‖ under the

Existing Files heading. 

c.   Under File Termination choose to start a new file after 10 segments. Click 

―OK‖ twice.

5. Add code so that if the frequency computed from the Tone Measurements Express 

VI goes below a user-controlled limit, the data will be saved to file. Hint: Go to 

Functions»Programming»Comparison»Less?

6. Remember to connect your data from the DAQ Assistant or Acquire Sound Express 

VI to the ―Signals‖ input of the Write to Measurement File VI. If you need help, 

refer to the solution to this exercise.

7. Go to the front panel and run your VI. Vary your frequency limit and then stop the 

VI.

8. Navigate to My Documents»LabVIEW Data and open one of the files that was 

saved there. Examine the file structure and check to verify that 10 segments are in 

the file. 

9. Save your VI and close it.

Note: The solution to this exercise is printed in the back of this manual.

(End of Exercise)

© National Instruments Corporation 49 Introduction to LabVIEW Hands-On



. Programming Model for the Intermediate File VIs

This same programming model applies to data acqusion, instrument control, file I/O, and most 

other communication schemes. In most instances you will open the file or communication 

channel, read and write multiple times, and then the communication will be closed or ended. It 

is also good programming practice to check for errors at the end. Remember this programming 

model when you move on to more advanced programming or look inside DAQ, 

communication, or file I/O Express VIs.

File I/O VIs and Functions

Use the File I/O VIs and functions to open and close files, read from and write to files, create 

directories and files you specify in the path control, retrieve directory information, and write 

strings, numbers, arrays, and clusters to files.

Use the high-level File I/O VIs located on the top row of the palette to perform common I/O 

operations, such as writing to or reading from various types of data. Acceptable types can 

include characters or lines in text files, 1D or 2D arrays of single-precision numeric values in 

spreadsheet text files, 1D or 2D arrays of single-precision numeric values in binary files, or 16-

bit signed integers in binary files.

Use low-level File I/O VIs and functions located on the middle row of the palette, and the 

Advanced File Functions to control each file I/O operation individually.

Use the principal low-level functions to create or open, write data to, read data from, and close 

a file. You also can use low-level functions to create directories; move, copy, or delete files; list 

directory contents; change file characteristics; or manipulate paths.

Refer to the NI Developer Zone for more information about choosing a file format.

Introduction to LabVIEW Hands-On 50 ni.com



© National Instruments Corporation 51 Introduction to LabVIEW Hands-On



Controls and Indicators are Front Panel items that allow the user to interact with your 

program to both provide input and display results. You can access Controls and 

Indicators by right-clicking the front panel. 

In addition, you will get additional controls and indicators when you install toolkits and 

modules. 

For example, when you install the Control Design tools, you will get specialized plots 

such as Bode and Nyquist plots that are not available by default.

Introduction to LabVIEW Hands-On 52 ni.com



The waveform chart is a special numeric indicator that displays one or more plots. The 

waveform chart is located on the Controls»Modern»Graph palette. Waveform charts 

can display single or multiple plots. The following front panel shows an example of a 

multi-plot waveform chart.

You can change the min and max values of either the x or y axis by double clicking on 

the value with the labeling tool and typing the new value. Similarly, you can change the 

label of the axis. You can also right click the plot legend and change the style, shape, 

and color of the trace that is displayed on the chart.

© National Instruments Corporation 53 Introduction to LabVIEW Hands-On



Graphs are very powerful indicators in LabVIEW. The can are highly customizable, and 

can be used to concisely display a great deal of information.

The properties page of the graph allows you to display settings for plot types, scale and 

cursor options, and many other features of the graph. To open the properties page, right-

click the graph on the front panel and choose Properties.

Graphs also allow you to create technical paper quality graphics with the ―export 

simplified image‖ function. Right-click the graph, select Data Operations»Export 

Simplified Image…

Introduction to LabVIEW Hands-On 54 ni.com



For Loops and While Loops can index and accumulate arrays at their boundaries. This is 

known as auto-indexing.

• The indexing point on the boundary is called a tunnel.

• The For Loop default is auto-indexing enabled.

• The While Loop default is auto-indexing disabled.

Examples:

• Enable auto-indexing to collect values within the loop and build the array. All values are 

placed in array upon exiting loop.

• Disable auto-indexing if you are interested only in the final value.

© National Instruments Corporation 55 Introduction to LabVIEW Hands-On



To create an array control or indicator as shown, select an array on the 

Controls»Modern»Array, Matrix, and Cluster palette, place it on the front panel, and 

drag a control or indicator into the array shell. If you attempt to drag an invalid control 

or indicator such as an XY graph into the array shell, you are unable to drop the control 

or indicator in the array shell.

You must insert an object in the array shell before you use the array on the block 

diagram. Otherwise, the array terminal appears black with an empty bracket.

Introduction to LabVIEW Hands-On 56 ni.com



To add dimensions to an array one at a time, right-click the index display and 

select Add Dimension from the shortcut menu. You also can use the Positioning 

tool to resize the index display until you have as many dimensions as you want.

1D Array Viewing a Single Element:

1D Array Viewing Multiple Elements:

2D Array Viewing a Single Element:

2D Array Viewing Multiple Elements:

© National Instruments Corporation 57 Introduction to LabVIEW Hands-On



Time Delay

The Time Delay Express VI delays execution by a specified number of seconds. 

Following the rules of Data Flow Programming, the while loop will not iterate until all 

tasks inside of it are complete, thus delaying each iteration of the loop.

Timed Loops

Executes each iteration of the loop at the period you specify. Use the Timed Loop when 

you want to develop VIs with multi-rate timing capabilities, precise timing, feedback on 

loop execution, timing characteristics that change dynamically, or several levels of 

execution priority.

Double-click the Input Node or right-click the Input Node and select Configure Timed 

Loop from the shortcut menu to display the Loop Configuration dialog box, where you 

can configure the Timed Loop. The values you enter in the Loop Configuration dialog 

box appear as options in the Input Node.

Wait Until Next ms Multiple

Waits until the value of the millisecond timer becomes a multiple of the specified 

millisecond multiple. Use this function to synchronize activities. You can call this 

function in a loop to control the loop execution rate. However, it is possible that the 

first loop period might be short. This function makes asynchronous system calls, 

but the nodes themselves function synchronously. Therefore, it does not complete 

execution until the specified time has elapsed. 

Functions»Programming»Timing»Wait Until Next ms Multiple

Introduction to LabVIEW Hands-On 58 ni.com



Properties are all the qualities of a front panel object. With properties, you can 

set or read such characteristics as foreground and background color, data 

formatting and precision, visibility, descriptive text, size and location on the 

front panel, and so on.

© National Instruments Corporation 59 Introduction to LabVIEW Hands-On



Exercise 4.1 – Manual Analysis (Track A, B, & C)

Create a VI that displays simulated data on a waveform graph and measures the 

frequency and amplitude of that data. Use cursors on the graph to verify the 

frequency and amplitude measurements. 

1. Open Exercise 3.1 – Simulated.vi. 

2. Save the VI as ―Exercise 4.1 – Manual Analysis.vi‖.

3. Go to the block diagram and remove the While Loop. Right-click the edge of the 

loop and choose Remove While Loop so that the code inside the loop does not get 

deleted.

4. Delete the stop button. 

5. On the front panel, replace the waveform chart with a waveform graph. Right-click 

the chart and select Replace»Modern»Graph»Waveform Graph.

6. Make the cursor legend viewable on the graph. Right-click on the graph and select 

Visible Items»Cursor Legend.

7. Change the maximum value of the ―Frequency In‖ dial to 100. Double-click on the 

maximum value and type ―100‖ once the text is highlighted.

8. Set a default value for the ―Frequency In‖ dial by setting the dial to the value you 

would like, right-clicking the dial, and selecting Data Operations»Make Current 

Value Default.

9. Run the VI and observe the signal on the waveform graph. If you cannot see the 

signal, you may need to turn on auto-scaling for the x-axis. Right-click on the graph 

and select X Scale»AutoScale X. 

10. Change the frequency of the signal so you can see a few periods on the graph. 

11. Manually measure the frequency and amplitude of the signal on the graph using 

cursors. To make the cursors display on the graph, click on one of the three buttons 

in the cursor legend. Once the cursors are displayed, you can drag them around on 

the graph and their coordinates will be displayed in the cursor legend. 

12. Remember that the frequency of a signal is the reciprocal of its period (f = 1/T). 

Does your measurement match the frequency and amplitude indicators from the 

Tone Measurements VI?

13. Save your VI and close it.

Note: The solution to this exercise is printed in the back of this manual.

(End of Exercise)

Introduction to LabVIEW Hands-On 60 ni.com



Overview
With the release of National Instruments LabVIEW 8, you have new freedom to choose the 
most effective syntax for technical computing, whether you are developing algorithms, 
exploring DSP concepts, or analyzing results. You can instrument your scripts and develop 
algorithms on the block diagram by interacting with popular third-party math tools such as The 
MathWorks Inc. MATLAB software, Mathematica, Maple, Mathcad, IDL and Xmath. Use of 
these math tools with LabVIEW is achieved in a variety of ways depending on the vendor as 
listed below:

Native LabVIEW textual math node:
MathScript node, Formula node

Communication with vendor software through LabVIEW node:
Xmath node, MATLAB script node, Maple* node, IDL* node

Communication with vendor software through VI Server:
Mathematica* VIs, and Mathcad* VIs 

In LabVIEW 8, you can combine the intuitive LabVIEW graphical dataflow programming with 
MathScript, a math-oriented textual programming language that is generally compatible with 
popular m-file script language.

*LabVIEW toolkit specific to the math tool must be installed.

Math Node

© National Instruments Corporation 61 Introduction to LabVIEW Hands-On



The MathScript Node enhances LabVIEW by adding a native text-based language 

for mathematical algorithm implementation in the graphical programming 

environment. M-file scripts you‘ve written and saved from the MathScript 

window can be opened and used in the MathScript node. M-file scripts you 

created in other math software will generally run as well. The MathScript allows 

you to pick the syntax you are most comfortable with to solve the problem. 

Equations can be instrumented with the MathScript Node for parameter 

exploration, simulation, or deployment in a final application. 

The MathScript Node: 

• Located in the Programming»Structures subpalette.

• Resizable box for entering textual computations directly into block diagrams.

• To add variables, right-click and choose Add Input or Add Output.

• Name variables as they are used in formula. (Names are case sensitive.) 

• The data type of the output can be changed by right-clicking the input or 

output node.

• Statements should be terminated with a semicolon to suppress output.

• Ability to import & export m-files by right-clicking on the node.

Introduction to LabVIEW Hands-On 62 ni.com



The MathScript Window provides an interactive environment where equations can be 

prototyped and calculations can be made. The MathScript Window and Node share a 

common syntax and global variables making the move from prototype to 

implementation seamless. The data preview pane provides a convenient way to view 

variable data as numbers, graphically, or audibly (with soundcard support). 

Help for MathScript

Help for the environment can be accessed using the Mathscript Interactive Environment 

Window. Type Help in the command window for an introduction to MathScript help. 

Help followed by a function will display help specific to that function.

Features of the interactive MathScript Window:

• Prototype equations and formulas through the command Window

• Easily access function help by typing Help <function> in the Command Window

• Select a variable to display its data in the Preview Pane and even listen to the result

• Write, Save, Load, and Run m-files using the Script tab

• Share data between the MathScript Node in LabVIEW and the MathScript Window 

using Global Variables

• Advanced plotting features and image export features

© National Instruments Corporation 63 Introduction to LabVIEW Hands-On



Exercise 4.2 – MathScript (Track A, B, & C)

Create a VI that uses the MathScript Node to alter your simulated signal and graph it. 

Use 

the Interactive MathScript Window to view and alter the data and then load the script 

you 

have created back into the MathScript Node.

1. Open Exercise 4.1 – Manual Analysis.vi.

2. Save the VI as ―Exercise 4.2 – MathScript.vi‖.

3. Go to the block diagram and delete the wire connecting the Simulate Signal VI to 

the Waveform Graph.

4. Place down a MathScript Node (Programming»Structures»MathScript Node).

5. Right-click on the left border of the MathScript Node and select Add Input. Name 

this input ―In‖ by typing while the input node is highlighted black.

6. Right-click on the right border of the MathScript Node and select Add Output. 

Name this output ―Out‖.

7. Convert the Dynamic Data Type output of the Simulate Signals VI to a 1D Array of 

Scalars to input to the MathScript Node. Place a Convert from Dynamic Data 

Express VI on the block diagram (Express»Signal Manipulation»Convert from 

Dynamic Data). By default, the VI is configured correctly so click ―OK‖ in the 

configuration window.

8. Wire the ―Sine‖ output of the Simulate Signal VI to the ―Dynamic Data‖ input of 

the Convert from Dynamic Data VI.

9. Wire the ―Array‖ output of the Convert from Dynamic Data VI to the ―In‖ node on 

the MathScript Node. 

10. In order to use the data from the Simulate Signal VI in the Interactive MathScript 

Window it is necessary to declare the input variable as a global variable. Inside the 

MathScript Node type ―global In;‖.

11. Return to the front panel and increase the frequency to be between 50 and 100. Run 

the VI.

12. Open the Interactive MathScript Window (Tools»MathScript Window…).

13. In the MathScript Window, the Command Window can be used to enter in the 

command that you wish to compute. In the Command Window, type ―global In‖ and 

press ―Enter‖. This will allow you to see the data passed to the variable ―In‖ on the 

MathScript Node.

Introduction to LabVIEW Hands-On 64 ni.com



14. Notice that all declared variables in the script along with their dimensions and type are listed 

on the ―Variables‖ tab. To display the graphed data, click once on the variable In and 

change the drop down menu from ―Numeric‖ to ―Graph‖.

15. Use the graph palette to zoom in on your data.

16. Right-click on ―Cursor 1‖ and choose Bring to Center. What does this do? 

17. Drag the cursor around. The cursor will not move if the zoom option is selected.

18. Right-click on the graph and choose Undock Window. What does this do? Close this new 

window when you are finished.

© National Instruments Corporation 65 Introduction to LabVIEW Hands-On



19. Multiply the data by a decreasing exponential function. Follow these steps:

a. Make a 100 element array of data that constitutes a ramp function going

from 0.01 to 5 by typing ―Array = [0.01:0.05:5];‖ in the Command

Window and pressing Enter. What type of variable is ―Array‖?

b. Make an array containing a decreasing exponential. Type 

―Exp = 5*exp(-Array);‖ and press Enter.

c. Now multiply the Exp and In arrays element by element by typing

―Out = In.*Exp;‖ and pressing Enter.

d. Look at the graph of the variable ―Out‖.

20. Go to the History tab and use Ctrl-click to choose the 4 commands you just entered. 

Copy those commands using <Ctrl-C>.

21. On the Script tab, paste the commands into the Script Editor using <Ctrl-V>.

22. Save your script by clicking ―Save‖ at the bottom of the window. Save it as 

―myscript.txt‖ 

23. Close the MathScript Window.

24. Return to the block diagram of Exercise 4.2 – MathScript. Load the script you just 

made by right-clicking on the MathScript Node border and selecting Import… 

Navigate to myscript.txt, select it, and click ―OK‖.

25. Right-click on the variable ―Out‖ and select Choose Data Type»1D-Array»DBL 1D.

Output data types must be set manually on the MathScript Node.

26. Wire ―Out‖ to the Waveform Graph.

27. Return to the front panel and run the VI. 

Does the data look like you expect?

25. Save and close your VI.

Note: The solution to this exercise is printed in the 

back of this manual.

(End of Exercise)

Introduction to LabVIEW Hands-On 66 ni.com



LabVIEW utilizes many common datatypes. These Datatypes include:

Boolean, Numeric, Arrays, Strings, Clusters, and more.

The color and symbol of each terminal indicate the data type of the control or indicator. 

Control terminals have a thicker border than indicator terminals. Also, arrows appear on 

front panel terminals to indicate whether the terminal is a control or an indicator. An 

arrow appears on the right if the terminal is a control, and an arrow appears on the left if 

the terminal is an indicator. 

Definitions

• Array: Arrays group data elements of the same type. An array consists of elements 

and dimensions. Elements are the data that make up the array. A dimension is the 

length, height, or depth of an array. An array can have one or more dimensions and 

as many as (231) – 1 elements per dimension, memory permitting. 

• Cluster: Clusters group data elements of mixed types, such as a bundle of wires in 

a telephone cable, where each wire in the cable represents a different element of the 

cluster.

See Help»Search the LabVIEW Help… for more information. The LabVIEW User 

Manual on ni.com provides additional reference for data types found in LabVIEW.

© National Instruments Corporation 67 Introduction to LabVIEW Hands-On



Exercise 5 – Apply What You Have Learned (Track A, B, & C) 

In this exercise, you will create a VI that uses what you have learned. Design a VI

that does the following:

1. Acquire data from your device and graph it (either your DAQ device, your 

simulated device, or your sound card).

2. Filter that data using the Filter Express VI (Functions»Express»Signal 

Analysis»Filter). There should be a front panel control for a user configurable cut-

off frequency.

3. Take a Fast Fourier Transform to get the frequency information from the filtered 

data and graph the result. Use the Spectral Measurements Express VI 

(Functions»Express»Signal Analysis»Spectral).

4. Find the dominant frequency of the filtered data using the Tone Measurements 

Express VI. 

5. Compare that frequency to a user inputted limit. If the frequency is over that limit, 

light up an LED. If you have a USB-6009, light up the LED on your hardware using 

the DAQ Assistant. You will need to invert the digital line for the LED to light up 

when over the limit. You can specify this in the configuration window of the DAQ 

Assistant or with a ―not‖ boolean function. 

6. If you get stuck, open up the solution or view it at the end of this manual.

(End of Exercise)

Introduction to LabVIEW Hands-On 68 ni.com



© National Instruments Corporation 69 Introduction to LabVIEW Hands-On



Clusters group like or unlike components together. They are equivalent to a record in 

Pascal or a struct in C.

Cluster components may be of different data types.

Examples:

• Error information—Grouping a Boolean error flag, a numeric error code, and an 

error source string to specify the exact error.

• User information—Grouping a string indicating a user‘s name and an ID number 

specifying their security code.

All elements of a cluster must be either controls or indicators. You cannot have a string 

control and a Boolean indicator. Clusters can be thought of as grouping individual wires 

(data objects) together into a cable (cluster).

Introduction to LabVIEW Hands-On 70 ni.com



Cluster front panel object can be created by choosing Cluster from the 

Controls»Modern»Array, Matrix & Cluster palette.

• This option gives you a shell (similar to the array shell when creating arrays).

• You can size the cluster shell when you drop it.

• Right-click inside the shell and add objects of any type. 

Note: You can even have a cluster inside of a cluster.

The cluster becomes a control or an indicator cluster based on the first object you place 

inside the cluster.

You can also create a cluster constant on the block diagram by choosing Cluster 

Constant from the Cluster palette.

• This gives you an empty cluster shell.

• You can size the cluster when you drop it.

• Put other constants inside the shell.

Note: You cannot place terminals for front panel objects in a cluster constant on the 

block diagram, nor can you place ―special‖ constants like the Tab or Empty String 

constant within a block diagram cluster shell.

© National Instruments Corporation 71 Introduction to LabVIEW Hands-On



The terms Bundle and Cluster are closely related in LabVIEW. 

Example: You use a Bundle Function to create a Cluster. You use an Unbundle function 

to extract the parts of a cluster.

Bundle function—Forms a cluster containing the given objects (explain the example).

Bundle by Name function—Updates specific cluster object values (the object must 

have an owned label). 

Note: You must have an existing cluster wired into the middle terminal of the function 

to use Bundle By Name. 

Introduction to LabVIEW Hands-On 72 ni.com



The waveform data type carries the data, start time, and ∆t of a waveform. You can 

create waveforms using the Build Waveform function. Many of the VIs and functions 

you use to acquire or analyze waveforms accept and return the waveform data type by 

default. When you wire a waveform data type to a waveform graph or chart, the graph 

or chart automatically plots a waveform based on the data, start time, and ∆x of the 

waveform. When you wire an array of waveform data types to a waveform graph or 

chart, the graph or chart automatically plots all the waveforms.

Build Waveform

Builds a waveform or modifies an existing waveform 

with the start time represented as an absolute 

TimeStamp. Time Stamps are accurate to real-world 

time & date and are very useful for real-world data 

recording. 

Bundle

Builds a waveform or modifies an existing waveform 

with a relative time stamp. The input to t0 is a DBL. 

Building waveforms using the bundle allows data to be 

plotted on the negative X (time) axis.

© National Instruments Corporation 73 Introduction to LabVIEW Hands-On



Shift registers transfer data from one iteration to the next:

• Right-click on the left or right side of a For Loop or a While Loop and select Add Shift 

Register.

• The right terminal stores data at the end of an iteration. Data appears at the left terminal at the 

start of the next iteration.

• A shift register adapts to any data type wired into it.

An input of 0 would result in an output of 5 the first iteration, 10 the second iteration and 15 the 

third iteration. Said another way, shift registers are used to retain values from one iteration to the 

next. They are valuable for many applications that have memory or feedback between states. 

The feedback node is another representation of the same concept. (pictured below) Both 

programs pictured behave the same.

See Help»Search the LabVIEW Help… for more information.

Introduction to LabVIEW Hands-On 74 ni.com



Sometimes you may need to access a front panel object from more than one place on the block 

diagram or to pass data between structures that cannot be connected by a wire. To accomplish 

these tasks, you would use a local variable.

Local variables are located in the Structures subpalette of the Functions palette.

When you place a local variable on the diagram, it contains by default the name (owned label) of 

the first object you placed on the front panel.

You use a local variable by first selecting the object you want to access. You can either click on 

the local variable with the Operating tool and select the object (by owned label) you want to 

access, or pop up on the local variable and choose the object from the Select Item menu.

Next, you must decide to either read or write to the object. Right click on the local variable and 

choose Change To Read or Change to Write.

© National Instruments Corporation 75 Introduction to LabVIEW Hands-On



Select View»Show Navigation Window to display this window.

Use the window to navigate large front panels or block diagrams. Click an area of the 

image in the Navigation Window to display that area in the front panel or block 

diagram window. You also can click and drag the image in the Navigation Window to 

scroll through the front panel or block diagram. 

Introduction to LabVIEW Hands-On 76 ni.com

lvhelp.chm::/Using_Navigation_Window.html


LabVIEW Project

Use projects to group together LabVIEW files and non-LabVIEW files, create build 

specifications, and deploy or download files to targets. A target is a device or machine 

on which a VI runs. When you save a project, LabVIEW creates a project file (.lvproj), 

which includes configuration information, build information, deployment information, 

references to files in the project, and so on. 

You must use a project to build stand-alone applications and shared libraries. You also 

must use a project to work with an RT, FPGA, or PDA target. Refer to the specific 

module documentation for more information about using projects with the LabVIEW 

Real-Time, FPGA, and PDA Modules. 

Project-style LabVIEW Plug and Play instrument drivers use the project and project 

library features in LabVIEW 8.0. You can use project-style drivers in the same way as 

previous LabVIEW Plug and Play drivers. 

Project Explorer Window

Use the Project Explorer window to create and edit projects. Select File»New Project to 

display the Project Explorer window. You also can select Project»New Project or 

select File»New and then select Empty Project in the New dialog box to display the 

Project Explorer window. 

© National Instruments Corporation 77 Introduction to LabVIEW Hands-On



Introduction to LabVIEW Hands-On 78 ni.com



Today, more and more companies and hiring managers are requesting for LabVIEW expertise in 

their job interviews. The LabVIEW Certification Program is built on a series of professional 

exams. LabVIEW Certifications are used to validate LabVIEW expertise and skills for 

employment opportunities and for project bids.

The Certified LabVIEW Associate Developer is the first-step for LabVIEW certification and it 

demonstrates a strong foundation in using LabVIEW and the LabVIEW environment. As 

students, your Certified LabVIEW Associate Developer certification differentiates your 

LabVIEW skill for employment opportunities and also gets you recognition for your LabVIEW 

expertise. The CLAD is a 1-hour multiple choice exam conducted at Pearson VUE testing 

centers around the country. The exam covers multiple topics on the LabVIEW environment 

including dataflow concepts, programming structures, Advanced file I/O techniques, Modular 

programming practices, VI object properties and control references.

Thinking about getting your CLAD certification? Take the free online LabVIEW Fundamentals 

Exam as a sample test.

The Certified LabVIEW Developer and Architect are professional certifications that validate 

Advanced LabVIEW knowledge and application development experience. Additionally, the 

Architect certification also demonstrates skills in leading project teams and large application 

development experience. These exams are 4-hour practical exams conducted by National 

Instruments.

© National Instruments Corporation 79 Introduction to LabVIEW Hands-On



Electronics Workbench products are the most widely used electronics software in 
electrical engineering and electronics technology departments around the globe. As the 
only company to design our products specifically for the education market, our software 
has become the teaching and learning tool of choice for thousands of educators.

MULTISIM — SIMULATION AND CAPTURE
Multisim is an intuitive, drag-and-drop schematic capture and simulation program that 
allows educators and students to quickly create complete circuits containing both analog 
and digital components. 

MULTIMCU— MICROCONTROLLER CO-SIMULATION
MultiMCU adds microcontroller unit co-simulation capabilities to Multisim, allowing 
you to include an MCU, programmed in assembly code, within your SPICE (and 
optionally VHDL) modeled circuit.

MULTIVHDL — VHDL CO-SIMULATION
MultiVHDL adds patented VHDL co-simulation capabilities to Multisim. It is a 
powerful yet easy-to-use application that is perfect for teaching students about HDL 
programming, or for including VHDL-programmed devices in a Multisim project.

ULTIBOARD — PCB LAYOUT
Ultiboard allows students to gain exposure to the physical implementation and 
manufacturing of circuits on PCBs. Their Multisim schematic can be imported into 
Ultiboard with a single mouse-click. 

ELECTRONICS CBT — COMPUTER-BASED TRAINING
Electronics CBT offers a complete, standalone introductory electronics curriculum to 
support your lectures or to act as the centerpiece of your course delivery. E-CBT is 
enhanced with over 400 exercises and experiments that run directly in Multisim‘s virtual 
lab environment.

Introduction to LabVIEW Hands-On 80 ni.com



1. Multisim - Schematics

• Easy-to-use schematics

• Simply click and drag

• 3D animated parts

• Wire drag without breaking 

connections

2. Multisim – Virtual breadboard

• Breadboarding techniques

• Synchronized with schematic

• Wiring report for Elvis (step 5)

3. Multisim – Simulation

• 13.000 part library

• 20 virtual instruments

• Changes on-the-fly

• New microcontroller simulation

• Animated parts (LEDs, and 7-

segment displays)

4. Ultiboard – PCB Layout

• Integrated with Multisim

• User-friendly interface

• 3D view

• Design rule check

• Built-in autorouting

5. Elvis – Test

• Instrumentation

• Data acquisition 

• Prototyping

6. LabVIEW – Compare

• Automatically import:

– Multisim virtual data

– Elvis real data

• Compare ideal and real data

© National Instruments Corporation 81 Introduction to LabVIEW Hands-On



Introduction to LabVIEW Hands-On 82 ni.com



© National Instruments Corporation 69 Introduction to LabVIEW Hands-On



The controller can be optimized by fully understanding the plant.  This understanding comes from 

analysis done in the LabVIEW Control Design Toolkit.  Specialized graphs, such as Bode, root-

locus, and Nyquist plot, builds intuition of how the plant will behave.  Further analysis using these 

plots with an open loop system with the controller allow stability and other characteristics to be 

calculated.  In this way, we use Control Design to optimize the parameters, in our case the gains 

P, I, and D. Graphs in the time domain, such as the step response, provide immediate feedback 

on the ideal behavior of the system, such as rise time, overshoot, settling time, and steady-state 

error.

We then use the Simulation Module to validate these parameters under real world constraints.  

One prime example is the maximum and minimum voltage and current available to be supplied to 

the motor.  The voltage limits of the motor define the linear range of operation.  Outside of that 

range, the motor might be damaged or become unpredictable.  This is an example of nonlinear 

behavior, which cannot be modeled using LTI analysis found in the Control Design Toolkit.  The 

Simulation Module allows nonlinearities to be represented in the model.  Voltage limits can be 

modeled using the Saturation block.  Other nonlinear behaviors can be written in LabVIEW, 

MathScript, and the LabVIEW Formula Node, and integrated into the model as a Sub VI.

The optimization process usually includes several iterations between Control Design and 

Simulation to achieve the desired performance of the system.



The National Instruments LabVIEW Simulation Module integrates dynamic system simulation into the 

LabVIEW environment. As a module, the Simulation Module adds new functionality to core LabVIEW.  The 

simulation loop can model linear, nonlinear, discrete, and continuous plant or control systems in block 

diagram form. Create models from blocks such as integrator, derivative, and transfer function blocks, and 

then add graphs and controls to test out the models. Alternatively, you can import models developed in the 

NI LabVIEW Control Design Toolkit or NI LabVIEW System Identification Toolkit. The interactive nature of 

the LabVIEW tools allow you to modify parameters while logging the results of the simulation. Models built 

with the simulation node can also seamlessly download to a real-time target with the LabVIEW Real-Time 

Module for control prototyping and hardware-in-the-loop (HIL) simulation.



The simulation loop is the core component of the Simulation Module.  It is an “upgraded” version of the 

while loop which integrates powerful differential equation solvers, internal or external timing features, and 

cross-platform capabilities.  With the Simulation Module, continuous time systems can be run in the 

discrete digital world.  The loop consists of three main parts: 

Input node (Left)- allows simulation parameters to be programmatically defined. By default, these 

parameters are static and can be configured by double-clicking the input node. This node can be 

expanded by clicking on the bottom border of the node to “grab” the handle and dragging down to show 

additional parameters.  

Main loop – The system to be simulated is placed here. 

Output node (Right) – returns any errors that may have happened in the loop, such as an improper 

transfer function.  



Configuring a Simulation

There are many parameters that can be configured for a given simulation loop. 

Simulation Parameters Tab

Simulation Time – Specifies for what period of “simulation time” how long the simulation should run.  This time 

doesn’t necessarily dictate the computation time of the simulation. See Timing Parameters below.

Solver Method – Specifices what Ordinary Differential Equation ODE) solver is used to solve integral and 

differential type blocks in the simulation.  A wide variety of solvers are available. 

Time Step and Tolerance – These settings control the window of time steps used by LabVIEW.  Typically, the 

default settings will suffice, but adjust them if necessary. 

Discrete Time – While the Default Auto Discrete Time option will typically work for most simulations, you can 

force LabVIEW to use a specific step size here.

Timing Parameters Tab

Timing – The software timing option is always used when performing simulations.  This will solve the equation 

as fast as the CPU can.  To observe a simulation run in “real time”, disable the software timing option and set 

the timing parameters below.

Loop Timing Source – When implementing a simulation in hardware, change the loop timing source to an 

available hardware timing. This option can be used to sync the simulation execution with an external time 

source, such as the operating system clock or even a Data Acquisition board’s clock. 

Loop Timing Parameters – These options control how the loop executes with respect to the selected timing 

source.

For more detailed information on these options, consult the LabVIEW help by clicking the Help button. 



Place simulation loops in your diagram by selecting them from the Simulation Palette in the Functions 

palette:

When selected, the mouse cursor becomes a special pointer that you use to enclose the section of code 

you want to repeat.

Click the mouse button to define the top-left corner, click the mouse button again at the bottom-right 

corner, and the Simulation Loop boundary is created around the selected code.

Drag or drop additional blocks or functions in the Simulation Loop if needed.



Simulations can utilize a wide variety of signals sources.  Simulated signals are useful for characterizing 

system response and testing corner cases.  Chirps provide a useful frequency sweep, and pulses provide 

good step response information.  The indexer is useful for using a predetermined arbitrary signal, and can 

interpolate between samples for better resolution. 

Once the simulation is confirmed, a real world signal can be substituted for the simulation signal.  In this 

configuration, the simulation is now performing calculations based on actual data and is very good for testing 

the system before controlling the output. 



The Simulation Time Waveform chart is a special numeric indicator that displays one or more plots. The 

waveform chart is located on the Functions » Control Design & Simulation » Simulation » Graph Utilities » 

SimTime Waveform palette. Waveform charts can display single or multiple plots. The following front panel 

shows an example of a multi-plot waveform chart.

You can change the min and max values of either the x or y axis by double clicking on the value with the 

labeling tool and typing the new value. Similarly, you can change the label of the axis. You can also right click 

the plot legend and change the style, shape, and color of the trace that is displayed on the chart.



Exercise 6 – Simulation of a dynamic system

Background Information

A dynamic system model is a differential or difference equation that describes the 

behavior of the dynamic system. In this tutorial, the following differential equation 

describes the dynamic system.

F(t) – cx'(t) – kx(t) = mx''(t)

where t is the simulation time, F(t) is an external force applied to the system, c is the 

damping constant of the spring, k is the stiffness of the spring, m is a mass, and x(t) is 

the position of the mass. x' is the first derivative of the position, which equals the 

velocity of the mass. x'' is the second derivative of the position, which equals the 

acceleration of the mass.

The following figure shows this dynamic system.

The goal of this tutorial is to use the LabVIEW Simulation Module to view the position 

x(t) of the mass m with respect to time t. You can calculate the position by integrating 

the velocity of the mass. You can calculate the velocity by integrating the acceleration 

of the mass. If you know the force and mass, you can calculate this acceleration by 

using Newton's Second Law of Motion, given by the following equation:

Force = Mass × Acceleration

Therefore, 

Acceleration = Force / Mass

Substituting terms from the differential equation above yields the following equation:

x''(t) = (F(t) – cx'(t) – kx(t))/m

In this tutorial you will construct a simulation diagram that iterates the following steps 

over a period of time.

Divides a known force by a known mass to calculate the acceleration of the mass. 

Integrates acceleration to calculate the velocity of the mass. 

Integrates velocity to calculate the position of the mass. 

Performing these integrations over a period of time requires an ordinary differential 

equation (ODE) solver. LabVIEW includes several ODE solvers you can use in a 

simulation. Each ODE solver has properties that make it suitable for different tasks. For 

example, some ODE solvers have variable step sizes. During a simulation, these ODE 

solvers can adjust the points in time at which the Simulation Module evaluates the 

simulation diagram. Conversely, ODE solvers with fixed step sizes cannot make this 

change.

Complete the steps in the following sections to build a simulation diagram that simulates 

the spring-mass damper dynamic system model.

Please refer to separate file  for details of lab

Tutorial Getting Started with the LabVIEW Simulation Module - LabVIEW 8_5 

Simulation Module Help.pdf

Introduction to LabVIEW Hands-On 60 ni.com

http://zone.ni.com/reference/en-XX/help/371894B-01/lvsimconcepts/sim_c_models/
http://zone.ni.com/reference/en-XX/help/371894B-01/lvsimconcepts/sim_c_ode/
http://zone.ni.com/reference/en-XX/help/371894B-01/lvsimconcepts/sim_c_ode/
http://zone.ni.com/reference/en-XX/help/371361D-01/lvanlsconcepts/vble_vs_fixed_step_size_ode/




Quanser Control Challenges

Implement and evaluate feedback strategies such as PID, LQC, adaptive or nonlinear controllers 

with Quanser’s linear, rotary, specialty, mechatronics and custom control experiments. Our systems 

are uniquely modular and use the same base components that can be multi-purposed throughout a 

wide range of experiment configurations. So by adding and removing various modules you extend 

the functionality of your investment and more importantly create a greater variety of experiments and 

challenges to explore – no other solution provider comes close to providing this kind of flexibility.

Quanser Engineering Trainers For NI ELVIS (QNET)

The Quanser Engineering Trainers For NI ELVIS (QNET) Series is a new cost-effective line of 

controls education experiments that considerably increases the value of your investment in NI ELVIS 

& LabVIEW software. The boards are easily connected to the NI ELVIS workstation to facilitate a 

diverse range of controls education experiments, thereby extending the functionality of the NI 

platform.



LabVIEW ECP Real-Time Control Option

In addition to the fully integrated ECP Executive® programs, National Instruments LabVIEW and NI 

data acquisition hardware can be used to develop and deploy real-time control algorithms to control 

select ECP electromechanical plants. The LabVIEW® environment allows for the design and 

simulation of control algorithms with seamless real-time deployment and execution. This approach 

allows for multiple levels of learning by allowing students to simply modify controller parameters on a 

graphical user interface or to design and create their own controller. It allows students to gain 

familiarity with the LabVIEW software and NI hardware that is widely used in industrial control 

applications.



http://www.ni.com/academic/controls



98

With the release of LabVIEW 8.5, we have added another development 

technique to the LabVIEW Graphical System Design platform.



99

So, what is a statechart…

A statechart is a visual representation of a reactive system.  Reactive systems, or 

event-driven systems, are system/applications that continuously respond to their 

inputs to determine the state of their outputs.



Most of you have probably been exposed to state machines and are probably 

familiar with finite state machines (this is what our state diagram toolkit 

creates). Statecharts are an extension of finite state machines that are defined as 

a diagram in the UML (Unified modeling language) specification. 

Statecharts add the folowing concepts on top of the finite state machine…

[mutliple transistion to step through the different additions]

Hierarchy – ability to nest sub-statecharts (same benefits as subVIs in LV)

Concurrency – parallel states

Event-based paradigm – a representation that is truly dependent on events

Pseudostates & connectors – there are many addition semantics for statecharts as 

opposed to simply the states and transitions that are available in finite state 

machines (ie history, join, split, etc)

UML is popular in the embedded developer community and has been around 

since the 80‟s. For more information on UML, see the Statechart Wiki



Statecharts can be used in a variety of applications…..

Comments you can mention:

- the original GPIB spec was represented in a statechart

- control systems from simple on/off controllers to the most advanced modern 

control techniques can utilize statecharts

- any event driven system such as user-interfaces may benefit from the use of 

statecharts

[Transition – ―state machines‖ appears]

Essentially, any application that uses a state machine architecture can benefit 

from the use of statecharts.

You might want to remind the audience of the state machine architecture we 

teach in LabVIEW training that consists of a case structure in a while loop with 

a shift register that holds the next state. Any application that would use this 

architecture could benefit from the statechart module. 



So what are those benefits…

First, statecharts allow you to create a system-level view of your application that 

provides abstraction to your application.  This abstraction simplifies 

development and the transfer of knowledge between developers. Essentially, 

statecharts can provide an executable specification that can be easily understood 

by management, domain experts and developers alike.

Let‘s take a look at some examples of the abstraction provided by statecharts…



This is a statechart used to define the logic of a system that produces, stores, and 

distributes a product. We can see the parallel operation of the produce and 

dispense systems. The ―join‖ object denotes that both of these systems must be 

in an idle state before the statechart can transition from the ―Production & 

Distribution Process‖ super-state to the ―Transfer Product‖ super-state.

[transition]

Here we can see examples of the concepts of hierarchy and concurrency 

provided by statecharts.



Briefly explain what an FPGA is , the benefits of RIO, and how you can use 

LabVIEW to create FPGA personalities.

Most digital logic designs use a state machine architecture which make 

statecharts an ideal way to represent their logic at a high-level.

This is a state machine representation of the logic for a SPI (serial peripheral 

interface) digital communication protocol that has been implemented using 

LabvIEW FPGA. Even with no knowledge of LabVIEW, the process executing 

on the FPGA can be easily understood because of the statechart representation.



Statecharts are ideal for representing asynchronous/event-driven 

applications/system.  User-interfaces are inherently asynchronous and in 

complex implementation can benefit greatly from the use of statecharts.

[transition]

In this example, the ―history‖ pseudostate has been used to specify that the 

application should ―remember‖ the last state it was in when it returns to the 

―color cycle state‖ from the ―white state‖.



The implementation of the LabVIEW Statechart module also helps to ensure 
that you are creating applications that can easily scale to adapt to changing 
needs. The design architecture it enforces lends itself to easily expanding or 
changing applications without significant architecture changes.

Examples you can bring up:

- all interfaces to the statechart subVI are „strict type defs‟ so changing the 
number/type of inputs or outputs to your statechart will propagate to all uses of 
that data-type throughout your application.

- Transition logic is encapsulated in the statechart, so changes the paths 
through your statechart simply requires re-connecting the transition as opposed 
to digging through a case structure to update the logic of your state machine

- Expanding you system can be easily accomplished by adding additional states 
or converting states to super-states and adding additional statechart logic 
within it.

- In general, many concepts that you will need throughout a state machine 
implementation (transition logic, variable management, etc) are abstracted 
when using the statechart module reducing opportunities for error and making 
development and maintenance of your application easier.

LabVIEW Embedded Technology provides the ability to not only generate C-
code for deployment to custom hardware, but seamless deployment to 100‘s of 
off-the-shelf, modular hardware targets on a variety of processor and FPGA 
platforms designed to meet different application requirements (performance, 
environmental, cost, size, etc)



107

To develop with the LabVIEW Statechart Module, you begin by designing the 

states and transitions of your application with the same drag and drop ease-of-

use that you are accustom to in the LabVIEW environment.

[transition]

Next you define the state and transion behavior/logic for your statechart.

[transition]

Once you statechart is complete, the state chart logic is encapsulated inside a 

LabVIEW subVI.

[transition]

Finally, you utilize the subVI in the rest of the LabVIEW application. 



So let‘s build a statechart.

A simple system that we are all familiar with is a ceiling fan.  It has a light that 

is either on or off and a fan that can be in various speeds or off.  So what are the 

event/triggers in this system?

[wait for audience to respond]

And what are our outputs?

[wait for audience to respond]

[transition]

So, one way we could represent the states of the system could be this (table).  

OR, we could utilize an internal variable in our statechart and represent it like 

this…



Now we have eliminate the ―speed‖ states of our fan and replaced them with 

―on‖ / ―off‖ states and a ―fan speed‖ state variable. 

Let‘s build this application using LabVIEW and LabVIEW Statecharts…



110

To build a statechart in LabVIEW, we will begin by adding a statechart to a 

LabVIEW project. A LabVIEW statechart consists of several elements that we 

will define as we create our statechart.

They are:

- Triggers or events for your system

- Inputs and outputs to the statechart

- Internal state data for your statechart

- The actual statechart diagram where you build the statechart

- and a custom data display that can be used to debug your statechart

The first element that you would typically define is the set of triggers or events 

for your application. In this application, the events are:

- fan pull

- light pull

- power switch

- stop has also been added in order to terminate the application



111

Next we will specify the inputs, outputs, and internal state data for our 

statechart.  In this example, the outputs are the light state (on, off) and the fan 

speed (off, low, med, high).  We also have a state variable for the current fan 

speed.



112

Now we can begin building our statechart.

When you create the actual statechart, there is a new pallet that is only used to 

create LabVIEW statecharts.  (these objects do not work in LV block diagrams 

and other LV functions do not work in LV statechart diagrams).



Once the statechart has been created, we will define the logic and functionality 

of our statechart using LabVIEW graphical programming.  The two types of 

objects in a statechart that need to be further specified are states and transitions.

A transition determines what states your application can move into from the 

current state.  You can configure a trigger, guard, and action for each transition.  

The trigger signals that a transition should take place, the guard code can be 

used to ―block‖ the transition even though the trigger occurred, and the action is 

a task that will be completed before entering the next state.

EXAMPLE – This example illustrates the trigger-guard-action concept used in 

transitions and static reactions of a statechart. In this example, a child has be 

instructed that they are not to open the door unless an adult is home. The box to 

the right breaks down the element of this behavior/system as it would be 

described using statechart notation.



A state also contains 3 components.  

The entry and exit actions will always execute when entering or leaving a state. 

Because of this, they have no trigger or guard associated with them.

An arbitrary number of static actions (or reactions) may also be specified for a 

each state.  Static reactions have a trigger and guard associated with them like 

transitions do (entry and exit actions do not because they always and only occur 

at entry/exit) and are only evaluated if there are no valid transitions out of the 

state (if the state cannot be left, then the reactions are evaluated).



To define a transition, you right-click on the transition node to bring up the 

transition configuration dialog. This is where you will use LV code to define the 

logic for your transitions. 

[transition]

Notice the trigger-guard-action tabs which will also take us to the different 

windows for selecting our trigger/triggers and specifying our guard and action 

logic with LabVIEW.



To define a state, you right-click on the state to bring up the state configuration 

dialog. This is where you will use LV code to define the logic for your states. 

[transition]

Recall that there are 3 components to a state (entry/exit actions and static 

reactions). This state has a static reaction configured that will increment the 

internal state variable ―fan speed‖ when it occurs.  The tabs across the top take 

us to different ―block diagrams‖ for specifying each part of the action or 

reaction using LabVIEW.

[transition]

The inputs, outputs, and state data we previously defined for our statechart are 

available on the left and right data nodes and can be selected in the same way 

you would select an element using the ‗bundle/unbundle by name‘ function.



Once we have completed our statechart, we will automatically generate 

LabVIEW code and encapsulate it in a subVI that we can use in our block 

diagram.

NOTE – the code in the subVI cannot be accessed

117



118

Statecharts can be used in two modes within LabVIEW, asynchronous and 

synchronous.  

In the async case, the statechart waits in a separate loop for another process or 

task to send an asynchronous trigger using a special LabVIEW Queue.  This 

communication is implemented using the ‗Send External Trigger‘ subVI.

This architecture is best for developing truly asynchronous systems or 

applications such as user-interfaces.



119

In the synchronous case, the statechart is executed continuously and would 

typically reside in a timed-loop.

This architecture is commonly used for embedded applications, implementing 

communication protocols, and closed-loop control applications.

NOTE: Async triggers can still be used in the sync mode, but the „Send External 

Trigger‟  VI would not be used.  The user would need to implement the logic 

themselves.



So what happens when the statechart subVI is called?  The chart on the right is 

taken from the documentation for the statechart module.  Essentially, the 

statechart module takes 1 step each time it is called.  1 step involves:

[there are 3 transitions to help summarize what happens on each call of the SC 

subVI]

Items to note:

• For a transition or static reaction to be valid, both the trigger and guard must 

evaluate to “TRUE”

• If you have a valid transition, you will not evaluate static reactions for the 

state you are leaving

• Valid transitions for a state are all exit transitions directly connected to the 

current state and all exit transitions connected to states that contain the current 

state (superstates)

• You can specify a priority for transitions, but transitions from a superstate will 

always be higher priority than transitions from a state within a superstate

(the chart on the right can be found in the documentation for the statechart 

module)



Open the xxxxx project

Expand the statechart to show the components

Open the Events & Triggers window

Open the outputs component

Open the diagram

Right click on a state to show the logic defined with LabVIEW

Double-click on a transition to show how it is configured

Close the statechart (if you made changes you may need to re-generate code)

Open the VI and goto the block diagram

Right click on the statechart subVI to show that it is linked to the statechart in 

the project

Explain the asynchronous architecture again

Right click on the statechart subVI and select ―Debug statechart‖ and enable 

highlight execution on the statechart

Return to the FP and run the VI in highlight execution mode

Show how the statechart loop waits for an event/trigger from the loop above

Click the light button to show the statechart waking up to execute
121



There is no evaluation version of the LV Statechart module, so encourage 

attendees to use the online eval (link at ni.com/statechart) or request a visit from 

their local field engineer.

122



123

Statecharts are an extension of the finite state machine.  Here is a simple 

example of a FSM and statechart representation of the logic of a vending 

machine controller.



We talked about what the differences between an FSM and a Statechart – but 

how do these differences translate into benefits to your application compared to 

a finite state machine implementation?

Hierarchy –

See here how hierarchy makes the flow of the program a lot clearer to the user.  

It eliminates many of the transitions required by a finite state machine 

representation, simplifying the implementation.  This architecture is particularly 

useful for error, abort, emergency, and other preemptive situations.



Concurrency –

This is very useful when separate logic needs to happen at the same time.  Here 

you can see how the flow of the program is more obvious on a conceptual level.



Pseudostates –

Although we are not going to go in depth here in discussing all of the 

pseudostates that are defined by the UML specification. One in particular is very 

useful.  The history pseudostate – will all users to go to the last state that a 

hierarchical state was in when it exited.  This notation simplifies the 

representation by eliminating a good deal of transitions.



Event Based –

Although it is hard to represent this with a graphic – one of the key benefits is 

that you can reduce the amount of polling that you do in your code.  Particularly 

if you are dealing with a UI that receives events through the event structure.



© National Instruments Corporation 69 Introduction to LabVIEW Hands-On


