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Chapter 12

Stability

The four Fourier transforms prove to be useful tools for analyzing signals and systems. When a
system is LTI, it is characterized by its frequency response H, and its input x and output y are
related smply by

Vwe Reals Y(w)=H(w)X(w),

whereY isthe Fourier transform of y, and X isthe Fourier transform of x.

However, we ignored a lurking problem. Any of the three Fourier transforms, X, Y, or H, may not
exist. Suppose for example that x is a discrete-time signal. Then its Fourier transform (the DTFT)
isgiven by

VweReals X(w) = i x(n)e 1N, (12.1)

N=—o0

Thisis an infinite sum, properly viewed as the limit
VoeReals X(w) = lim x(n)e 1N, (12.2)

As with al such limits, there is a risk that it does not exist. If the limit does not exist for any
w € Reals then the Fourier transform becomes mathematically treacherous at best (involving, for
example, Dirac delta functions), and mathematical nonsense at worst.

Example 12.1: Consider the sequence

0, n<o0
X(n) - an—l n>0 "

where a > lisaconstant. Plugging into (12.1), the Fourier transform should be

00

VweReals X(w) = %a”fle*“*’“.
n=

At w=0, it is easy to see that this sum isinfinite (every term in the sum is greater than
or equal to one). At other values of w, there are also problems. For example, at w =T,
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Figure 12.1: A highly simplified helicopter.

the terms of the sum alternate in sign and increase in magnitude as n gets larger. The
limit (12.2) clearly will not exist.

A similar problem arises with continuous-time signals. If x is a continuous-time signal, then its
Fourier transform (the CTFT) is given by

VweReals X(w) = /x(t)e*i‘*‘dt. (12.3)

Again, thereisarisk that thisintegral does not exist.

This chapter studies signals for which the Fourier transform does not exist. Such signals prove to be
both common and useful. The signal in example12.1 gives the bank balance of example5.12 when
an initial deposit of one dollar is made, and no further deposits or withdrawals are made (thus, it is
the impulse response of the bank account). This signal grows without bound, and any signal that
grows without bound will cause difficulties when using the Fourier transform.

The bank account is said to be an unstable system, because its output can grow without bound even
when the input is aways bounded. Such unstable systems are common, so it is unfortunate that the
frequency domain methods we have studied so far do not appear to apply.

Example12.2: A helicopter isintrinsically an unstable system, requiring an electronic
or mechanical feedback control system to stabilize it. It has two rotors, one above,
which provides lift, and one on the tail. Without the rotor on the tail, the body of the
helicopter would start to spin. The rotor on the tail counteracts that spin. However, the
force produced by the tail rotor must perfectly counter the friction with the main rotor,
or the body will spin.

A highly simplified version of the helicopter is shown in figure12.1. The body of the
helicopter is modeled as a horizontal arm with moment of intertia M. The tail rotor
goes on the end of this arm. The body of the helicopter rotates freely around the main
rotor shaft. Friction with the main rotor will tend to cause it to rotate by applying a
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torque as suggested by the curved arrow. The tail rotor will have to counter that torque
to keep the body of the helicopter from spinning.

Let the input x to the system be the net torque on the tail of the helicopter, asafunction
of time. That is, at timet, x(t) isthe difference between the frictional torque exerted by
the main rotor shaft and the counteracting torque exerted by thetail rotor. Let the output
y be the velocity of rotation of the body. From basic physics, torque equals moment of
inertial times rotational acceleration. The rotational acceleration isy, the derivative of
Y, SO
y(t) = x(t)/M.

Integrating both sides, assuming that the initial velocity of rotation is zero, we get the
output as a function of the input,

t

Kl

It is now easy to see that this system is unstable. Let the input be x = u, where u is the
unit step, given by

VteReals y(t)

ZIl—\

0, t<0
1, t>0 -

Thisinput is clearly bounded. It never exceeds one in magnitude. However, the output
grows without bound.

VteReals u(t)= { (12.4)

In practice, ahelicopter uses afeedback system to determine how much torque to apply
at the tail rotor to keep the body of the helicopter straight. We will see how to do this
in chapter 14.

In this chapter we develop the basics of modeling unstable systems in the frequency domain. We
define two new transforms, called the Z transform and Laplace transform. The Z transform
is a generaization of the DTFT and applies to discrete-time signals. The Laplace transform is a
generalization of the CTFT and applies to continuous-time signals. These generalizations support
frequency-domain analysis of signals that do not have a Fourier transform, and thus allow analysis
of unstable systems.

In particular, let X denote the Laplace or Z transform of x, depending on whether it is a continuous
or discrete-time sgnal Then the Laplace or Z transform of the output of an LTI system is given by
Y = HX, where H isthe Laplace or Z transform of the impulse response. This relation applies even
when the system is unstable. Thus, these transforms take the place of the Fourier transform when
the Fourier transform cannot be used. H is called the transfer function of the LTI system, and it is
ageneralization of the frequency response.

12.1 Boundedness and stability

In this section, we identify asimple condition for the existence of the DTFT, which isthat the signal
be absolutely summable. We then define a stable system and show that an LTI system is stable if
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and only if itsimpulse response is absolutely summable. Continuous-time signals are slightly more
complicated, requiring slightly more than that they be absolutely integrable. The conditions for the
existence of the CTFT are called the Dirichlet conditions, and once again, if the impulse response
of an LTI system satisfies these conditions, then it is stable.

12.1.1 Absolutely summable and absolutely integrable

A discrete-time signal x is said to be absolutely summableif

S [x(n)
N=—o0
exists and is finite. The “absolutely” in “absolutely summable’ refers to the absolute value (or
magnitude) in the summation. The sum is said to converge absolutely. The following simple fact
gives acondition for the existence of the DTFT:

If adiscrete-time signal x isabsolutely summable, then itsDTFT exists and isfinite
for all w.

To see that thisistrue, note that the DTFT exists and is finite if and only if

VweReals |[X(w)| = S x(n)e~'on
nEo
exists and isfinite. But
ix(n)e*i‘*’n < i\x(n)e*i‘*’”] (12.5)
oo Lo
= 3 Kolfe (126
Lo
_ nim\x(nﬂ. (12.7)

Thisfollows from the following facts about complex (or real) numbers:
la+b| < a] +|b],
which isknown asthe triangle inequality (and generalizes to infinite sums),
|ab| = [a] - |b],

and _
V@ecReals [€° =1
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We can conclude from (12.5) that

VweReals |[X(w)| < z Ix(n)]|.
Nn=—o0
Thismeans that if x is absolutely summable, then the DTFT exists and isfinite. It follows from the
fact that if a sum converges absolutely, then it also converges (without the absolute value).

A continuous-time signal x is said to be absolutely integrable if

(o)

/ IX(t)|dt

—00

exists and is finite. A similar argument to that above (with summations replaced by integrals)
suggests that if acontinuous-time signal x is absolutely integrable, then its CTFT should exist and be
finite for all w. However, caution isin order. Integrals are more complicated than summations, and
we need some additional conditions to ensure that theintegral iswell defined. We can use essentially
the same conditions given on page 234 for the convergence of the continuous-time Fourier series.
These are called the Dirichlet conditions, and require three things:

e X isabsolutely integrable;

e inany finiteinterval, x is of bounded variation, meaning that there are no more than afinite
number of maxima or minima; and

e inany finite interval, x is continuous at al but afinite number of points.

Most any signal of practical engineering importance satisfies the last two conditions, so the impor-
tant condition is that it be absolutely integrable. We will henceforth assume without comment that
all continuous-time signals satisfy the last two conditions, so the only important condition becomes
thefirst one. Under this assumption, the following simple fact gives a condition for the existence of
the CTFT:

An absolutely integrable continuous-time signal x has a CTFT X, and its CTFT
X(w) isfinite for all w € Reals

12.1.2  Stability

A system is said to be bounded-input bounded-output stable (BIBO stable or just stable) if the
output signal is bounded for all input signals that are bounded.

Consider a discrete-time system with input x and output y. An input is bounded if there is a rea
number M < oo such that [x(k)| < M for all k € Integers An output is bounded if there is a real
number N < o such that |y(n)| < N for al n € Integers The system is stable if for any input
bounded by M, there is some bound N on the output.
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Consider a discrete-time LTI system with impulse response h. The output y corresponding to the
input x is given by the convolution sum,

vn € Integers  y(n) = (hxx)( z h(m : (12.8)
m=—

00

Suppose that the input x is bounded with bound M. Then, applying the triangle inequality, we see
that

(o]

z m)||x(n— m]<szh

m=— m=—

Thus, if the impulse response is absolutely summable, then the output is bounded with bound

N=M i Ih(m)

Thus, if the impulse response of an LTI system is absolutely summable, then the system is stable.
The converse is also true, but more difficult to show. That is, if the system is stable, then the
impulse response is absolutely summable (see box on page399). The same argument applies for
continuous-time signals, so in summary:

A discrete-time LTI system is stable if and only if its impulse response is abso-
lutely summable. A continuous-time LTI system is stable if and only if itsimpulse
response is absolutely integrable.

The following example makes use of the geometric seriesidentity, valid for any real or complex
awhere|al < 1,

hd 1
m— _— . 129
za 1—a ( )

To verify thisidentity, just multiply both sides by 1 — ato get
a"-ay a"=1.
283

m=0
This can be written . .
0 m m
a + a’ — a' =1
Now note that & = 1 and that the two sums are identical. Since |]a] < 1, the sums converge, and

hence they cancel, so the identity is true.

Example 12.3:  As in example 12.1, the impulse response of the bank account of

example5.12is
0, n<o
h(n):{ anfl n>o0 ’



12.1. BOUNDEDNESSAND STABILITY 399

Probing further: Stable systemsand their impulseresponse

Consider a discrete-time LTI system with real-valued impulse response h. In this
box, we show that if the system is stable, then its impulse response is absolutely
summable. To show this, we show the contrapositive? That is, we show that if the
impulse response is not absolutely summable, then the system is not stable. To do
this, suppose that the impulse response is not absolutely summable. That is, the
sum

00

S Ih(n)|
N=—oo
is not bounded. To show that the system is not stable, we need only to find one
bounded input for which the output either does not exist or is not bounded. Such
an input is given by

h(=n)/Ih(=n)[, h(n) #8

vV nelntegers x(n) = { 0 h(n)

This input is clearly bounded, with bound M = 1. Plugging this input into the
convolution sum (12.8) and evaluating at n = 0 we get

¥O) = 3 hmx(-m)
=y (hm)/Incm)
=y Ihm,

where the last step follows from the fact that for real-valued h(m), (h(m)y@ =
|h(m)|?. But since the impulse response is not absolutely summable, y(0) does
not exist or is not finite, so the system is not stable.

A nearly identical argument works for continuous-time systems.

aThe contrapositive of a statement “if p then g” is “if not g then not p.” The contrapositive is true
if and only if the original statement istrue.
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where a > 1 is a constant that reflects the interest rate. This impulse response is not
absolutely summable, so this system is not stable. A system with the same impulse
response, but where 0 < a < 1, however, would be stable, as is easily verified using
(12.9). To use this identity, note that

> | = 3!

n=—oo n

where the second step results from a change of variables, lettingm=n—1.

Example 12.4: Consider a continuous-time LTI system with impul se response
VtecReals h(t)=adu(t),

where a > 0 is areal number and u is the unit step, given by (12.4). To determine
whether this system is stable, we need to determine whether the impulse response is
absolutely integrable. That is, we need to determine whether the following integral
exists and isfinite,

/ atu(t)[dt.

Since a > 0 and u is the unit step, this simplifies to

©0

/atdt.

0

From calculus, we know that this integral isinfinite if a > 1, so the system is unstable
if a> 1. Theintegral isfiniteif 0 < a < 1and isequa to

/atdt: _1/In(a).
0

Thus, the systemisstableif 0 <a < 1.

As we see, when all pertinent signals are absolutely summable (or absolutely integrable), then we
can use Fourier transform techniques with confidence. However, many useful signals do not fall in
this category (the unit step and sinusoidal signals, for example). Moreover, many useful systems
have impulse responses that are not absolutely summable (or absolutely integrable). Fortunately,
we can generalize the DTFT and CTFT to get the Z transform and Laplace transform, which easily
handle signals that are not absolutely summable.
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12.2 TheZ transform

Consider a discrete-time signal x that is not absolutely summable. Consider the scaled signa x
given by

n

Vnelntegers X (n)=x(nr ", (12.10)

for some real number r > 0. Often, this signal is absolutely summable when r is chosen appropri-
ately. This new signal, therefore, will have aDTFT, even if x does not.

Example 12.5: Continuing with example 12.3, the impulse response of the bank
account is
0, n<o0
h(n) = { an—l) n>0 "’
where a > 1. Thissystem is not stable. However, the scaled signal
hr(n) = h(n)r "

is absolutely summableif r > a. ItsDTFT is

Vr>avweReals H(w) = 5 h(mrme o
m=

(reiw)—l
1—a(rew)-1’
The second step is by change of variables, n = m— 1, and the final step applies the
geometric series identity (12.9).

In general, the DTFT of the scaled signal % in (12.10) is

VweReals X(w)= 5 x(m)(re®)™

m=—o0

Notice that thisis afunction not just of w, but also of r, and in fact, we are only sure it is valid for

values of r that yield an absolutely summable signal h. If we define the complex number
z=re®

then we can writethis DTFT as

VzeRoQx), X2 = 3 x(mz™ (12.11)
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where X isafunction called the Z transform of x,
X:RoQ(x) — Complex

where RoC(x) € Complexis given by

RoQ(x) = {z=ré® ¢ Complex x(n)r—" is absolutely summable.} (12.12)

The term RoCis shorthand for region of convergence.
Example 12.6: Continuing example 12.5, we can recognize from the form of H; (w)
that the Z transform of the impulse response his

ozt
l1-azl! z-a’

vzeRoQh), H(2)
where the last step isthe result of multiplying top and bottom by z. The RoCis
RoQh) = {z=re'® € Complex r > a}

The Z tranform H of the impulse response h of an LTI system is called the transfer function of the
system.

12.2.1 Structure of theregion of convergence

When asignal has aFourier transform, then knowing the Fourier transform is equivalent to knowing
the signal. The signal can be obtained from its Fourier transform, and the Fourier transform can be
obtained from the signal. The same is true of a Z transform, but there is a complication. The Z
transform is a function X: RoC — Complex and it is necessary to know the set RoC to know the
function X. The region of convergence is a critical part of the Z transform. We will see that very
different signals can have very similar Z transforms that differ only in the region of convergence.

Given a discrete-time signal x, RoQ(x) is defined to be the set of al complex numbers z = ré® for
which the following series converges:

S xm)r™.
m=—oo
Notice that if this series converges, then so does
S Xmz™
mM=—o0

for any complex number zwith magnitude r. Thisis because

[X(m)z ™| = x(m)(re') "™ = [x(m)] - |r ™| - |&~ M = |x(m)] - [r ™).
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Almz Almz Almz
Re z Re z " RoC Re z
RoC ~._RoC .~ :
causal or right sided two-sided anti-causal

@ (b) ©

Figure 12.2: Three possible structures for the region of convergence of a Z
transform.

Thus, the set RoC could equally well be defined to be the set of al complex numbers z such that
X(n)z " is absolutely summable.

Notice that whether this series converges depends only on r, the magnitude of the complex number
z=re'®, and not on w, its angle. Thus, if any point z= ré® isin the set RoG, then all points Z with
the same magnitude are also in RoC. Thisimplies that the set RoC a subset of Complexwill have
circular symmetry.

The set RoCturns out to have even more structure. There are only three possible patterns, illustrated
by the shaded areas in figure 12.2. Each figure illustrates the complex plane, and the shaded area
isaregion of convergence. Each possibility has circular symmetry, in that whether a point isin the
RoCdepends only on its magnitude.

Figure 12.2(a) shows the RoCof acausa signal. A discrete-time signal x is causal if x(n) = 0 for
al n < 0. The RoCisthe set of complex numbers z = ré® where following series converges:

00

S Ixmyr

m=—oo

But if x is causal, then

00

S X =y X
m=—oco m=0

If this series converges for some given r, then it must also converge for any > r (because for all
m> 0, ™ <r ™ Thus, if ze RoC then the RoCmust include all points in the complex plane on
the circle passing through z and every point outside that circle.

Note further that not only must the RoCinclude every point outside the circle, but the series must
also converge in thelimit aszgoesto infinity. Thus, for example, H(z) = zcannot be the Z transform
of acausal signal because its RoCcannot possibly include infinity (H(z) is not finite there).

Figure 12.2(c) shows the RoC of an anti-causal signal. A discrete-time signal x is anti-causal if
x(n) = 0for al n> 0. By asimilar argument, if z€ RoC then the RoCmust include all pointsin
the complex plane on the circle passing through z and every point inside that circle.

Figure 12.2(b) showsthe RoCof asignal that is neither causal nor anti-causal. Such asignal iscalled
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atwo-sided signal. Such asignal can aways be expressed as a sum of a causal signal and an anti-
causal signal. The RoCisthe intersection of the regions of convergence for these two components.
To see this, just note that the RoCis the set of complex numbers z = ré® where following series
converges:

0 -1 0
> I = S TS e

Thefirst sum on the right corresponds to an anti-causal signal, and the second sum on the right to a
causal signal. For this series to converge, both sums must converge. Thus, for a two-sided signal,
the RoChas aring structure.

Example 12.7: Consider the discrete-time unit step signa u, given by

0, n<O
u(n)_{ 1 n>0 " (12.13)

The Z transform is, using geometric series identity (12.9),

0@= 3 umzm=yzm-—L _ 2

00 m=0

with domain
RoQu) = {z€ Complex| 3 [2"™ <o} ={z] |2 > 1}.
m=1

This region of convergence has the structure of figure12.2(a), where the dashed circle
has radius one (that circle is called the unit circle). Indeed, thissignal is causal, so this
structure makes sense.

Example 12.8: Thesignal v given by

has Z transform

V(z) = i

m 00 Zk z
zZ =—-Z = —
2

1
vimz M= — )
rr‘:z— z—-1

00 00

with domain

RoQV) = {z € Complex i |7 <o} ={z]| |7 < 1}.

This region of convergence has the structure of figure12.2(c), where the dashed circle
is again the unit circle. Indeed, this signal is anti-causal, so this structure makes sense.
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Notice that athough the Z transform U of u and V of v have the samealgebraic form, namely,
z/(z— 1), they are differentfunctions, because their domains are different. Thus the Z transform of
asignal comprises boththe agebraic form of the Z transform as well asits RoC

A right-sided signal x iswhere for someinteger N,
X(n)=0, Vn<N.

Of course, if N > 0, then this signal is also causal. However, if N < 0, then the signal is two sided.
Suppose N < 0. Then we can write the Z transform of x as

. 9 )
rrhZ_m!X(m)r \:WZN!X(m)r H—ngo\x(m)r .

The left summation on the right side isfinite, and each termisfinitefor all ze Complexso therefore
it converges for al ze Complex Thus, the region of convergence is determined entirely by the right
summation, which is the Z transform of the causal part of x. Thus, the region of convergence of
aright-sided signal has the same form as that of a causal sequence, as shown in figure12.2(a).

(However, if the signal is not causal, the Z transform does not converge at infinity.)

A left-sided signal x iswhere for some integer N,
Xx(n)=0, Vn>N.

Of course, if N <0, then this signal is aso anti-causal. However, if N > 0, then the signal is two
sided. Suppose N > 0. Then we can write the Z transform of x as

00 0 N
> I = S e S

The right summation is finite, and therefore converges for all z € Complexexcept z = 0, where
the individual terms of the sum are not finite. Thus, the region of convergence is that of the left
summation, except for the point z= 0. Thus, the region of convergence of a left-sided signal has
the same form as that of an anti-causal sequence, as shown in figure12.2(c), except that the origin
(z=0) is excluded. This, of course, is simply the structure of 12.2(b) where the inner circle has
zero radius.

Some signals have no meaningful Z transform.

Example 12.9: The signal x with x(n) = 1, for al n, does not have a Z transform.
We can write X = u— Vv, where u and v are defined in the previous examples. Thus,
the region of convergence of x must be the intersection of the regions of convergence
of uand v. However, these two regions of convergence have an empty intersection, so
RoC(x) = 0.

Viewed another way, the set RoC(x) is the set of complex numbers zwhere

(o)

T KmzM= Y <,

—00

But there is no such complex number z.
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Note that the signal x in example 12.9 is periodic with any integer period p (because x(n+ p) = x(n)
for any p € Integer9. Thus, it hasaFourier series representation. In fact, as shown in section10.6.3,

aperiodic signal also hasaFourier transform representation, aslong aswe arewilling to allow Dirac
delta functions in the Fourier transform. (Recall that this means that there are values of w where
X(w) will not be finite.) With periodic signals, the Fourier series is by far the simplest frequency-
domain tool to use. The Fourier transform can aso be used if we allow Dirac delta functions. The
Z transform, however, is more problematic, because the region of convergence is empty.

12.2.2 Stability and the Z transform

If adiscrete-time signal x is absolutely summable, then it has a DTFT X that is finite for al w €
Reals Moreover, the DTFT is equal to the Z transform evaluated on the unit circle,

VweReals X(w) =X(2)],_a0 = X(€%).

The complex number z= € has magnitude one, and therefore lies on the unit circle. Recall that an
LTI system is stable if and only if itsimpulse response is absolutely summable. Thus,

A discrete-time LTI system with impulse response h is stable if and only if the
transfer function H, which isthe Z transform of h, has aregion of convergence that
includes the unit circle.

Example 12.10: Continuing example 12.6, the transfer function of the bank account
system has region of convergence given by

RoQh) = {z=re'® € Complex r > a},

where a > 1. Thus, the region of convergence includes only complex numbers with
magnitude greater than one, and therefore does not include the unit circle. The bank
account system is therefore not stable.

12.2.3 Rational Z tranformsand poles and zeros

All of the Z transforms we have seen so far arerational polynomialsin z. A rational polynomial is
simply the ratio of two finite-order polynomials. For example, the bank account system has transfer
function
H (2) = i
z—a
(see example 12.6). The unit step of example 12.7 and its anti-causal cousin of example 12.8 have

Z transforms given by ,

Uz = — V(z) = —

albeit with different regions of convergence.
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In practice, most Z transforms of practical interest can be written as the ratio of two finite order
polynomialsin z,

The order of the polynomial A or B is the power of the highest power of z. For the unit step, the
numerator polynomia is A(z) = z, afirst-order polynomial, and the denominator is B(z) = z— 1,
aso afirst-order polynomial.

Recall from algebra that a polynomial of order N has N (possibly complex-valued) roots, which
are values of zwhere the polynomia evaluates to zero. The roots of the numerator A are called the
zeroes of the Z transform, and the roots of the denominator B are called the poles of the Z transform.
The term “zero” refers to the fact that the Z transform evaluates to zero at a zero. The term “pole”
suggests an infinitely high tent pole, where the Z transform evaluates to infinity. The locations in
the complex plane of the poles and zeros turn out to yield considerable insight about a Z transform.
A plot of these locations is called a pole-zero plot. The poles are shown as crosses and the zeros as
circles.

Example 12.11: The unit step of example 12.7 and its anti-causal cousin of example
12.8 have pole-zero plots shown in figure 12.3. In each case, the Z transform has the

form
2 _AQ)
z-1 B2’
where A(z) = zand B(z) = z— 1. A(z) has only one root, at z= 0, so the Z transforms
each have one zero, at the origin in the complex plane. B(z) also has only one root, at

z=1, sothe Z transform has one pole, at z= 1.

These plots a so show the unit circle, with adashed line, and the regions of convergence
for the two examples, as shaded areas. Note that RoQ(u) has the form of aregion of
convergence of a causal signal, as it should, and RoQv) has the form of a region of
convergence of an anti-causal signal, as it should (see figure12.2). Note that neither
RoCincludes the unit circle, so if these signals were impulse responses of LTI systems,
then these systems would be unstable.

Consider arational Z transform A

- z

X(z) = @
The denominator polynomial B evaluatesto zero at apole. That is, if thpre isapoleat locationz=p
(a complex number), then B(p) = 0. Assuming that A(p) # O, then X(p) is not finite. Thus, the
region of convergence cannot include any pole p that is not cancelled by a zero. Thisfact, combined
with the fact that a causal signal aways has a RoC of the form of the left one in figurel2.2, leads
to the following simple stability criterion for causal systems:

A discrete-time causal system is stable if and only if al the poles of its transfer
function lieinside the unit circle.
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RoC(v)

Figure 12.3: Pole-zero plots for the unit step u and its anti-causal cousin v.
The regions of convergence are the shaded area in the complex plane, not
including the unit circle. Both Z tranforms, U and V, have one pole at z=1
and one zero at z=0.

A subtle fact about rational Z transforms isthat the region of convergence is always bordered by the
pole locations. Thisisevident in figure12.3, where the single pole at z= 1 lies on the boundary of
the two possible regions of convergence. In fact, the rational polynomial
z
z—-1
can be associated with only three possible Z transforms, two of which have the two regions of
convergence shown in figure 12.3, plus the one not shown where RoC= 0.

Although apolynomial of order N has N roots, these roots are not necessarily distinct. Consider the
(rather trivial) polynomial

Az) =Z.
This has order 2, and hence two roots, but both roots are at z= 0. Consider a Z transform given by
vzeRoOK), X2 = -2
’ C (z-1)%

This hastwo zeros at z= 0, and two poles at z= 1. We say that the zero at z= 0 has multiplicity
two. Similarly, the pole at z= 1 has multiplicity two. This multiplicity is indicated in a pole-zero
plot by a number adjacent to the pole or zero, as shown in figurel2.4.

Example 12.12: Consider a signal x that is equal to the delayed Kronecker delta
function,

vV nelintegers x(n) =8(n—M),
where M € Integersis a constant. Its Z transform is easy to find using the sifting rule,

(o)

vzeRoQx), X(@)= Y ¥m-M)z"=zM=1/

m=—o0

If M > 0, then this converges absolutely for any z=# 0. Thus, if M > 0,
RoQx) = {z< Complex| z+# 0}.
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Figure 12.4: Poles and zeros with multiplicity greater than one are indicated
by a number next to the cross or circle.

This Z transform has M poles at z= 0. Notice that this region of convergence, appro-
priately, has the form of that of a causal signal, figure12.2(a), but where the circle has
radius zero.

If M < 0, then the region of convergence is the entire set Complexand the Z transform
has M zeros at z= 0. This signal is anti-causal, and its RoC matches the structure of
12.2(c), where the radius of the circle isinfinite. Note that this Z transform does not
converge at infinity, which it would have to do if the signal were causal.

If M =0, then )2(2) = 1for dl ze Complexso RoC= Complexand there are no poles
or zeros. Thisisaparticularly simple Z transform.

Recall that for a causal signal, the Z transform must converge as z— . The region of convergence
must include everything outside some circle, including infinity! Thisimpliesthat for acausal signal

with arational Z transform, the Z transform must be proper. A rational polynomial is proper when
the order of the numerator is smaller than or equal to the order of the denominator. For example, if
M = —1 in the previous example, then x(n) = &(n+ 1) and H(z) = z, which has numerator order

one and denominator order zero. It is not proper, and indeed, it does not converge as z— . Any
rational polynomial that has a denominator of higher order than the numerator will not converge as
Z goes to infinity, and hence cannot be the Z transform of a causal signal.

In the following chapter, table 13.1 gives many common Z tranforms, all of which are rational
polynomials. Together with the properties discussed in the that chapter, we can find the Z transforms
of many signals.

12.3 TheLaplacetransform

Consider a continuous-time signal x that is not absolutely integrable. Consider the scaled signal %
given by?
VteReals xs(t)=xt)e ™, (12.14)

1Some texts consider poles and zeros at infinity, in which case a causal signal cannot have a pole at infinity.

2The reason that this is different from the scaling by r—" used to get the Z transform is somewhat subtle. The two
methods are essentially equivalent, if welet r = €. But scaling by e~ turns out to be more convenient for continuous-
time systems, aswe will see.
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for some real number o. Often, this signal is absolutely integrable when o is chosen appropriately.
This new signal, therefore, will have a CTFT, even if x does not.

Example 12.13: Consider the impulse response of the simplified helicopter system
described in example 12.2. The output as afunction of the input is given by

e

The impulse response is found by letting the input be a Dirac delta function and using
the sifting rule to get

VteReals y(t)

ZIl—\

VteReals h(t)=u(t)/M,

where u is the continuous-time unit step in (12.4). Thisis not absolutely integrable, so
this system is not stable. However, the scaled signal

VtecReals hy(t) =h(t)e ™

is absolutely integrable if o > 0. ItsCTFT is

Vo>0VYweReals Hg(w) = [ h(t)e e ™dt

Z|r 5‘3\8

O —— 5 °——3

g Olg Wt

o (o+i0)t gy

2|

1
M(o+iw)

Thelast step in example 12.13 uses the following useful fact from calculus,

b
/ et = i( b _ 62y (12.15)

a

for any ¢ € Complexand a,b € RealsJ { —o, 0} where €° and €2 are finite.

In general, the CTFT of the scaled signal x; in (12.14) is
VweReals Xo(w) :/ x(t)e~ (Orotgt,

Notice that thisis afunction not just of w, but also of 0. We are only sure it isvalid for values of o
that yield an absolutely integrable signal h;.
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Define the complex number
S=0+iw.

Then we can write this CTFT as

00

VseRoQx), X(s)= [ x(t)e sdt, (12.16)

—00

where X isafunction called the L aplace transform of x,
X:RoQx) — Complex

where RoQx) € Complexis given by

RoQx) = {s= 0 +iwe Complex| x(t)e ! is absolutely integrable.} (12.17)

The Laplace tranform H of the impulse response h of an LTI system is called the transfer function
of the system, just as with discrete-time systems.

Example 12.14: Continuing example12.13, we can recognize from the form of Hy(w)
that the transfer function of the helicopter system is

VseRoQh), H(s)=—.

TheRoCis
RoQh) = {s=0+iwe Complex o < 0}

12.3.1 Structure of theregion of convergence

As with the Z transform, the region of convergence is an essential part of a Laplace transform. It
gives the domain of the function X. Whether a complex number sisin the RoCdepends only on o,
not on w, asis evident in the definition (12.17). Since s= 0+ iw, whether a complex number isin
the region of convergence depends only on its real part. Once again, there are only three possible
patterns for the region of convergence, shown in figure12.5. Each figure illustrates the complex
plane, and the shaded area is a region of convergence. Each possibility has vertical symmetry, in
that whether a point isin the RoCdepends only on itsreal part.

Figure 12.5(a) showsthe RoCof acausal or right-sided signal. A continuous-time signal x isright-
sidedif x(t) =0foralt <T for someT € Reals The RoCisthe set of complex numberss=o+iw
where following integral converges.

/ Ix(t)e o dt.

But if x isright-sided, then

00

IX(t)e % |dt = [ |x(t)e %|dt.
[roeia]

—00
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Alms Alms Alms
Rg S Rg S RE S
RoC ' RoC| | RoC
causal or right-sided two-sided anti-causal or left-sided

@ (b) (©

Figure 12.5: Three possible structures for the region of convergence of a
Laplace transform.

If T >0 and this integral converges for some given o, then it must also converge for anyG > o

because for al t > 0, % < e . Thus, if s= 0+ iw € RoCx), then the RoC(x) must include all

points in the complex plane on the vertical line passing through s and every point to the right of that
line.

If T <0, then
0 0 <)
/ Ix(t)e % dt — / IX(t)e %t + / IX(t)e % dt,
T T 0

then the finite integral exists and isfinite for all o, so the same argument applies.

Figure 12.5(c) shows the RoC of a left-sided signal. A continuous-time signal x is left-sided if
X(t) =0foralt>T for someT € Reals By asimilar argument, if s= 0+ iw € RoQx), then the
RoQx) must include all pointsin the complex plane on the vertical line passing through s and every
point to the left of that line.

Figure 12.5(b) shows the RoCof a signal that is atwo-sided signal. Such a signal can always be
expressed as a sum of aright-sided signal and left-sided signal. The RoCis the intersection of the
regions of convergence for these two components.

Example 12.15: Using the same methods asin examples12.13 and 12.14 we can find
the Laplace transform of the continuous-time unit step signal u, given by

0, t<O

1 150 (12.18)

VteReals u(t)= {

The Laplace transform is

VseRoQu), U(s) = /u(t)e*Stdt

3|t is convenient but coincidental that the region of convergence isthe right half of a plane when the sequence isright
sided.
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= /e‘Stdt

)

nwlk o

where again we have used (12.15). The domain of U is
RoC(u) = {se Complex Re{s} > 0}.

This region of convergence has the structure of figure12.5(a), where the dashed line
sits exactly on the imaginary axis. The region of convergence, therefore, is simply the
right half of the complex plane.

Example 12.16: Thesigna v given by

-1, t<O0

V't € Reals v(t)——u(—t)_{ 0 t>0°

has Laplace transform

VseRoQv), V() = / v(t)e St

0

= —/e‘Stdt

—00

_ 1
s

with domain
RoQv) = {se ComplexX Re{s} < 0}.

This region of convergence has the structure of figure12.5(c), where the dashed line
coincides with the imaginary axis.

Notice that although the Laplace transformsU and V have the same algebraic form, namely, 1/s,
they are in fact different functions, because their domains are different.

Some signals have no meaningful Laplace transform.

Example 12.17: Thesignal x with x(t) = 1, for al t € Reals does not have a Laplace
transform. We can write x = u— v, where u and v are defined in the previous exam-
ples. Thus, the region of convergence of x must be the intersection of the regions of
convergence of u and v. However, these two regions have an empty intersection, so
RoC(x) = 0.
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Viewed another way, the set RoQ(x) is the set of complex numbers s where

©0

/]x(t)e’sr\dt:/\e’srydt<oo.

—00

But there is no such complex number s.

Note that the signal xin example12.17 is periodic with any period p € Reals(because x(t + p) = X(t)

for any p € Real9. Thus, it has a Fourier series representation. In fact, as shown in section10.6.3,

a periodic signa also has a Fourier transform representation, as long as we are willing to alow
Dirac delta functions in the Fourier transform. (Recall that this means that there are values of
w where X(w) will not be finite)) In the continuous-time case as in the discrete-time case, with
periodic signals, the Fourier seriesis by far the simplest frequency-domain tool to use. The Fourier
transform can also be used if we allow Dirac delta functions. The Laplace transform, however, is
more problematic, because the region of convergence is empty.

12.3.2 Stability and the Laplace transform

If a continuous-time signal x is absolutely integrable, then it has a CTFT X that is finite for all
w € Reals Moreover, the CTFT is egual to the Laplace transform evaluated on the imaginary axis,

VweReals X(w)=X(5)|sic = X(i0).

The complex number s=iw is pure imaginary, and therefore lies on the imaginary axis. Recall that
an LTI system is stable if and only if itsimpulse response is absolutely integrable. Thus

A continuous-time LTI system with impulse response h is stable if an only if the
transfer function H, which is the Laplace transform of h, has a region of conver-
gence that includes the imaginary axis.

Example 12.18: Consider the exponential signal h given by
VteReals h(t) =e2u(t),

for some real or complex number a, where, as usual, u is the unit step. The Laplace
transform is

vseRoQh), H(s) = [ h(t)eStdt

e—ate—stdt

]
Z
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= /e‘(%a)‘dt
0

r
s+a’
where again we have used (12.15). It is evident from (12.15) that for this integral to be
valid, the domain of H must be

RoQh) = {se Complex Re{s} > —Re{a}}.
Thisregion of convergence has the structure of figurel2.5(a), where the vertical dashed
line passes through a.

Now suppose that h isthe impulse response of an LTI system. That LTI system is stable
if anonly if Re{a} > 0. Indeed, if Re{a} < 0, then the impulse response grows without
bound, because e~ grows without bound ast gets large.

12.3.3 Rational Laplace tranformsand poles and zeros

All of the Laplace transforms we have seen so far are rational polynomialsin s. In practice, most
Laplace transforms of interest can be written as the ratio of two finite order polynomialsin s,

An exception isillustrated in the following example.

Example 12.19: Consider asignal x that isequal to the delayed Dirac delta function,
VteReals x(t)=25%(t—1),

where T € Realsis a constant. Its Laplace transform is easy to find using the sifting
rule,

Vse RoQx), X(s)= /6(t —De Sdt=e .
This has no finite-order rational polynomial representation.

Unlike the discrete-time case, pure time delays turn out to be rather difficult to realize in many
physical systems that are studied using Laplace transforms, so we need not be overly concerned
with them. We focus henceforth on rational Laplace transforms.

For arational Laplace transform, the order of the polynomial A or B is the power of the highest
power of s. For the exponential of example 12.18, the numerator polynomial is A(s) = 1, a zero-
order polynomial, and the denominator is B(s) = s+ a, a first-order polynomial. As with the Z
transform, the roots of the numerator polynomial are called the zer os of the Laplace transform, and
the roots of the denominator polynomia are caled the poles.
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Alms

S=—a|

Figure 12.6: Pole-zero plot for the exponential signal of example 12.18,
assuming a has a positive real part.

Example 12.20: The exponential of example12.18 hasasingle poleat s= —a, and no
zeros* A pole-zero plot is shown in figure 12.6, where we assume that a is a complex
number with a positive rea part. The region of convergence includes the imaginary
axis, so thissignal is absolutely integrable.

As with Z transforms, the region of convergence of arational Laplace transform bordered by the
pole locations. Hence,

A continuous-time causal system is stable if and only if al the poles of its transfer
function lie in the left half of the complex plane. That is, al the poles must have
negative real parts.

Table 13.3 in the following chapter gives many common Laplace tranforms.

12.4 Summary

Many useful signals have no Fourier transform. A sufficient condition for asignal to have a Fourier
transform that isfinite at al frequenciesisthat the signal be absolutely summable (if it is a discrete-
time signal) or absolutely integrable (if it is a continuous-time system).

Many useful systems are not stable, which means that even with a bounded input, the output may
be unbounded. An LTI system is stable if and only if its impulse response is absolutely summable
(discrete-time) or absolutely integrable (continuous-time).

Many signals that are not absolutely summable (integrable) can be scaled by an exponentia to get
a new signal that is absolutely summable (integrable). The DTFT (CTFT) of the scaled signal is
called the Z transform (L aplace transform) of the signal.

4In some texts, it will be observed that as s approaches infinity, this Laplace transform approaches zero, and hence it
will be said that there is a zero at infinity. So to avoid conflict with such texts, we might say that this Laplace transform
has no finite zeros.
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The Z transform (Laplace transform) is defined over a region of convergence, where the structure
of the region of convergence depends on whether the signa is causal, anti-causal, or two-sided.
The Z transform (Laplace transform) of the impulse response is called the transfer function of an
LTI system. The region of convergence includes the unit circle (imaginary axis), if and only if the
system is stable.

A rational Z transform (Laplace transform) has poles and zeros, and the poles bound the region of
convergence. The locations of the poles and zeros yield considerable information about the system,
including whether it is stable.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire aplan of attack, those labeled C usually have more than one defensible answer.

1. E Consider the signal x given by
VneIntegers x(n) =a'u(—n),
where ais acomplex constant.

(&) Findthe Z transform of x. Be sure to give the region of convergence.
(b) Where are the poles and zeros?

(c) Under what conditions on a is x absolutely summable?

(d) Assuming that x is absolutely summable, find its DTFT.

2. T Consider the signa x given by

L [n[<M

vV n € Integers x(n):{ 0 otherwise

for some integer M > 0.

(@) Findthe Z transform of x. Simplify so that there remain no summations. Be sureto give
the region of convergence.

(b) Where are the poles and zeros? Do not give poles and zeros that cancel each other out.

(c) Under what conditions is x absolutely summable?

(d) Assuming that x is absolutely summable, find its DTFT.

3. T Consider the unit ramp signal w given by

vV ne Integers  w(n) = nu(n),
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where u is the unit step. The following identity will be useful,

rTZo(m+ 1)am = ( rTZoam)2 ¢ _la)z : (12.19)

Thisisageneralization of the geometric seriesidentity, given by (12.9). This series converges
for any complex number a with |a| < 1, because

(o)

S (m+1)a™

m=0

1+2la+3fa®+- -

(1+al+[a)®+---)(1+]al+|af +---)
_ - m\2
= (éolal )

< 00,

(d) Usethegiven identity to find the Z transform of the unit ramp. Be sureto give theregion
of convergence. Check your answer against that given on page432.

(b) Sketch the pole-zero plot of the Z transform.
(c) Isthe unit ramp absolutely summable?

4. E Sketch the pole-zero plots and regions of convergence for the Z transforms of the follow-
ing impulse responses, and indicate whether a discrete-time LTI system with these impulse
responses is stable:

(@ hi(n) =98(n)+0.56(n—1).
(b) hz(n) = (0.5)"u(n).
(¢) hz(n) =2"u(n).

5. E Consider the anti-causal continuous-time exponential signal x given by
VtecReals x(t)=—e 2u(-t),
for some real or complex number a, where, as usual, u is the unit step.

(@) Show that the Laplace transform of x is

with region of convergence
RoC(x) = {s€ Complex Re{s} < —Re{a}}.

(b) Where are the poles and zeros?
(c) Under what conditions on a is x absolutely integrable?
(d) Assuming that x is absolutely integrable, find its CTFT.
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6.

10.

11.

E This exercise demonstrates that the Laplace transform is linear. Show that if x and y are
continuous-time signals, a and b are complex (or real) constants, and w is given by

VteReals w(t)=ax(t)+by(t),
then the Laplace transform is

VseRoQw), W(s)=aX(s)+hbY(s),

where
RoCw) > RoCx) NRoCy).

T Let the causal sinusoidal signa y be given by
VteReals y(t) = cos(uwpot)u(t),
where uy isareal number and u is the unit step.

(@) Show that the Laplace transform is

vse {s|Re(s} >0}, V(s :ﬁ.

Hint: Use linearity, demonstrated in exercise6, and Euler’s relation.
(b) Sketch the pole-zero plot and show the region of convergence.
E Consider adiscrete-time LTI system with impul se response
vn, h(n) = a"cos(wpn)u(n),
for some wy € Reals Determine for what values of a this system is stable.
T The continuous-time unit ramp signal w is given by
vVt € Reals x(t) =tu(t),

where u is the unit step.

(a) Find the Laplace transform of the unit ramp, and give the region of convergence.
Hint: Useintegration by partsin (12.16) and the fact that [ te °tdt < o for g > 0.

(b) Sketch the pole-zero plot of the Laplace transform.

E Let h and g be the impulse response of two stable systems. They may be discrete-time or
continuous-time. Let a and b be two complex numbers. Show that the system with impulse
response ah+ bgis stable.

T Consider a series composition of two (continuous- or discrete-time) systems with impulse
response h and g. The output v of the first system isrelated to itsinput X by v=h=x«x. The
output y of the second system (and of the series composition) isy = g=*Vv. Suppose both
systems are stable. Show that the series composition is stable.

Hint: Use the definition of stability.
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Figure 12.7: System composition for exercise 13.

12. T Let h betheimpulse response of astable discrete-time system, so it isabsolutely summable,
and denote

[ee]

lhll =% [h(m)].

Nn=—o0

(|Ih|| is called the norm of the impulse response.)

(8) Suppose the input signal x is bounded by M, i.e. ¥n, |x(n)| < M. Show that the output
y = hxxisbounded by |/h||M.

(b) Consider the input signal x where
_ { h(=m)/Ih(=n)[, h(n) #
Vn € Integers  x(n) _{ 0 h(n) =
Show that ||h|| is the smallest bound of the output y = hxXx.

(c) Let g be the impulse response of another stable system with norm ||g||. Show that the
norm satisfies the triangle inequality,

Ih+gfl < [[hi[+ llgll-

(d) Supposethetwo systems are placed in series. The composition has the impulse response
hxg. Show that

gl < [lh[| > Ig]l-

13. E Show that the series-parallel composition of figure 12.7 is stable if the four component
systems are stable. Let h be the impulse response of the composition. Express h in terms
of the component impulse responses and then estimate | h|| in terms of the norms of the
components.

14. E Let x be adiscrete-time signal of finite duration, i.e. x(n) = 0 for n < M and n > N where
M and N are finite integers (positive or negative). LetX beits Z transform.

(@) Show that all its poles (if any) areat z= 0.
(b) Show that if x is causal it has N polesat z= 0.

15. T This proplem relates the Z and Laplace transforms. Let x be a discrete-time signal with Z
transform X : RoQx) — Complex Consider the continuous-time signal y related to x by

[ee]

vVt € Reals y(t) = z X(n)d(t —nT).

Nn=—o0
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Here T > Oisafixed period. Soy comprises delta functions located at t = nT of magnitude
x(n).

(a) Usethe sifting property and the definition (12.16) to find the Laplace transformY of y.
What isRoQy)?

(b) Show that Y (s) = X(€°T), where X(e°T) is X (2) evaluated at s= €.

() Suppose X(z) = ;; with RoQx) = {z| |z > 1}. What areY and RoQ(y)?
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Chapter 13

Laplace and Z Transforms

In the previous chapter, we defined Laplace and Z transforms to deal with signals that are not
absolutely summable and systems that are not stable. The Z transform of the discrete-time signal x
is given by

(o)

vzeRoQx), X(@= Y x(mz™,

m=—oo

where RoQ(x) is the region of convergence, the region in which the sum above converges abso-
lutely.

The Laplace transform of the continuous-time signal x is given by
VseRoQx), X(s)= /x(t)e*SIdt,

where RoC(x) is again the region of convergence, the region in which the integral above converges
absolutely.

In this chapter, we explore key properties of the Z and Laplace transforms and give examples of
transforms. We will also explain how, given arational polynomia in z or s, plus a region of con-
vergence, one can find the corresponding time-domain function. This inverse transform proves
particularly useful, because compositions of LTI systems, studied in the next chapter, often lead to
rather complicated rational polynomial descriptions of atransfer function.

Z transforms of common signals are given in table13.1. Properties of the Z transform are summa-
rized in table 13.2 and elaborated in the first section below.

13.1 Propertiesof the Z tranform

The Z transform has useful properties that are similar to those of the four Fourier transforms. They
are summarized in table 13.2 and elaborated in this section.

423
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424 CHAPTER 13
Discrete-timesignal Z transform Roc(x) ¢ Complex Reference
v n € Integers vV ze RoQx)
x(n) = d(n—M) X(z)=zM Complex Example
12.12
X(n) = u(n) X(2) = 71 {z]|2 > 1} Example
12.7
x(n) = au(n) X(2) = ;% {z]|7 > |a]} Example
133
x(n) = au(=n) X(2) =11y {z] |2 < [al} Exercise 1
in chapter
12
X(n) = cos(wpn)u(n) R(2) = 252008 {z] |74 > 1} Example
22—2zcos(ty)+1
133
x(n) = sin(wpn)u(n) X(z) = %7 {z| |7 > 1} Exercise 1
x(n) = X(2) = <zfa>~ {z||7 > |al} (13.13)
e (N—=1)--(n=N+1)
a"Nu(n—N)
X(@) = 4w {z| 12 < |a]} (13.14)

x(n) =

(N—1)T
a"Nu(—n)

DY N_1-n)...(1-n)

Table 13.1: Z transforms of key signals. The signal u is the unit step (12.13),
0 is the Kronecker delta, a is any complex constant, wy is any real constant,

M is any integer constant, and N > 0 is any integer constant.
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Timedomain Frequency domain RoC Name
V n € Integers Vze RoC (reference)
w(n) = ax(n) + by(n) W(z) = aX(2) +b¥(2) RoC(w) D RoQx) N RoC(y) Linearity
(section 13.1.1)
y(n) = x(n—N) Y(2) =z "X(2) RoQy) = RoQx) Delay
(section 13.1.2)
y(n) = (xxh)(n) Y(2) = X(2)H(2) RoCy) > RoQx) NRoC(h) Convolution
(section 13.1.3)
y(n) = x*(n) Y(2) = [X(2)]* RoQy) = RoQx) Conjugation
(section 13.1.4)
y(n) = x(—n) Y(2)=X(z?1) RoQy) = Timereversal
{z| z1 e RoOX)} (section 13.1.5)
y(n) = nx(n) Y(2) = 24X (2) RoQy) = RoQXx) Scaling by n
(page 432)
y(n) = a "x(n) Y(2) = X(a2) RoQy) = Exponential
{z| aze RoQx)} scaling
(section 13.1.6)

Table 13.2: Properties of the Z transform. In this table, a,b are complex
constants, and N is an integer constant.
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13.1.1 Linearity

Suppose x and y have Z transforms X and Y, that a, b are two complex constants, and that
w = ax+ by.
Then the Z transform of wis
Vze RoQw), W(z) =aX(z)+bY(2).
Thisfollows immediately from the definition of the Z transform,

w(myz ™

0

W(z) =

M5 M

(ax(m) +by(m))z™™

= aX(2)+bY(2).

—

The region of convergence of w must include at least the regions of convergence of x and y, since
if x(n)r~" and y(n)r—" are absolutely summable, then certainly (ax(n) + by(n))r " is absolutely
summable. Conceivably, however, the region of convergence may be larger. Thus, all we can assert
in general is

RoCw) > RoCGx) NRoCy). (13.1)

Linearity is extremely useful because it makesit easy to find the Z transform of complicated signals
that can be expressed alinear combination of signals with known Z transforms.

Example 13.1: We can use the results of example 12.12 plus linearity to find, for
example, the Z transform of the signal x given by

Vnelintegers x(n) =08(n)+0.95(n—4)+0.85(n—5).

Thisissimply
X(z) =1+0.924+0.82°5.

We can identify the poles by writing thisasarational polynomial in z (multiply top and
bottom by 2°),

A 2+0.92+0.8

X(z) = 5
from which we see that there are 5 poles at z= 0. The signal is causal, so the region

of convergence is the region outside the circle passing through the pole with the largest
magnitude, or in this case,

RoCx) = {z € Complex| z# 0}.
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Example 13.1illustrates how to find the transfer function of any finite impulse response (FIR) filter.
It also suggests that the transfer function of an FIR filter always has a region of convergence that
includes the entire complex plane, except possibly z= 0. The region of convergence will also not
include z= o if the FIR filter is not causal.

Linearity can also be used to invert a Z transform. That is, given arational polynomia and aregion
of convergence, we can find the time-domain function that has this Z transform. The general method
for doing this will be considered in the next chapter, but for certain simple cases, we just have to
recognize familiar Z transforms.

Example 13.2: Suppose we are given the Z transform

24092408
=

We can immediately recognize this asthe Z transform of acausal signal, because itisa
proper rational polynomial and the region of convergence includes the entire complex
plane except z= 0 (thus, it has the form of figure12.2(a)).

Vze {zc Complex z#0}, X(2)

If we divide through by 2, this becomes
Vze {ze Complex z# 0}, X(z) =1+40.92%+0.82°.
By linearity, we can see that
vV nelIntegers  x(n) = x1(n) + 0.9%2(n) + 0.8x3(n),

where x; has Z transform 1, X has Z transform z 4, and x3 has Z transform z °. The
regions of convergence for each Z transform must be at least that of x, or at least {z
Complex| z+# 0}. From example 12.12, we recognize these Z transforms, and hence
obtain

vV nelintegers x(n) =08(n)+0.95(n—4)+0.85(n—5).

Another application of linearity uses Euler’s relation to deal with sinusiodal signals.

Example 13.3: Consider the exponentia signal x given by

n

vV ne Integers x(n) =a'u(n),

where a is acomplex constant. Its Z transform is

(o)

~ o 1 z
X(2) = x(mz M= amzm— -
@ mz_m (m) ano l-az! z-a

, (13.2)

where we have used the geometric series identity (12.9). Thishasazeroatz=0and a
pole at z=a. Theregion of convergence is

RoQx) = {z € Complex| % |aMz T < w0} ={z| |7 > |a|}, (13.3)
m=0
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Figure 13.1: Pole-zero plots for the exponential signal x and the sinusoidal
signal y of example 13.3.

the region of the complex plane outside the circle that passes through the pole. A pole-
zero plot isshown in figure 13.1(a).

We can use this result plus linearity of the Z transform to determine the Z transform of
the causal sinusoidal signal y given by

vV n € Integers y(n) = cos(upn)u(n).
Euler’'s relation implies that
y(n) = 2 {enu(n) + e u(r).

Using (13.2) and linearity,

- 1 z z

Y@ = 3 { 7_am | 7_eiw }
122 — Z(d 1 o)
2 (z—€w)(z—e )

Z(z— cos(o))
z2—2zcos(up) +1 -

This has a zero at z = 0, another zero at z = cos(uy), and two poles, one at z = &
and the other at z= e '®_ Both of these poles lie on the unit circle. A pole-zero plot
is shown in figure 13.1(b), where we assume that «y = 11/4. We know from (13.1) and
(13.3) that the region of convergence is at least the area outside the unit circle. In this
case, we can conclude that it is exactly the area outside the unit circle, because it must
be bordered by the poles, and it must have the form of a region of convergence of a
causal signal.

13.1.2 Delay

For any integer N (positive or negative) and signal x, let y = Dy(X) be the signal given by

vn e Integers  y(n) =x(n—N).
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Suppose x has Z transform X with domain RoQ(x). Then RoQly) = RoQ(x) and

y(mz ™= i x(m—N)z "=zNX(z). (13.4)

00

vze RoQy), Y(z)= i

00

Thus

If asignal is delayed by N samples, its Z transform is multiplied by z'N.

13.1.3 Convolution

Suppose x and h have Z transforms X and H. Let
y=xxh.
Then A o
Vze RoQy), Y(2) =X(2)H(2). (13.5)
This follows from using the definition of convolution,

vn e Integers  y(n) = i Xx(m)h(n—m),

(o]

in the definition of the Z transform,

00

Yo - 3 ymz -y

n=—oo

x(m)z ™h(n—m)z ("=

™M

(o) [ee]

— % %x(m)z*mh(l)Z*'ZX(Z)ﬁ(Z)-

| =—ocoM=—o00
The Z transform of y converges absolutely at least at values of z where bothX and H converge
absolutely. Thus,
RoCly) D RoCx) NRoCh).
Thisis true because the double sum above can be written as

i y(n)z‘”_< i x(m)z‘m> <I§ h(I)z").

This obviously converges absolutely if each of the two factors converges absolutely. Note that the
region of convergence may actualy be larger than RoQx) N RoC(h). This can occur, for example,
if the product (13.5) results in zeros of X(z) cancelling poles of H(z) (see exercise 3).

If histhe impulse response of an LTI system, then its Z transform is called the transfer function
of the system. The result (13.5) tells us that the Z transform of the output is the product of the Z
transform of the input and the transfer function. The transfer function, therefore, serves the same
role as the frequency response. It converts convolution into simple multiplication.
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13.1.4 Conjugation

Suppose x is acomplex-valued signal. Let y be defined by
¥V ne Integers y(n) = [x(n)]*.

Then
VzeRoQy), Y(2)=[X(Z)],

where

RoQy) = RoCx).

Thisfollows because

VzeRoQXx), Y(z) = iy(n)z‘n

00

If x happens to be areal signal, theny = x, soY = X, s0
X(2) = [X(Z)]".

The key consequence is.

For the Z transform of a real-valued signal, poles and zeros occur in complex-
conjugate pairs. That is, if there is a zero at z = g, then there must be a zero at
z=(", andif thereisapole at z= p, then there must beapoleat z= 7.

Thisis because
0=X(a) = (X(q"))"
Similarly, if thereisapole at z= p, then there must also beapoleat z= .

Example 13.4: Example 13.3 gave the Z transform of a signal of the form x(n) =
a"u(n), where a is alowed to be complex, and the Z tranform of a signal of the form
y(n) = cos(wpn)u(n), which is real-valued. The pole-zero plots are shown in figure
13.1. In that figure, the complex signal has apole at z= a, and none at z= &. But
the real signal has a pole at z= é“ and a matching pole at the complex conjugate,
z=¢g ',
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13.1.5 Timereversal
Suppose x has Z transform X and y is obtained from x by reversing time, so that
vV n e Integers y(n) = x(—n).

Then
Vze {ze CompleX 1 e Roax)}, VY(z2)=X(z1).

Thisis evident from the definition of the Z transform, which implies that

m=—oo n

where X(z 1) isX evaluated at 7 1.

13.1.6 Multiplication by an exponential

Suppose x has Z transform X, a is a complex constant, and y(n) = a "x(n) for all n. Then
Vze {ze Complex| aze RoQx)}, Y(2) =X(a2),

where X (az) is X evaluated at az Thisis because

Y(2) = i

Note that if X hasapole at p (or azero at ), thenY hasapole at p/a(or azero at q/a).

y(mz M= i x(m)(az) ™ = X(a2).

00 00

Example 13.5: Suppose x is given by

vV neIntegers x(n) = a'u(n).

Then we know from example 13.3 that

~ Z
vze{z| 4> A}l X@)=

Thishasapoleat z=a. Now let y(n) = a "x(n) = u(n). The Z transform is

. X az z
Y@ =X == =1

as expected. Moreover, this has apole at z= a/a = 1, as expected, and the region of
convergence isindeed given by

{ze€ Complex] aze RoCx)} = {z€ CompleX |z > 1}.
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Probing further: Derivatives of Z transforms

Calculus on complex-valued functions of complex variables can be somewhat intri-
cate. Suppose X is a function of acomplex variable. The derivative can be defined
asalimit, ) )

E)A((z) _jim 228 =X ,

dz e—0 A
where € is a complex variable that can approach zero from any direction in the
complex plane. The derivative exists if the limit does not depend on the direction.
If the derivative exists at al points within adistance € > 0 of apoint zin the complex
plane, then X is said to be analytic at z. A Z transform is a series of the form

VzeRoQx), X(z)= i x(n)z ™"

Nn=—o0

Thisiscalled aLaurent seriesin the theory of complex variables. It can be shown
that a Laurent seriesis analytic at al points ze€ RoQx), and that the derivative is

(o)

¥ z€ RoQ)x), d%f((z): Z —mx(m)z ™1,

We can use this fact to show that the Z transform of y given by y(n) = nx(n) is

vVze Rodx), Y(z)= —zdng((z).

Thisis because

Y(2) = i nx(n)z " = % (—z)dgzx(n)z*n = —7z—X(2).

N=—o00 N=—o00
Itisnot difficult to show that Rody) = RogX) (see exercise5).
This property can be used to find other Z transforms. For example, the Z transform

of the unit step, x = u, isX(z) = z/(z— 1), with RoQx) = {z € Complex |z > 1}.
So the Z transform of the unit ramp y, given by y(n) = nu(n), is
- d z z

[ e Bl e

withRoCly) = {z€ CompleX |z| > 1}. Another method for finding the Z transform
of the unit ramp is given in exercise3 of chapter 12.
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13.1.7 Causal signalsand theinitial value theorem
Consider acausal discrete-time signal x. ItsZ transform is
Vze {ze Complex |2/ >}, X(2= Y x(m)z ™,

for somer (the largest magnitude of apole). Then

[ee]

: m_
lim x(m)z"™ +ZILrTo102x =x(0).

Thisis because as z goes to «, each term x(m)z ™ goes to zero. Thus

If xiscausal, x(0) = limX(2)|.

Z—00

Thisis called theinitial value theorem.

Example 13.6: The Z transform of the unit step x(n) = u(n) isX(z) =z/(z— 1), so, as
expected,

X(0) = limR(2) = lim —2 = lim——— =1,

Z—00 Z—00 Z 1 Z—00 1 — 1

because
limzt=o0.

Z— 0

Suppose aZ transform X is the rational polynomial

ﬂ@:wﬂ+m4ﬂ4m+%
N+by 12N+ A+ by

If x is causal, then this rational polynomia must be proper. Were this not the case, if M > N, then
by theinitial value theorem, we would have
X(0) = limX(2) = oo,

Z—00

which is certainly not right.

Example 13.7: Consider the Z transform
Vze Complex X(z) =

Thisisnot aproper rational polynomial (the numerator has order 1 and the denominator,
which is 1, has order 0). From example 12.12, we know that this corresponds to

vV nelntegers x(n) =08(n+1).

Thisisnot acausal signal.
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13.2 Frequency response and pole-zero plots

A pole-zero plot can be used to get a quick estimate of key properties of an LTI system. We have
already seen that it reveals whether the system is stable. It also reveals key features of the frequency
response, such as whether the system is highpass or lowpass.

Consider a stable discrete:time LTI system with impulse response h, frequency response H, and
rational transfer function H. We know that the frequency response and transfer function are related
by

Ywe Reals H(w)=H(E®).

That is, the frequency response is equal to the Z transform evaluated on the unit circle. The unit
circleisin the region of convergence because the system is stable.

Assume that H is arational polynomial, in which case we can express it in terms of the first-order
factors of the numerator and denominator polynomials,

~ (z—q1)---(z—am)
= o m)

)

with zerosat i, ---,qw and polesat py,-- -, pn. The zeros and poles may be repeated (i.e., they may
have multiplicity greater than one). The frequency response is therefore

VweReals H(w)= (é,w_ql)"'(é_w—QM)

(€®—pg)--- (€9 —pn)

The magnitude response is

€2 —qyf---|€°— qu]

VweReals |H(w)|= ‘eioo_p1|---‘ei°°—pN‘ '

Each of these factors has the form _
€9 —b|

where b isthe location of either apole or a zero. The factor |é® — b) isjust the distance from €% to
b in the complex plane.

Of course, €% isapoint on the unit circle. If that point is close to azero at location g, then the factor
|é® —q| is small, so the magnitude response will be small. If that point is close to apole at p, then
the factor |é“ — p| is small, but since this factor isin the denominator, the magnitude response will
be large. Thus,

The magnitude response of a stable LTI system may be estimated from the pole-
zero plot of its transfer function. Starting at w = 0, trace counterclockwise around
the unit circle as w increases. If you pass near a zero, then the magnitude response
should dip. If you pass near apole, then the magnitude response should rise.
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Example 13.8: Consider the causal LTI system of example9.16, which is defined by
the difference equation

vV ne Integers y(n) =x(n)+0.9y(n—1).

We can find the transfer function by taking Z transforms on both sides, using linearity,
to get

~

Y(2) =X(2) +0.92 Y (2).

The transfer function is

H(2) =

Yz 1z
X(z) 1-09z1 z-09

This has a pole at z= 0.9, which is closest to z= 1 on the unit circle, and a zero at
z= 0, which is equidistant from all points on the unit circle. The zero, therefore, has
no effect on the magnitude response. The poleis closest to z= 1, which corresponds to
w = 0, so the magnitude response peaks at w = 0, as shown in figure9.12.

Example 13.9: Consider a legnth-4 moving average. Using methods like those in
example 9.12, we can show that the transfer function is

Vze {ze Complex z£0}, H(z) =

11— 1 -1
4 1-71 48(z-1)

The numerator po!ynomi a hasroots at thefour roots of unity, whicharez=1, z= vz,
z= —1, and z= €372, Thus, we can write this transfer function as

V z € {ze Complex| z# 0},

l:l(z) — 1‘(2_1)(Z—é”/2)(z+1)(z_é3n/2)

4 2(z-1)
_ 1(z— ") (z+1)(z—€¥?)
T4 P '

The (z— 1) factors in the numerator and denominator cancel (fortunately, or we would
have apole at z= 1, on the unit circle, and we would have to conclude that the system
was unstable). A pole-zero plot is shown in figure13.2.

The magnitude response is shown in figure 9.8. Relating that figure to the pole-zero
plot, we see that the frequency response peaks at z= 1, and as we move around the unit
circle, we pass through zero at w = 11/2, or z= ™2, and again through zero at w = Tt
The magnitude response is periodic with period 21, so the zero at z= ™2 ijsaso a
zero at z= e "2, corresponding to a frequency of w= —T11/2.

435



436

CHAPTER 13. LAPLACEAND Z TRANSFORMS

Continuous-time signal Laplacetransform Roc(x) Reference
vVt e Reals V' se RoQx)
X(t) = 8(t—1) X(s)=e Complex Exercise
12.19
X(t) = u(t) X(s)=1/s {se Complex Re{s} > 0} Example
12.15
x(t) = e 2u(t) {se Complex Re(s} > Example
2(s) = S%a ~Re{a}} 12.18
X(t) = —e~u(-t) {sec Complex Re[s} < Exercise 5
2(s) = S%a ~Re{a}}
X(t) = cos(uypt)u(t) S {s| Re{s} > 0} Exercise 7
X9 =g + 6
X(t) = sin(wot)u(t) {s| Re{s} > 0} Example
X(s) = sz(ioo% 13.10
N-1 ) L {se ComFg)Iexl Re(s} > _
X(t) = N e 2u(t) X(z) = Gray ~Re{a}}
N-1 ) L {se Complex Re{s} < _
X(t) = — N e ?u(-t) X(2) = Gray —Refa}}

Table 13.3: Laplace transforms of key signals. The signal u is the unit
step (12.18), d is the Dirac delta, a is any complex constant, wy is any real

constant, T is any real constant, and N is a positive integer.
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RoQx)N{s| Re{s} > 0}

Timedomain sdomain RoC Name
vVt € Reals VvV se RoC (reference)
w(t) = ax(t) + by(t) W(s) = aX(s) +bY(s) RoC(w) D RoQx) NRoC(y) Linearity
(exercise 6)
y(t) =x(t—1) Y(s) = e X(s) RoQly) = RoQXx) Delay
(exercise 7)
y(t) = (xxh)(r) Y(s) = X(s)H(s) RoCly) D RoC(x) NRoCh) Convolution
(exercise 8)
y(t) = x*(t) Y(s) = [X(s)]* RoQly) = RoQx) Conjugation
(exercise 9)
y(t) = x(ct) Y(s) = X(s/c)/|c| RoQy) = Timescaling
{s| s/ce RoQx)} (exercise 10)
y(t) =tx(t) g RoQy) = RoQx) Scaling by t
Y(s)=— I X(s) -
y(t) = X (t) Y(s) = X(s—a) RoQy) = Exponential
{s|s—aeRoQx)} scaling
(exercise 11)
t Y(s)=X(9)/s RoQy) D Integration

(section 13.3.1)

RoQy) D RoQx)

Differentiation
(page 44)

Table 13.4: Properties of the Laplace transform. In this table, a,b are com-

plex constants, c and T are real constants.
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Im z

Figure 13.2: Pole-zero plot for a length-4 moving average system.

13.3 Propertiesof the L aplace transform

The Laplace transform has useful properties that are similar to those of the Z transform. They
are summarized in table 13.4 and elaborated mostly in the exercises at the end of this chapter. In
this section, we elaborate on one of the properties that is not shared by the Z transform, namely
integration, and then use the properties to develop some examples. Key Laplace transforms are
givenin table13.3.

13.3.1 Integration
Let y be defined by

t
VteReals y(t)= /x(r)dr.
The Laplace tranform is
¥seRoQy), Y(9)=X(s)/s,
where
RoQly) D RoQx) N {s| Re{s} > 0}.
This follows from the convolution property in table13.4. We recognize that

y(t) = (xxu)(t),

where u is the unit step. Hence, from the convolution property,

Y(s) =X(s)U(s)

and
RoQy) D RoCx) "RoQu).

U and RoQ(u) are given in example 12.15, from which the property follows.
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Figure 13.3: Pole-zero plot for the sinusoidal signal y of example 13.10.

13.3.2 Sinusoidal signals

Sinusoidal signals have Laplace transforms with poles on the imaginary axis, as illustrated in the
following example.

Example 13.10: Let the causal sinusoidal signal y be given by
VteReals y(t)=sin(upt)u(t),
where uy isarea number and u isthe unit step. Euler’s relation implies that

_1

awwmo—€WMmy

y(t)

Using (12.18) and linearity,

N 1 1 1

Y = §{s+iwo a s—iwo}

W

P+wf’

This has no finite zeros and two poles, one at s= iy and the other at s= —iwy. Both
of these poles lie on the imaginary axis, as shown in figure13.3. The region of conver-
genceistheright half of the complex plane. Note that if this were the impulse response

of an LTI system, that system would not be stable. The region of convergence does not
include the imaginary axis.

13.3.3 Differential equations

We can use the differentiation property in table 13.4 to solve differential equations with constant
coefficients.

Example 13.11: ?? Inthetuning fork example of example2.16, the displacement y of
atineisrelated to the acceleration of the tine by

yi(t) = —py(t),
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where uy isareal constant. Let us assume that the tuning fork isinitially at rest, and an
external input x (representing say, a hammer strike) adds to the acceleration as follows,

Yi(t) = —ey(t) +x(1).

We can use Laplace transforms to find the impul se response of this LTI system. Taking
Laplace transforms on both sides, using linearity and the differentiation property,

Vse RoQy)NRoQx), sY(s) = —wgY(s) + X(s).
From this, we can find the transfer function of the system,

. Y(s) 1
H S)= =—— = .
©) X(s) S+uh
Comparing this with example 13.10, we see that this differs only by a scaling by wp
from the Laplace transform in that example. Thus, the pole-zero plot of the tuning fork

is shown in figure 13.3, and the impulse response is given by
VteReals h(t)=sn(wpt)u(t)/wo.

Interestingly, this implies that the tuning fork is not stable. This impulse response is
not absolutely integrable. However, this model of the tuning fork is idealized. It fails
to account for loss of energy due to friction. A more accurate model would be stable.

The above example can be easily generalized to find the transfer function of any LTI system de-
scribed by adifferential equation. In fact, Laplace transforms offer a powerful and effective way to
solve differential equations.

In the previous example, we inverted the Laplace transform by recognizing that it matched the
example before that. In the next chapter, we will give amore general method for inverting a Laplace
transform.

13.4 Frequency response and pole-zero plots, continuoustime

Just as with Z transforms, the pole-zero plot of a Laplace transform can be used to get a quick
estimate of key properties of an LTI system. Consider a stable continuous-time LTI system with
impulse response h, frequency response H, and rational transfer functionH. We know that the
frequency response and transfer function are related by

~

Vwe Reals H(w)=H(iw).

That is, the frequency response is equal to the Laplace transform evaluated on the imaginary axis.
The imaginary axisisin the region of convergence because the system is stable.

Assume that H is arational polynomial, in which case we can express it in terms of the first-order
factors of the numerator and denominator polynomials,
F'(S) _ (S_ ql)"'(s_ qM) :
(s—p1)---(s—pn)
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with zerosat i, --,qw and polesat py,-- -, pn. The zeros and poles may be repeated (i.e., they may
have multiplicity greater than one). The frequency response is therefore

(iw—an)- - (iw—aqm)

VweReals H(w)= (io— Py (o—pn)

The magnitude response is

_ iw—a---liw—qu|
liw—pa|---Jio—pn|

VweReals |H(w)

Each of these factors has the form
liw— b

where b is the location of either apole or azero. The factor |iw— b| isjust the distance from iw to
b in the complex plane.

Of course, iw isapoint on the imaginary axis. If that point is close to a zero at location g, then the
factor |iw— g issmall, so the magnitude response will be small. If that point is close to apole at p,
then the factor |iw— p| is small, but since this factor is in the denominator, the magnitude response
will be large. Thus,

The magnitude response of a stable LTI system may be estimated from the pole-
zero plot of itstransfer function. Starting at iw = 0, trace upwards and downwards
along the imaginary axis to increase or decrease w. If you pass near a zero, then
the magnitude response should dip. If you pass near a pole, then the magnitude
response should rise.

Example 13.12: Consider an LTI system with transfer function given by
S

R R Hs)= ——n——.
Vse {s| Re(s} > Refat}, H(9 = oo

Suppose that a = c+iwy. Figure 13.4 shows three pole-zero plots for «p = 1 and
three values of ¢, namely c= —1, c = —0.5, and ¢ = —0.1. The magnitude frequency
responses can be calculated and plotted using the following Matlab code;

onega = [-10:0.05:10];

al = -1.0 + i;
H1L = i*omega./ ((i*omega - al).*(i*onega-conj(al)));
a2 = -0.5 +1i;
H2 = i*onega./ ((i *onega - a2).*(i*onega-conj(a2)));
a3 = -0.1 +1i;
H3 = i*onega./ ((i *onega - a3).*(i*onega-conj(a3l)));

pl ot (onega, abs(Hl), onmega, abs(H2), onega, abs(H3));

The plots are shown together at the bottom of figure 13.4. The plot with the higher
peaks corresponds to the pole-zero plot with the poles closer to the imaginary axis.
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A H@)

glom—= PN

w
1 1 1 1 1 )
-6 -4 -2 2 4 6

Figure 13.4: Pole-zero plots for the three transfer functions in example
13.12, and the three corresponding magnitude frequency responses.
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13.5 Theinversetransforms

There are two inverse transforms. The inverse Z transform recovers the discrete-time signal x from
its Z transform X. The inverse Laplace transform recovers the continuous-time signal x from its
Laplace transform X. We study the inverse Z transform in detail. The inverse Laplace transform is
amost identical. The general approach is to break down a complicated rational polynomial into a
sum of simple rational polynomials whose inverse transforms we recognize. We consider only the
case where X can be expressed as arational polynomial.

13.5.1 InverseZ transform

The procedure is to construct the partial fraction expansion of X, which breaksit down into asum
of simpler rational polynomials.

Example 13.13: Consider aZ transform given by

VzeRoQXx), X(z)= = 1)1(2_2) = Z__11+ zfz .

(13.6)

This sum is called the partial fraction expansion of X, and we will see below how to
find it systematically. We can write this as

VzeRoQXx), X(z)=X1(2)+X2(2),

where X;(z) = —1/(z— 1) and X(2) = 1/(z— 2) are the two terms.

To determine the inverse Z transforms of the two terms, we need to know their regions
of convergence. Recall from the linearity property that RoQ(x) includes the intersection
of the regions of convergence of the two terms,

RoQx) D RoCQx;) "RoCxy). (13.7)

Once we know these two regions of convergence, we can use table13.1 to obtain the
inverse Z transform of each term. By the linearity property the sum of these inversesis
the inverse Z transform of X.

X given by (13.6) has one pole at z= 1 and one pole at z= 2. From section12.2.3 we
know that RoQ(x) is bordered by these poles, so it has one of three forms:

1. RoQx) = {ze Complex |z| < 1},

2. RoC(x) = {z€ CompleX 1< |z] < 2}, or

3. RoCx) = {ze Complex |z > 2}.
Suppose we have case (1), which implies that x is anti-causal. From (13.7), the region
of convergence of the term —1/(z— 1) must be {z € Complex| |zl < 1}. The only

other possibility is {z € Complex| |z| > 1}, which would violate (13.7) unless the
intersection is empty (which would not be an interesting case). Thus, from tablel3.1,
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the inverse Z transform of the first term must be the anti-causal signal %(n) = u(—n),
for adl n € Integers

For the second term, 1/(z— 2), itsregion of convergence could be either {ze CompleX |z <
2} or {ze€ Complex| |z| > 2}. Again, the second possibility would violate (13.7), so

we must have the first possibility. This results in %(n) = —2"~tu(—n), from the last
entry in table 13.1. Hence, the inverse Z transform is

vnelntegers x(n) = u(—n)—2""tu(—n).

If RoQx) isgiven by case (2), we rewrite (13.6) dightly as

o z 1
X(2)=-z1"+ .
@ z z—1 z-2

Theinverse Z transform of the first term is obtained from table13.1, together with the
delay property in table13.2. The inverse Z transform of the second term is the same as
in case (1). We conclude that in case (2) the inverse Z transform is the two-sided signal

vn, x(n)=—u(n—1)—2"tu(—n).
In case (3), we write (13.6) as

A z z
X - _ -1 < e
(2) z Z_1+z T

and conclude that the inverse Z transform is the causal signal

vn, x(n)=—-u(n—1)+2"tu(n-1).

We can generalize this example. Consider any strictly proper rationa polynomial

)Z(z)—A(Z)— a4+ az+ag
" B(z) AN4by N itz

The numerator is of order M, the denominator is of order N. ‘Strictly proper’ means that M < N.
We can factor the denominator,

oo anZ + - +a1z+ag
X = oz pg

Thus X has k distinct poles at p, each with multiplicy m. Since the order of the denominator is N,
it must be true that

(13.8)

N = _;m . (13.9)

The partial fraction expansion of (13.8) is

o e[ Ra R2 | Rm
X(Z)_-Zl[(z—pi)Jr(z—pi)er +(z—pi)m . (13.10)
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A pole with multiplicity m contributes m termsto the partial fraction expansion, so the total number
of termsis N, the order of the denominator, from (13.9). The coefficients Rj are complex numbers
called the residues of the pole pg.

We assume that the poles py, - - -, py are indexed so that |p| < ---|pn|. The RoQx) must have one
of the following three forms:

1. RoC= {ze CompleX |Z| < |p1]|},

2. RoC= {ze Complex |pj-1| < |z < |pj|}, for j € {2,--- k}, or

3. RoC= {ze CompleX |z| > |p«|} -
Asin example 13.13, each term in the partial fraction expansion has two possible regions of conver-
gence, only one of which overlaps with RoQx). Thus, if we know RoQx), we can determine the

region of convergence of each term of the partial fraction expansion, and then use tablel3.1 to find
itsinverse.

The following example illustrates how to find the residues.

Example 13.14: We will find the inverse Z transform of

~ 2z+3 R]_ R2
X(2) = - .
@ =D+ " z=1 242

The residues Ry, R, can be found by matching coefficients on both sides. Rewrite the
right-hand side as
(R]_ + R2)2+ (ZR]_ — Rz)
(z—1)(z+2)
Matching the coefficients of the numerator polynomials on both sides we conclude that
R;+ R, =2 and 2R; — R, = 3. We can solve these simultaneous equations to determine
that Ry =5/3and R, = 1/3.

Alternatively, we can find residue R; by multiplying both sides by (z— 1) and evaluating

az=1 Thais,
R — 2z+3 5
YT z42),, 3
Similarly, we can find R, by we multiplying both sides by z+ 2 and evaluating at
z=—2,t0 get
22+ 3
71 -2 =Re,

s0 R, = 1/3. Thusthe partial fraction expansion is

X 53 1/3
R(z) = L2 | 2/°
@=77315

RoC(x) is either

1. {ze Complex |z < 1},
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2. {ze Complex 1< |z] < 2}, or
3. {ze Complex |z > 2}.

Knowing which case holds, we can find the inverse Z transform of each term from table
13.1. In thefirst case, x is the anti-causal signal

5 1

YA T (_o\n—-1
vn, x(n)= 3u( n) 3( 2)" u(—n).
In the second case it is the two-sided signal
vn, x(n)= gu(n— 1) — %(—2)”‘1u(—n).

In the third case it is the causal signal

vn, x(n) = gu(n -1+ %(—2)”’1u(n— 1).

If some pole of X has multiplicity greater than one, it is slightly more difficult to carry out the partial
fraction expansion. The following example illustrates the method.

Example 13.15: Consider the expansion

N 2z+3 Ry Ro1 Ro2
X(2) = _ .
@ =27 =1 252 Zr o

Again we can match coefficients and determine the residues. Alternatively, to obtain
R; we multiply both sides by (z— 1) and evaluate theresult at z= 1, to get R = 5/9.
To obtain Ry, we multiply both sides by (z+ 2)? and evaluate the result at z= —2, to
get Ry = 1/3

To obtain Ry; we multiply both sides by (z+ 2)?,
2z+3  (z4+2)°R

21 = -1 +R21(Z+2)+R22,
and then differentiate both sides with respect to z. We evaluate the result at z= —2, to
get
E 2z+3

=Ro1.
dz z—-1|,_ , 2

Hence Ry1 = —5/9. So the partial fraction expansion is

2243 59 5/9  1/3
Z—D(2+22 72-1 2+2  (z4272

Knowing the RoG we can now obtain the inverse Z transform of X. For instance, in the
case where RoC= {z € CompleX |z] > 2}, theinverse Z transform is the causal signal
5 5

vn, x(n) = gu(n—1)— §(—Z)r“lu(n —1)+ %(n —1)(—=2)"2u(n-2).
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In example 13.15, we used the next to the last entry in table 13.1 to find the inverse transform of
theterm (1/3)/(z+2)?. That entry in the table is based on a generalization of the geometric series
identity, given by (12.9). Thefirst generalization is

i(m 1)a" = ( iaﬂ)2 = (1_1a)2 . (13.11)

The series above converges for any complex number a with |a] < 1 (see exercise3 of chapter 12).
The broader generalization, for any integer k > 1, is

1 i(n+k)(n+k—l)---(n+l)a” = (1_72)“1 ;

(13.12)
ki 2

for any complex number a with |a < 1.

Consider then a Z transform X that has a pole at p of multiplicity mand no zeros. Since the pole p
cannot belong to RoC the RoCis either

{ze Complex |7 > |p|} or {ze CompleX |z| < |p|}.

In the first case we expand X in a series involving only thetermsz",n > 0,

X@) = (z_lp)m
= @zt
= Zﬁm(m— i nzo(m—&—n— 1)---(n+1)(pz )", using (13.12)
- = 11)| i (K=1)--- (k= m+ 1Pz K, defining k= n-+m,
) k=m

and the series converges for any z with |z > |p|. We can match the coefficients of the powers of z
in the Z transform definition,

X@= 3 xkz*,
k=—oco
from which we can recognize that
0, k<m
vk e Integers  x(k) = { (mi-l)!(k_1)...(k_m+1)pk—m’ k>m
= (m_l).(k—1)"'(k—m+1)p"*mu(k—m). (13.13)

In the second case, RoC= {z € Complex| |z < |p|}, we expand X in a series involving only the
termsz ",n <0,
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_ 1 1

 (=pm(1-pizgm

N ﬁ(mfll)l Zo(m+”_1)"'(n+ 1)(p *2)", using (13.12)

- (En_l)ln;l % (m—k—1)---(1—k) Pz definingk = —n,
“, 2

and the series converges for any z with |z < |p|. Again, we match powers of z in the Z transform
definition to get

(m—1)!

D" m_1—K)-- (L— k)™
vk e Integers  x(k) = { (M=1-k)---(1-kp“™ k<0

0, k>0
_ O (M—1—K)--- (1—k)p“™u(—k) (13.14)
= m_1) P ' '
Example 13.16: Suppose
5 1
X2 = =2
with RoC= {z € Complex| |z > 2}. Then, by (13.13), X is the Z transform of the
signal
0, k<2
vk € Integers  x(k) = { k—1)22 k>2
Suppose
- 1
Y@ =2
with RoC= {z € Complex| |z] < 2}. Then, by (13.14), Y is the Z transform of the
signal
_J (1-K2¢? k<0
vk € Integers  y(k) = { 0. K=0
Sincetheunit circle {z€ CompleX |zl = 1} € RoC the DTFT of y is defined and given
by
o 1
— W) _
Vwe Reals Y(w)=Y(e?) = @27

Now that we know how to inverse transform all the terms of the partia fraction expans on, we can
generalize the method used in example 13.15 to calculate the inverse Z transform of any X of the
form Y

N+by1 2N+ + b

Step 1 If M > N, divide through to obtain

A~

X(2) = em-nZ" Nt 4 o+ W(2),
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where\W is strictly proper.

Step 2 Carry out the partial fraction expansion of W and, knowing the RoG, obtain the inverse Z
transform w. Then from table 13.1,

vn, X(N) = Cmp1—NO(N+mM—+1—N)+---+cod(n) +w(n).

Example 13.17: Wefollow the procedure for

. Z4z+14+7t
0=

First, to get thisinto the proper form, as arational polynomial in z, notice that
X(2)=zW(2),

where
o DHZ47+1

Y@=
Since z 1 corresponds to a one-step delay,
x(n) =y(n—1),

so if we find the inverse Z transform of Y, then we have found the inverse Z trasform
of X.

Working now withY, step 1 yields

A 9z+13
Y(Z) =7Z— 3+ m
Step 2 gives
W(z) _ 9z+13 _ -5 9

z+22 (2422 7242
Suppose RoC= {z < Complex |z| > 2}. Then from table 13.1,

vn, wn) = —5n—1)(-2)"2u(n—2)+9(-2)"tu(n—1),
vn, y(n) = d&(n+1)—3d(n)+w(n),
vn, x(n) = y(n-1).

Hence, for dl n € Integers

x(n) =8(n) —33(n—1) —5(n—2)(—2)"3u(n— 3) +9(—2)"2u(n—2).
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13.5.2 InverseLaplacetransform

The procedure to calculate the inverse Laplace transform is virtually identical. Suppose the Laplace
transform X isarational polynomial

SN+by N1+ +by
We follow Steps 1 and 2 above. We divide through in case M > N to obtain
X(s) =em NS N4 oo +W(s),
where W is strictly proper. We carry out the partial fraction expansion of W. Knowing RoQx),
we can again infer the region of convergence of each term. We then obtain the inverse Laplace
transform term by term using table 13.3,
vt Reals X(t) = Cn-nd™ (1) + -+ cod(t) +W(t).

Here w is the inverse Laplace transform of W, & is the Dirac delta function, and &' is the ith
derivative of the Dirac delta function!

Example 13.18: We follow the procedure and obtain the partial fraction expansion of

. $4+L+s+1

X(s) = s(s+2)?
—3%—3s+1
s(s+2)?

1/4 -13/4  5/2

= 1+ .
et s+2  (s+2)?

X hasone poleat s= 0 and apole at s= —2 of multiplicity two. So its RoChas one of
three forms:

1. RoC= {se Complex| Re{s} < —2},
2. RoC= {se Complex —2 < Re{s} <0}, or
3. RoC= {se Complex Re{s} > 0}.

We now use table 13.3 to obtain the inverse Laplace transform of each term. In case
(2), the continuous-time signal is the anti-causal signal

_ o) — Tu—ty+ B a2yt = 2 te 2y
Vt, x(t)=09(t) 4u( t)+4e u(—t) 2te u(—t).
In case (2), it isthe two-sided signal,
B 1 13 5,
vit, x(t)_6(t)—zru(—t)—ze u(t)+§te u(t).
In case (3), it isthe causal signal,
_ L Be2yn) £ 2te2
vt,  X(t) =d(t) 4u(t) 7 u(t)+2te u(t)

1The derivative of disafunction only in aformal sense, and we obtain its Laplace transform using the differentiation
property in table 13.4.
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Probing further: Inversetransform asan integral

Even if the Z transform is not a rational polynomial, we can recover the signa
x from its Z transform, X : RoQx) — Complex using the DTFT. A non-empty
RoC(x) contains the circle of radiusr for somer > 0. So the series in the equation

(o) (o)

X(re®) =5 x(m)(re?) M= § (x(mr e

m=—oc0 m=—o0

is absolutely summable. Hence the signal %: Vn,x(n) = x(n)r=", has DTFT X
Voo, X (w) = X(re'?). We can, therefore, obtain x as the inverse DTFF of X

2m . .
vn, X (n)=r""x(n)= i/ X (re'®)edw.
21.Jo
Multiplying both sides by r", we can recover x as
Vn € Integers  x(n) = / X (re'®) (re'®)"dc. (13.15)

This formula defines the inverse Z transform as an integral of the real variable w. It
is conventional to write the inverse Z transform differently. Express z as z = re®.
Then as w varies from 0 to 2, z varies as

dz=re'®idw = zidw, or dw= (Ij—zz

Substituting thisin (13.15) gives,

1
vn, x(n)= ETY{ |z 5 j{X 2 tdz

Here the ‘circle’ in the integral sign, §, means that the integral in the complex z-
planeisalong any closed counterclockwise circle contained in RoQx). (Anintegral
along aclosed contour is called a contour integral.) In summary,

vne Integers  x(n) = 5k § X(2)2" 1dz (13.16)

where the integral is along any closed counterclockwise circle inside RoQ(x).

We can similarly use the CTFT to recover any continuous-time signal x from its
Laplace transform by

O+ico
VteReals X(t) =5k [ X(s)elds
O—ico

where the integral isalong any vertical line (0 —ic, 0+ ie0) contained in RoQx).
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Probing further: Differentiation property of the Laplace transform

We can usethe inverse Laplace transform as given in the box on page451 to demon-
strate the differentiation property in table13.4. Let y be defined by

VteReals y(t)= %x(t).

We can write x in terms of its Laplace transform as
1 O+ico
vt € Reals x(t) = =— X(s)eds
211 O—ic
Differentiating this with respect tot is easy,

1 O-+ico

Vt € Reals %x(t) sX(s)e’ds

- ﬁ O—joo
Consequently, y(t) = dx(t) /dt isthe inverse transform of X(s), so
vseRoQy), Y(s)=sX(s),

where RoCly) D RoQx).

13.6 Steady stateresponse

Although it has been a fair amount of work, being able to compute an inverse transform for an
arbitrary rational polynomial proves useful. Our first use will be to study the stead-state response
of acausal and stable LTI system that has a sinusoidal input that starts at time zero.

If the input to an LTI system isacomplex exponential,
vt € Reals x(t) =é€%,

then the output y is an exponentia of the same frequency but with amplitude and phase given by
H(w),
vt € Reals y(t) = H(w)e*,

where H is the frequency response. However, this result requires the exponential input to start at
t = —oo. In practice, of course, an input may start at some finite time, say at t = 0, but this result
does not describe the output if the input is

vt € Reals x(t) = &“u(t). (13.17)

We will see that if the system is stable and causal ? then the output y decomposes into two parts, a

2This result can be generalized to non-causal systems, but causal systems will be sufficient for our purposes.
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transient output and a steady state output,

Y=Y +Yss,
where the transient becomes vanishingly small for larget. That is,
limyee (t) = 0.
Moreover, the steady state signal is the exponential,
Yt yss(t) = H(w)e%u(t). (13.18)
Thus for stable systems, we can use the frequency response to describe the eventual output to sinu-
soidal signals that start at some finite time.

For the special case w = 0, the input (13.17) is the unit step, X = u, and yss = H(0)u. So for stable
systems, the steady state response to a unit step input is a step of size H(0). (H(0) is called the dc
gain.) This case isimportant in the design of feedback control, considered in the next chapter.

Let h be the impulse response and H be the Laplace transform of a stable and causal LTI system.
We assume for simplicity that H is a strictly proper rational polynomial all of whose poles have
multiplicity one,

A A(s)

H(s) = .
N Y P G
Because the system is causal, RoQ h) has the form
RoQh) = {s| Re{s} > qj,

where q isthe largest real part of any pole. Since the system is stable, q < 0, so that the region of
convergence includes the imaginary axis.

From table 13.3 the Laplace transform X of the signal (13.17) is

X(s) = s—liw’
with RoQx) = {s € Complex| Re{s} > 0}.
The Laplace transform of the output y = hx X is
Y = HX,

with
RoCly) D RoCh)NRoQx) = {s€ Complex Re{s} > 0}.

The partial fraction expansion of Y is

S B A(s) 1
Y(s) =H(s)X(s) = 5P (—py) -iw (13.19)
R R R (13.20)

S—p1 S—pn S—iw’
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Because everything is causal, each term must be causal, so from table13.3 we obtain

N

W, y(t) = Y ReePu(t) +Rodu(t).
K=1
We decompose y = yir + Yss With
N
\V/t, Ytr (t) = Z Rkepktu(t))
K=1

"t Ysst) = Re€u(t).
SinceRe{pc} <Ofork=1,---,N,
Thus, the steady-state response yssis eventually all that isleft.
Finally, the residue Ro is obtained by multiplying both sides of (13.19) by s—iw and evaluating at
s=iwtoget R, = H(iw) = H(w), so that

Yt yes(t) = H(w)e%u(t).

This analysis reveals several interesting features of the total response y. First, from (3.20) we see
the poles py,-- -, pn Of the transfer function contribute to the transient response y;, and the pole of

theinput X at i contributes to the steady state response. Second we can determine how quickly the
transient response dies down. The transient response is

Vt, Ytr(t) = RlepltU(t)+"'+RNepNtU(t).
The magnitude of the termsis

IRy eREP .. Ry|eREPuH,

Each term decreases exponentially with t, since the real parts of the poles are negative. The slowest
decrease is due to the pole with the least negative part. Thus the pole of the stable, causal transfer
function with the least negative part determines how fast the transient response goes to zero. Indeed
for large t, we can approximate the response y as

y(t) ~ ReP! + H(w)e™,
where p; isthe pole with the largest (least negative) real part.

Thereisasimilar result for discrete-time systems, and it is obtained in the same way. Suppose an
exponential input _
vn € Integers  x(n) = €“"u(n),

is applied to a stable and causal system with impulse response h, transfer functionH, and frequency
response H. Then the output y = hx x can again be decomposed as

vn, y(n) = yir (N) +Yss(N),
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where the transient y, (n) — 0 asn — oo, and the steady state response is
vn, yss(n) = H(€®)eu(n) = H(w)e“"u(n).
For large n, the transient response decays exponentialy as (', i.e.

y(n) ~ Rip' +yss(n),

where p; is the pole with the largest magnitude (which must be less than one, since the system is
stable).

13.7 Linear difference and differential equations

Many natural and man-made systems can be modeled as linear differential equations or difference
equations. We have seen that when such systems are initialy at rest, they are LTI systems. Hence,
we can use their transfer functions (which are Z transforms or Laplace transforms) to analyze the
response of these systems to external inputs.

However, physical systems are often not initially at rest. Dealing with non-zero initial conditions
introduces some complexity in the analysis. Mathematicians call such systems with non-zero initial
conditions initial value problems. We can adapt our methods to deal with initial conditions. The
rest of this chapter is devoted to these methods.

Example 13.19: In example 13.8 we considered the LTI system described by the
difference equation

y(n) —0.9y(n— 1) = x(n).
The transfer function of this system isH (z) = z/(z— 0.9). If the
rest, we can calculate its response y from its Z transformY = HX
input is the unit step, X(2) = z/(z— 1),

() = z -9z N 10z
~ (z-09)(z—-1) z-09 z-1
and so y(n) = —9(0.9)"+10,n > 0.

We cannot use the transfer function, however, to determine the response if the initial
conditionattimen=0isy(—1) =y(—1), and theinput isx(n) = 0,n > 0. Theresponse
to thisinitial condition is

system isinitialy at
. For instance, if the

y(n) =y(—-1)(0.9™ n> —1.
We can check that this expression is correct by verifying that it satisfies both the initial
condition and the difference equation.

If theinitial condition isy(—1) = y(—1) and the input is a unit step, the response turns
out to be the sum of the response due to the input (with zero initial condition) and the
response due to the initial condition (with zero input),

y(n) = [~9(0.9)" +10] + [y(—1)(0.9)™"%], n> 0.
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For small values of n the response depends heavily on the initial condition, especially
if y(0) islarge. Because this system is stable, the effect of theinitial condition becomes
vanishingly small for large n.

An LTI difference equation has the form
y(n) +ay(n—1)+---+amy(n—m) = box(n) + - - - + bex(n— k), n> 0. (13.21)

We interpret this equation as describing acausal discrete-time LTI system in which x(n) isthe input
and y(n) isthe output at timen. The & and b; are constant coefficients that specify the system.

We have used difference equations before. In section 8.2.1 we used this form and the discrete time
Fourier transform to find the frequency response of this system. In section 9.5 we showed how
to realize such systems as IR filters. In example 13.19 we used the transfer function to find the
response. But in all these cases, we had to assume that the system was initially at rest. We now
develop amethod to find the response for arbitrary inital conditions.

We assume theinput signal x starts at some finite time, which we take to be zero, x(n) = 0,n < 0. We
wish to calculate y(n),n > 0. From (13.21) we can see that we need to be given minitial conditions,

y(=1) =y(=1),---,y(=m) = y(—m).

Given the input signal and these initial conditions, there is a straightforward procedure to calculate
the output response y(n),n > 0: Rewrite (13.21) as

y(n) = —agy(n—1) —--- —amy(n—m) +box(n) +--- +-bx(n—k), (1322)
and recursively use (13.22) to obtain y(0),y(1),y(2),---. For n=0, (13.22) yields
y(0) = —awy(—1)—---—amy(—m) +box(0) +--- + bx(—K)
= —agy(—1) —--- —amy(—m) + bpx(0).
All the terms on the right are known from the initial conditions and the input x(0), so we can
calculate y(0). Next, taking n = 1in (13.22),
y(1) = —ayy(0) + - - - + amy(1—m) + box(1) + - - - + bex(1 — k).

All the terms on the right are known either from the given data or from precal culated values—y(0)
in this case. Proceeding in this way we can calculate the remaining values of the output sequence
y(2),y(3),---, one at atime.

We now use the Z transform to calculate the entire output sequence. Multiplying both sides of
(13.21) by u(n), the unit step, gives us arelation that holds among signals whose domain is Integers
y(n)u(n)+ay(n—21)u(n)+-- - +amy(n—mju(n) = bpx(n)u(n) +- - - + bkx(n—k)u(n), n € Integers

We can now take the Z transforms of both sides. We multiply both sides by z" and sum,

iy(n)z”Jral iy(n—l)z”+---+am 0iy(n—m)z” =bp ix(n)z”+---+bk ix(n—k)z”.
. . . . T (1323)
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Define

0

X(2) = ;x(n)z‘”, Y(2) = iy(n)z‘”.

Each sumin (13.23) can be expressed interms of Y or X. In evaluting the Z transforms of the signal's
y(n—1)u(n),y(n—2)u(n),--- we need to include the initial conditions:

~

iy(n— Dz" = -l +z? % yin—1)z "V =y—1)2L+z7¥(2),
n— n=1

> y(n-2z"

V(-2 +y(-1)z 1+ 722 oiy(n_z)z—(n—Z)
= Y(-22+¥(-)zt+Z2 (2,
iy(n—m)z” = YmZ 4 Y-z MYz i y(n—m)z (-m

= V-mP+- +y(—1)z ™D L 7™ (2).

Because x(n) = 0,n < 0, by assumption, the sums on theright in (13.23) are smpler:

00

Zox(n—l)z‘” = x(-1)2+z2 X2 =z2X(2

i X(N-=2)z" = x(-22+x(-1)z1+z2*X(2) =z *X(2)
n=0

00

Zox(n— Kz" = x(—K2+--+x(-1)z &V 77K (2) = 27 *X(2).
n=

(If there were non-zero initial conditions for x(—1),---,x(—k), we could include them in the Z
transforms of x(n— 1)u(n),---,x(n—k)u(n).) Substituting these relations in (13.23) yields

Y2 + alzW@+y(-1)2)+- +anz ™ @) +y(—mP+---y(—1)z ™)
= boX(2) + b1z X(2) +-- -k XZ K, (13.24)

from which, by rearranging terms, we obtain
[1+az 4 +anz "VY(2) = [bo+biz 1+ + bz ¥X(2) +C(2),
where C(z) is an expression involving only theinitial conditionsy(—1),---,y(—m). Therefore,

it
1+az 4 +anz ™’

Sron bo+ bzt 4 bz K

Y2 = 1+awz i+ +apz ™ X2+

We rewrite this relation as

C(2)

Y(2) = H(2)X .
@ @ (Z)+1+a1rl+---+amrm

(13.25)
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where

I —1, ... —k
H(2) = Pt tother (13.26)

Observe that if the initial conditions are all zero,C(z) = 0, and we only have the first term on the
right in (13.25); and if the input is zero—i.e., x(n) = O for all n, then X(z) = 0, and we only have
the second term.

By definition, Y(2) isthe Z transform of the causal signal y(n)u(n),n € Integers SoitsRoC= {z ¢
Complex| |zl > |p|} in which pisthe pole of the right side of (13.25) with the largest magnitude.
Theinverse Z transform of Y can be expressed as

vn=0, y(n) =yzs(n)+Yzi(n), (13.27)

where y,¢(n), the inverse Z transform of HX, is the zero-state response, and y;i(n), the inverse Z
transform of C(2)/[1+ a1z '+ --- + anz ™, isthe zero-input response. The zero-state response,
also called the forced response, is the output when al initial conditions are zero. The zero-input
response, also called the natural response, is the output when the input is zero.

Thus the (total) response is the sum of the zero-state and zero-input response. We first encountered
this property of linearity in chapter 5.

By definition, the transfer function isthe Z transform of the zero-state impulse response. Taking
C=0and X = 1in (13.25) shows that the transfer function isH(z). From (13.26) we see that H
can be written down by inspection of the difference equation (13.21). If the system is stable—all
poles of H are inside the unit circle—the frequency response is

b+ bieT @ 4 bye ke
1t e 94 fape Mo’

Vo, H(w)=H(E®)
We saw thisrelation in (8.21).
Example 13.20: Consider the difference equation

5 1
y(n) = 2y(n— 1)+ £y(n—2) = x(n), n>0.
Taking Z transforms as in (13.24) yields
5 14 1 - _ B N
Y(2) -5z 1Y(Z)+W—l)]+5[z N2 +¥(-2)+y(~1)z ] = X(2).
Therefore
. 1 . SY(—1) + y(—2) + Iy(—1)z !
Y2) = —————X(2+2% 6 6
1-2z1+1z2
2 4 +[%37(—l)+%)7(—2)]22+%)7(—1)z
232+ 2—37+1%

9

from which we can obtain Y for a specified X and initial conditions y{—1),y(—2). The
transfer function is
vd 7

- 1 1
2-2z+% (z—3)(z-3)

H(2) =

9
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which haspolesat z=1/3 and z= 1/2 (and two zeros at z= 0). The system is stable.
The zero-state impulse response h is the inverse Z transform of H(z), which we obtain
using partial fraction expansion,

so that
1\" 1\"
Vn e Integers h(n) =-2 <§> u(n)+3 (§> u(n).
We can recognize that the impul se response consists of two terms, each contributed by
one pole of the transfer function.

Suppose the initial conditions arey(—1) = 1,y(—2) = 1 and theinput X is the unit step,
S0 X(z) =z/(z— 1). Then the zero-input response, yi, has Z transform

?zi(z) =

)nu(n).

NI

vn,  y.;i(n)=-3 (%) i u(n) +4 (

The zero-state response, Y,s, has Z transform

Y.(2) = H(@X(2) =

vn, y.en) = (§> ’ u(n)—3 (§> ) u(n) 4 3u(n).
The (total) response
vne Integers  y(n) = yzs(n) +y(n) = 3u(n) + [~2(1/3)" + (1/2)"u(n),
can also be expressed as the sum of the steady-state and the transient response with
Yss(N) = 3u(n) and y(n) = —2(1/3)"u(n) + (1/2)"u(n). Note that the decomposition

of the response into the sum of the zero-state and zero-input responses is different from
its decomposition into the steady-state and transient responses.
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13.7.1 LTI differential equations

The analogous development for continuous time concerns systems described by aLTI differential
equation of theform
m-1 k
O )+ a1 Gy 1)+ 31 (1) 4 Boy(t) = X (1) by 1)+ boxi). 20
(13.28)
We interpret this equation as describing a causal continuous-time LTI system in which x(t) is the
input and y(t) is the output at timet. The constant coefficients g and b; specify the system.

In section 8.2.1 we used this form to find the frequency response. In example 13.11, we used the
Laplace transform to find the transfer function of atuning force. But in both cases, we assumed that
the system was initialy at rest. We now develop a method to find the response to arbitrary initial
conditions. We begin with a simple circuit example.

Example 13.21: A series connection of a resistor R, a capacitor C, and a voltage
source X, is described by the differential equation

dy 1

(1) + 22y = x(),
inwhichy isthe voltage across the capacitor. The differential equation isobtained from
Kirchhoff’s voltage law. The transfer function of this system isH(s) = 1/(s+ 1/RC).
So if the system is initially at rest, we can calculate the response y from its Laplace
transform Y = HX. For instance, if the input isaunit step, X(s) = 1/s,

- 1 —RC RC

Y= GriRos sriRC T s

therefore, y(t) = —RCe'/RC4+ RC, t > 0.
We cannot use this transfer function, however, to determine the response if the initial
capacitor voltage isy(0) = y(0) and x(t) = 0,t > 0. Theresponse in this caseis

y(t) =y(0)e V/RC t > 0.
We can check that expression is correct by verifying that it satisfies the given initial
condition and the differential equation.

If the initial condition is y(0) = y(0) and the input is a unit step, the response turns
out to be the sum of the response due to the input (with zero initial condition) and the
response due to theinitial condition (with zero input),

y(t) = [-RCe R+ R + [y{0)e V/RY, t > 0.

For the general case (13.28) we assume that the input X starts at some finite time which we take to
be zero, so x(t) = 0,t < 0. Wewish to calculate y(t),t > 0. From the theory of differential equations
we know that we need to be given minitial conditions,

m-1
y(0) =70, 2(0) =7 0), -, S 10) =7 2 0),
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in order to calculate y(t),t > 0.

Because timeis continuous, there is no recursive procedure for calculating the output from the given
data as we did in (13.22). Instead we calculate the output signal using the Laplace transform. We
define the Laplace transforms of the signals y(t)u(t),y (t)u(t), - -, y™ (t)u(t), x(t)u(t):

Y(s) = / y(t)u(t)e Stdt = /y e Stdt

o) (g — _ St 1
vis) — /_my (t)u(t)_/o yi (e Stdt,i = 1,-- -, m
X(s) — 1 x(tu(t)e Stdt = /O x(t)e Stdt.

_dit

Here we use the notation y (t) = &I

transforms.

S3y(t),t > 0. We now derive the relations between these Laplace
The derivative yU) (t) = (t) and y are related by

ybu(t +/ y D (t)u(t)dt = FO)u( +/ y D (t)u(t)dr, t € Reals
Using integration by parts,
A © t
Y(s) = / y(t) Stdt—/ y(0 Stdt+/ </ y(l)(r)dr> e Sldt
_ l_ d st Std
= M ——/y Te” !to+/y t
1. _
SV (9 +510)).

Therefore,

Y@ (s) = s¥(s) — y{0). (13.29)

Repeating this procedure, we get the Laplace transforms of the higher-order derivatives,

O = (-5 (0
= (9 gﬂo y<1
YM(s) = W() $™1Y(0) - ™A (0) - - — Y™ ()

On the other hand, because X (t) = dt, ( ) for dl t € Reals using the differentiation property in
table 13.4, we obtain
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By substituting from the relations just derived, we obtain the Laplace transforms of all the termsin
(13.28),

[S™(s) — S™Y(0) — - — Y™ H(0)] +am-1[sS™ Y (5) — S AY(0) — - — Y™ %(0)]
-4 ay[sY(s) — Y(0)] + apY (S) = bkSX(S) + - - - + by SX(S) + bpX (S). (13.30)

Rearranging terms yields
[S"+am-1S™ 4 b aus+ag]Y () = [k + - + bis+ b X (8) + C(9),
inwhich C is an expression involving only theintial conditions y(0),---,y™ % (0). Therefore,

o o b4 b 1S - bys+ by 2 C(s)

Y(s) = S) + , 13.31
(s) Mt am 1S+ as+ag (s) S+ am 1§14 as+ag ( )
which we aso write as
o e E(s)
Y(s) =H(s)X(s) + , 13.32
(9 =RAEOXO+ Gra i asta (13.32)
inwhich
A(s) = 2 rthisth (13.33)

If theinitial conditions are all zero,é(s) =0, and we only have the first term on theright in (13.32);
if theinput iszero—i.e., x(t) = Ofor al t, thenX(s) = 0, and we only get the second termin (13.32).

By definition, Y (s) is the Laplace transform of the causal signal y(t)u(t),t € Reals So its RoC=
{s € Complex| Re{s} > Re{p}}, where pisapole of the right side of (13.32) with the largest real
part.

Taking the inverse Laplace transform of Y, we can decompose the output signal y as

vt Y(t) = Yas(t) + Yai(t),

where y,s, the inverse Laplace transform of HX, is the zero-state or forced response and y;i, the
inverse Laplace transform of C(s) /[S"+ - - - + &g, isthe zero-input or natural response. The (total)
response is the sum of the zero-state and zero-input response, which is agenera property of linear
systems.

By definition, the transfer function is the Laplace transform of the zero-state impulse response.
Taking C=0andX=1 (the Laplace transform of the unit impulse) in (13.32) shows that the
transfer function isH (s) which, as we see from (13.33), can be written down by inspection of the
differential equation (13.28). If the system is stable—all poles of H(s) have real parts strictly less
than zero—the frequency response is

Vo, H(e) = A(iey) = 2+ biiw by
’ N ()M tajiwtag

We saw thisrelation in (??).
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Example 13.22: Wefind the response y(t),t > 0, for the differential equation
d?y _dy dx
ae 3t dt’
when theinput isaunit step x(t) = u(t) and theinitial conditions arey(0) = 1,y (0) =
2. Taking Laplace transforms of both sides asin (13.30),

(Y (s) — sy(0) — ¥V (0)] + 3[sV (s) — Y(0)] + 2Y (S) = 3X(S) + sX(S).

+2y =3X(t) +

Therefore, :
oo S+3 o - (0)+¥Y(0)+3y(0
Y(s) = SZ+3S+2X(S)—|— £+35+2
Substituting X(s) = 1/s, y(0) = 1,yt!) = 2, yields
?(S) _ s+3 s+5

s(sz+3s+2)+sz+3s+2

_ [%_ 2 1/2]+[ 4 3
S s+1 s+2 's+1 s+2

Taking inverse Laplace transforms gives

Ve, Y(t) - yzs(t)+YZi(t)
= [gu(t) —2etu(t) + %e’zu(t)] + [4e7tu(t) — 3e 2u(t)]

-

_ gu(t) f et - ge‘z]u(t)
= VYss(t) +Wr(1).

As in the case of difference equations, the decomposition of the response into zero-
state and zero-input responses is different from the decomposition into transient and
steady-state responses. (Indeed, the steady-state response does not exist if the system
is unstable, whereas the former decomposition always exists.)

13.8 State-space models

This section is mathematically more advanced in that it uses the operation of matrix inverse.

In section 5.3 we introduced single-input, single-output (SISO) multidimensional state-space mod-
els of discrete-time and continuous-time LTI systems. For LTI systems, state-space models provide
an alternative description to difference or differential equation representations. The advantage of
state-space models is that by using matrix notation we have a very compact representation of the
response, independent of the order of the system. We develop a method that combines this matrix
notation with transform techniques to calculate the response.

The discrete-time SISO state-space model is
vYn>0, s(n+1) = Asn)+bxn), (13.34)
y(n) = c's(n)+dx(n), (13.35)
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inwhich s(n) € Reald' isthe state, x(n) € Realsis the input, and y(n) € Realsis the output at time
n. Inthis [A/b,c,d] representation, Aisan N x N (square) matrix, b,c are N-dimensional column
vectors, and d is a scalar. If the initial state is s(0), and the input sequence is x(0),x(1),---, by
recursively using (13.34) and (13.35) we obtain the state and output responses.

s(n) = A”s(0)+n§A”‘1‘mbx(m), (13.36)
m=0
y(n) = CTA”s(O)+{n§cTA”’1’mbx(m)+dx(n)}, (13.37)
m=0

for al n > 0. Notice that these “ closed-form” formulas for the response are independent of the order
N. Difference equation representations do not have such a closed-form formula

Example 13.23: Consider the system described by the difference equation
y(n) —2y(n—1) —3y(n—2) = x(n).

Asin section 5.3, we can construct a state-space model for this system by noting that
the state at time n should remember the previous two inputs y(n— 1),y(n— 2). Define
the two-dimensional state vector s(n) = [g(n) s(n)]" by si(n) = y(n—1),5(n) =

ay(n—2), inwhich a+# 0 isaconstant. Problem 23 at the end of this chapter asks you
to show that the [A, b, c, d] representation for this choice of state is given by

A:[z 3(/)""}, b:[é], T —[2 3/a, andd=1

Different choices of a give a different state-space model. However, they al have the
same input-output relation because they al have the same transfer function.

We will obtain the Z transforms of the response sequences (13.36), (13.37). The key isto compute
the Z transform of the entire N x N matrix sequence A'u(n),n € Integers This Z transform is

SR oZ A =[I -z At =27z - AL (13.38)

Here zis a complex number and | isthe N x N identity matrix. The series on the left is an infinite
sum of N x N matrices which converges to the N x N matrix on the right, for z€ RoC RoCis
determined later.

Assuming the series converges, it is easy to check the equality (1L3.38): Just multiply both sides by
[I —z 1A] and verify that

(o) [ee] [ee]

1—zA Zoz‘”A” = Zoz‘”A‘” - Zoz—<r‘+1>A”+l =PA0=1.
n= n= n=
Next, denote by F the matrix inverse,

Fo=[-z'A"t=27z21-A1 (13.39)
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and the coefficients of A" and F (z) by
A'=laj(n) [1<i,j<N], F(@=[fj(2|1<i,j<N]

Then fi;(z2) = Sh-oZ "aj(n) isthe Z transform of the sequence a;(n),n >0, 1<i,j <N. Sowe
can obtain A",n > 0, by taking the inverse Z transform of each of the N? coefficients of F(2).

Example 13.24: Let

then

4 [z-2 -1 ] 1 z-4 1
[Z'_A]l_[ -3 z—4} _det[zI—A][ 3 z—Z}’
in which det[zl — A] denotes the determinant of [zl — A],
det[zl - Al = (z—2)(z—4) —3=72—-62+5=(z—1)(z—5).

Hence,

2(z—4) z
- z z—4 1 — = —L
Fo)=Zzl-A 1= ———— [ ] _ [ z-1)(z-5) (zz(12>_<z2)5> ] '

(z-D(@E=-9[ 3 2z=2 TS ZOeD

The partia fraction expansion of the coefficients of F is

F@=| &b, Bz daz, @a
C3/he | (34 (fde , (/42

z—1

[ (/42 | (/47 (Y42 | (142 ]
z-5

Using table 13.1 we find the inverse Z transform of every coefficient of F(z): for al
n € Integers

n _ Ju(n)+35"u(n)  —Zu(n)+ 35"(n)
Alu(n) = [—ngu(n)+4§5”u(n) %(n)+§£’> u(n) }

Thisis more revealingly expressed as

3/4 -1/4 1/4 1/4

n__ N

A_[—3/4 1/4 }+5 [3/4 34| "=0

because it shows that the variation in n of A" is determined by the two poles, at z=1

and z= 5, in the coefficients of F(z). Moreover, these two poles are the zeros of
det[zl - A]=(z—1)(z—5).

This determinant is called the character stic polynomial of the matrix A and its zeros
are called theeigenvalues of A. The domain of convergenceisRoC= {ze CompleX |z| >

5},
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We return to the general casein (13.39). Denote the matrix inverse of [zl — A] as

1

[z -A = mG(Z)a

in which G(z) isthe N x N matrix of co-factors of [zI — A]. It follows that each coefficient fj(z) of

F(z) = ZzI - A] ! isarationa polynomial whose denominator is the characteristic polynomial of
A, det[zl — A]. Therefore, if there are no pole-zero cancellations, al coefficients of F(z) have the
same poles, which are the zeros of det|zl — A]. These zeros are called the eigenvalues of A. The
polynomial det[zl — A] isof order N, and so A has N eigenvalues.

Because Au(n),n € Integers is a causa sequence, the region of convergence is RoC= {z ¢
Complex| |z| > |p|}, in which p isthe pole of F (or eigenvalue of A) with the largest magnitude.
For the system (13.34), (13.35) to be stable, the poles of F must have magnitudes strictly smaller
than 1.

Suppose A has N distinct eigenvalues pr, - -, PN,
det[zl — Al = (z—p1) -~ (z— pn)-
Then the partial fraction expansion of F(z) has the form

F(z) = Z_Zle1+.~+ =y

Rw,

in which R, is the matrix of residues of the coefficients of F at the pole p. R; is a constant matrix,
possibly with complex coefficients if p iscomplex. Recalling that rzﬂ isthe inverse Z transform
of pl'u(n), we can take the inverse Z transform of F(2) to conclude that

[A"=plRi+---pRRv, Nn>0] (13.40)

Thus A" isalinear combination of p},---, py-

We can decompose the response (13.37) into the zero-input and zero-state responses, expressing the
|atter as a convolution sum,

y(n) = cTA"s(0) + i h(n—m)x(m), n> 0,

m=0

where the (zero-state) impulse response is



13.8. STATE-SPACEMODELS 467

Then

Y = HX + Y.

Because S oz "A" = z[zI — A1, we obtain

~

H(z) =c"[zl - A 'b+d,

and

Y1i(2) = zc [z1 — A~ 15(0).

Example 13.25: Suppose Aisasin example13.24, b" = [1 1],c" =[2 0],d = 3, and
(s(0))T = [0 4]. Then the transfer function is

(z-4) 1
H(z) =2 0][ E0Es =FDES) ] [ 1 ] L3 2= F2 g

—2
(z-1)(z-5) (z—(i)(z)—S) 1 (Z_ 1) (Z_ 5)

and the Z transform of the zero-input response is

‘ ey w1 | [0 8z
ool A5 12wt
(2—1:)3’(22—5) (zf(lz)(ZES) 4 (Z_ 1)(2_ 5)

The transfer function

Al — 2(z—4)+2 _ 372-16z4+9 3-16z1+9z72
~ (z—1)(z-5 =~ 2-6z+5 1-6z145z2°

From (13.26) we recognize that H isalso the transfer function of the difference equation
y(n) —6y(n— 1) +5y(n—2) = 3x(n) — 16x(n— 1) + 9x(n— 2).

This difference equation describes the same input-output relation as the state-space
model of this example.

13.8.1 Continuous-time state-space models

The continuous-time SISO state-space model introduced in section 5.4 has the [A, b, c,d] represen-
tation

V(t) = AV(t)+bx(t), (13.41)
y(t) = clv(t)+dxt), (13.42)
inwhich v(t) € Real§' isthe state, x(t) € Realsis the input, and y(t) € Realsis the output at time

t € Reals Aisan N x N matrix, and b, ¢c are N-dimensional column vectors, and d is a scalar. (We
use Vv instead of sto denote the state, because sis reserved for the Laplace transform variable.)
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Given theinitia state v(0) and the input signal x(t),t > O, we will show that the state response and
the output response obey the formulas

vit) = Av(0)+ /o te(t*T)Abx(T)dL (13.43)

y(t) = c'éAv(0)+] /o tcTe(t*T)Abx(r)dT}erx(t). (13.44)

In these formulas, € or exp(tA) isthe name of the N x N matrix

- i(tkil)k—'HAerJr(tA)ng...
P

o 3 , (13.45)

where (tA)X is the matrix tA multiplied by itself k times, and (tAP° =1, the N x N identity matrix.
Definition (13.45) of the matrix exponential is the natural generalization of the exponential of a
real or complex number. (The seriesin (13.45) is absolutely summable because of the factor k! in
the denominator.)

Unlike in the discrete-time case, there is no recursive procedure to compute the responses (13.43),
(13.44). Thisis because time is continuous, and the difficulty has to do with the integrals in these
formulas. For numerical calculation, one resorts to afinite sum approximation of the integrals, as
weindicated in section 5.4. The Laplace transform provides an alternative approach that is exact.

The key to showing (13.43) isthe fact that éA,t > 0, isthe solution to the differential equation
%etA =Ae”A t>0, (13.46)

with initial condition € = |. Note that (13.44) follows immediately from (13.43) and (13.42).

To verify (13.46) we substitute for € from (13.45) and differentiate the sum term by term,
(tAk 2 KA 2 (tA)kT
k

da_ o d o M k-1 _ AdA
&et _k;a ! _k21k!(tA) _AkZﬂk—l)!_Aé'

We can now check that (13.43) is indeed the solution of (13.41) by taking derivatives of both sides
and using (13.46):

v(t) = AAV(0)+ e bx(t) + /O t AdVAbx(T)dt
= Aldv(0) + /o t AV Ax(1)dT] + bx(t)
= AV(t) +bx(t).

We turn to the main difficulty in calculating the terms on the right in the responses (3.43), (13.44),
namely the calculation of the N x N matrix €2t > 0. We determine the Laplace transform of
ghu(t),t € Reals denoting it by

G(s) = /O " dhesiqt,
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This means that g;j (s) is the Laplace transform of a;(t),t > 0, denoting by & (t) and g;j(s) the
coefficients of the N x N matrices €/ and G(s), respectively. The region of convergence of G, RoG,
is determined later.

Using the derivative formula (13.29) in (13.46) we see that

sG(s) — | = AG(s),

which gives G(s) = [sl — A] %, so that the Laplace transform of dAu(t) is

G(s) = [y ¢heStdt = [sI — A] L. (13.47)
Example 13.26: Let
1 2
A= 2 1}’
then .
1 21 1 s—1 2
I-A1=]% _
[s1—A] 2 s-1 det[sI—A}[ -2 s—l]

The determinant is

det[sl — Al = (s—1)?4+4=(s—1+2i)(s—1—2i),

so that
s-1 i 2 i
sl _A]—l _ [ (s—1+2|l&s—1—2|) (s—1+2sul(i—1—2|) ]
(s—1+2i)(s—1-2i) (s—1+2i)(s—1-2i)
1/2 1/2 i/2 —i/2
— Si:li{ 22i + si]/{ZZi sf:{JEZi + 51]7/22i ] .
S1+2 T 513 103 T 12

The region of convergence RoC= {s € Complex| Re{s} > 1}. We find the inverse
Laplace transform using table 13.3 and express it in two ways: for al t > 0,

dA e(1—2i)t[ 1/2 /2 :|_|_e(1+2i)t[ 1/2 —i/2]

—i/2 1/2 i/2 1/2
_ cos2t sin2t
- —sin2t cos2t |’

The first expression shows é” as alinear combination of the exponentials €22t and

el1+2)t 'in which the exponents, 1 — 2i and 1+ 2i, are the two eigenvalues of A—that
is, the zeros of its characteristic polynomial, det[s| — A]. The second expression shows
that € is sinusoidal with frequency 2 radiang/sec equal to the imaginary part of the
eigenvalues whose amplitude grows exponentially corresponding to the real part of the
eigenvalues.
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Returning to the general case (13.47), denote the matrix inverse of [sl — A] as

1

G(s) =[sl - A= mK(S)a

in which K(s) is the N x N matrix of co-factors of [sl — A]. Each coefficient gj(s) of G(s) is
arational polynomia of A whose denominator is the characterstic polynomial of A, det[sl — A.
Therefore, if there are no pole-zero cancellations, all coefficients of G(s) have the same poles—the
eigenvalues of A. Because €”u(t),t € Reals is a causal signal, the region of convergence of its
Laplace transform G(s) is {s € Complex| Re{s} > Re{p}}, in which pis the pole of G with the
largest rea part.

Because det[sl — A] is apolynomial of order N, G has N poles. For the system (13.41), (13.42) to
be stable, the poles of G(s) must have strictly negative real parts. The system of example (13.26) is
unstable, because the real part of the eigenvaluesis +1.

Suppose the characteristic polynomia has N distinct zeros p, - - -, pn,
det[sl —A] = (s—p1)---(S— pn)-

Then the partia fraction expansion of G(s) has the form

1
G(s)=[sI—A 1= -~ p1R1+---+S_ o

inwhich R; isthe matrix of residues at the pole p of the coefficients of G(s). R isaconstant matrix,
possibly with complex coefficients, if p iscomplex. Because the inverse Laplace transform of Sflﬂ

isePtu(t), the inverse Laplace transform of [sl — A"t is

Rn,

eAu(t) = [eP'Ry + - - + MRy u(t). (13.48)

Thus the matrix € as a function of t is alinear combination of €1t,... et where the p; are the
eigenvalues of A—that is the zeros of det[sl — A].

We decompose the response (13.44) into the sum of the zero-input and zero-state responses, ex-
pressing the latter as a convolution integral,

y(t) = " éAv(0) + /o "hit — x(T)dT, t >0,
in which the (zero-state) impulse responseis. for all t € Reals
h(t) = c"é®bu(t) 4 da(t).
(Here 3 isthe Dirac deltafunction.) Let X, Y, H,Y,; be the Laplace transforms
X(s) = /0 xt)eStdt, Y(s / y(t)e Stdt, A(s / h(t)e Stdt, ¥yi(s) = / " TdAV(0)e Sdt.

Then
Y =HX + Yy,
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inwhich

~

H(s) =c'[sl - A]"lb+d,

and

Yai(s) = c"[sl — A"2v(0).

We continue with example 13.26.

Example 13.27: Suppose Aisasin example13.26,b" =[1 1]7,c" =[2 0]",d =3,
and v(0)" = [0 4]". Then the transfer function is

s—1 —2
A 1 2s—6
H(s) =2 O] (5712274 (571_)?4 [ ] +3=—-5—+3,
(s-1)2-4 (5—51)274 1 (s— 1)2 -4

and the Laplace transform of the zero-input response is

s—1 —2
. 0 —16
Vi(s)=[2 0| Y4 (124 [ ] -
A8 =12.0 [ (5—12)2—4 (s—sl)%—4 4 (s—1)2—-4

The transfer function

; 25—6 . 3P —4s—15

e =23 9253

From (13.33) we know that H is also the transfer function of the differential equation

2 2
% (t)- 23% (t) =3y(t) = 33—t§ (t) - 4%(0 — 15x(t).

Thus this differential equation describes the same system as the state-space model of
example 13.24.

Thisexampleillustrates agenera way of obtaining adifferential equation description of acontinuous-
time state-space model by means of its transfer function.

Itis easier to obtain a state-space model with a specified proper transfer function,

H(S)* bN,]_SN_l—l-"'-Fb]_S'i‘bo
- Nt tas+a

+ bn.

(The first term in H is strictly proper. Some of the coefficients h,a; may be zero.) Then the N-
dimensiona [A,b,c,d] representation

0 1 o - 0 0
0 0 (R 0 0
A= ... ... ., b= , CT:[bobl-'-bN_l], d= by
0 0 0 1 0
—8 —ar —a& -+ —aN-1 1
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has the same transfer function asH, that is

c'[sl—Alb+d=H(s). (13.50)
Exercise 30 at the end of this chapter asks you to verify (13.50).
Simply by interchanging the variables s and z we see that the proper rational polynomial

A = bn-1Z""t 4+ b1z 4 bo
- N+taizta

+by=d+c'[zI-Ab

is the transfer function of the discrete-time [A, b, c,d] representation.

Thus we can use any of three equivalent representations of LTI systems:

e difference or differential equations, used to describe many physical systems,

e transfer functions used for frequency-domain analysis, and in feedback design considered in
the next chapter,

e state-space models, used in modern control theory.

13.9 Summary

The Z transform and Laplace transform have many of the same properties as the Fourier trans-
forms. They are linear, which greatly facilitates computation of the transforms and their inverses.
Moreover, the Z transform (Laplace transform) of the output of an LTI system is the product of
the Z transforms (Laplace transforms) of the input and the transfer function. Thus, the Z trans-
form (Laplace transform) plays the same role as the frequency response, describing the relationship
between the input and the output as a product rather than a convolution.

Linear difference and differential equations, and state-space models of LTI systems were introduced
in chapter 5 and chapter 8. However, we lacked a method to calculate the response of these models
for non-zero initial conditions. The Z transform and the Laplace transform provide such a method.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire aplan of attack, those labeled C usually have more than one defensible answer.

1. E Consider the signal x given by

vn, x(n) = sin(wpn)u(n).
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() Show that the Z transform is

zsin(uy)

¥YzeRoQx), X(z)= 22 —2zcos(wp) +1’

where
RoQx) = {z< Complex |z > 1}.

(b) Where are the poles and zeros?
(c) Isxabsolutely summable?

2. T Consider the signal x given by
vnelintegers x(n)=a",
where a € Complex

(&) Findthe Z transform of x. Be sure to give the region of convergence.
(b) Where are the poles?
(c) Under what conditions is x absolutely summable?

3. E Consider adiscrete-time LTI system with transfer function given by

Vze{z||Z>09}, H(z= o5

Suppose that the input X is given by
vV ne Integers x(n) =d8(n) —0.95(n—1).
Find the Z transform of the output y, including its region of convergence.
4. E Consider the exponentially modulated sinusoid y given by
vV nelntegers y(n) =a "cos(apn)u(n),
where aisarea number, wy isareal number, and u isthe unit step signal.

(@) Find the Z transform. Be sure to give the region of convergence. Hint: Use example
13.3 and section 13.1.6.
(b) Where are the poles?

(c) For what values of aisthissignal absolutely summable?

5. T Suppose x € DiscSignalssatisfies

[oe]
> XM <e, 0<rp<r<ry,

Nn=—o0

for some real numbersr; and ro such that r; < rp. Show that

[ee]
> Inx()r <, 0<rp<r<ry.

n=—oo

Hint: Usethe fact that for any € > O there exists N < oo such that n(1+¢) " < 1for al n> N.
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6. T Consider a causal discrete-time LTI system where the input x and output y are related by

the difference equation
vnelntegers y(n)+byy(n— 1)+ bpy(n—2) = agX(n) +ax(n— 1) + apx(n— 2),
where by, by, ag, a1, and a, are rea-valued constants.

(@) Find the transfer function.
(b) Say as much as you can about the region of convergence.
(c) Under what conditions is the system stable?

E Thisexercise verifies the time delay property of the Laplace transform. Show that if xisa
continuous-time signal, T isareal constant, and y is given by

VteReals y(t)=x(t-1),
then its Laplace transform is
¥seRoQy), Y(s)=eX(9),

with region of convergence

RoQy) = RoCx).

E Thisexercise verifies the convolution property of the Laplace transform. Suppose x and h
have Laplace transforms X and H. Let y be given by

VteReals y(t) = (xxh)(t) = / x(D)h(t — T)dt.

Then show that the Laplace transform is
¥seRoQy), Y(s)=X(9A(9),

with
RoQy) D RoQx) NRoCh).

T This exercise verifies the conjugation property of the Laplace transform, and then uses
this property to demonstrate that for real-valued signals, poles and zeros come in complex-
conjugate pairs.

(@) Let x beacomplex-valued continuous-time signal and y be given by
VteReals y(t)=[x(t)]".

Show that
¥YseRoQy), Y(s)=[X(s)],

where

RoQy) = RoCx).
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(b) Usethisproperty to show that if xisreal, then complex poles and zeros occur in complex
conjugate pairs. That is, if there isa zero at s= q, then there must be a zero at s= ¢,
and if thereisapole at s= p, then there must also beapoleat s= .

10. T Thisexercise verifies the time scaling property of the Laplace transform. Let y be defined

by
VteReals y(t)=x(ct),

for some real number c. Show that
vseRoQy), Y(s)=X(s/c)/lcl,

where

RoCly) = {s| s/c € RoOx)}.

11. E This exercise verifies the exponential scaling property of the Laplace transform. Let y be
defined by
VteReals y(t)=e"x(t),

for some complex number a. Show that
VseRoQy), Y(s)=X(s—a),

where
RoQy) = {s| s—ac RoQXx)}.

12. T Consider adiscrete-time LTI system with impul se response
vn, h(n) = a"cos(wpn)ju(n),
for some wy € Reals Show that if theinput is
Vnelntegers x(n) = d®"u(n),
then the output y is unbounded.

13. E Find and plot the inverse Z transform of

with

(8 Rodx) = {ze Complex |z] > 3}

(b) Roqx) = {ze Complex |z < 3}.

14. E Obtain the partial fraction expansions of the following rational polynomials. First divide

through if necessary to get a strictly proper rational polynomial.

@

z+2
(z+1)(z+3)
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15.

16.

17.

18.

19.

20.
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(b)

(z+2)°
(z+1)(z+3)

(©

z+2
2+4

E Find the inverse Z transform x for each of the three possible regions of convergence asso-
ciated with ( ¥
- z+2
(2) = —————.
(z+1)(z+3)
For which region of convergence is x causal? For which is x strictly anti-causal? For whichis
X two-sided?

E Find the inverse Z transform x for each of the two possible regions of convergence associ-
ated with 2

- z

X(2) = ——.

E Consider a stable system with impul se response
h(n) = (0.5)"x(n).
Find the steady-state response to a unit step input.

E Let h(n) = 2"u(—n), al n, and g(n) = 0.5"u(n), for dl n. Find hxu and g« u, where u is
the unit step.

This exercise shows how we can determine the transfer function and frequency response of an
LTI system from its step response. Suppose a causal system with step input x = u, produces
the output
vV n € lntegers y(n) = (1—0.5")u(n).
(@) Find thetransfer function (including its region of convergence).
(b) If the system is stable, find its frequency response.
(c) Find the impulse response of the system.

Consider an LTI system with impulse response h given by
vV n e Integers h(n) =2"u(n).

(@) Find thetransfer function, including its region of convergence.
(b) Usethetransfer function to find the Z transform of the step response.

(c) Findtheinverse transform of the result of part (b) to obtain the step response in the time
domain.



13.9.

21.

22.

23.

24,

25.
26.
27.

SUMMARY 477

E Determine the zero-input and zero-state responses, and the transfer function for the follow-
ing. In both casestake y(—1) = y(—2) = 0 and x(n) = u(n).

@ y(n)+y(n—2) =x(n),n=0.

(b) y(n)+2y(n—1)+y(n—2) =x(n),n>0.

E Determine the zero-input and the zero-state responses for the following.

(@ Sy+ 10y =2x,y(0) = 2,x(t) = u(t).

(b) ¥+ 5y+ 6y = —4x—3x%,y(0) = —1,y(0) = 5,x(t) = e tu(t).
(©) y+4y =8xy(0) = 1,y(0) = 2,(t) = u(t).

(d) y+2y+5y=x%y(0) =2,y(0) = 0,x(t) = eu(t).

E Show that the [A,b,c,d] representation in example 13.23 is correct. Then show that the
transfer function of the state-space model is the same as that of the difference equation.

T Consider the circuit of figure 13.5. The input is the voltage x, the output is the capacitor
voltage v. The inductor current iscalled i.

w (O @

i)

C—

.
L

Figure 13.5: Circuit of problem 24

(@) Derivethe [A,b,c,d] representation for this system using s(t) = [i(t), v(t)[" asthe state.

(b) Obtain an [F,g,h, k] representation for adiscrete-time model of the same circuit by sam-
pling at timeskT,k= 0,1, --- and using the approximation S(kT) = 1/T(s((k+1)T) —
S(kT)). (Thisis caled aforward-Euler approximation.)

E For the matrix A in example 13.24, determine €4t > 0.
E For the matrix A in example 13.26, determine A", n > 0.

T A continuous-time SISO system has [A, b, ¢, d] representation with

a b
=[5 2l

in which a,b arereal constants.

(a) Find the eigenvalues of A.
(b) For what values of a,b is the SISO system stable?
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(c) Calculate €At > 0.
(d) Supposeb=c=[1 0", and d = 0. Find the transfer function.

28. T Let Abean N x N matrix. Let p be an eigenvalue of A. An N-dimensional (column) vector
e, possibly complex-valued, is said to be an eigenvector of A corresponding to pif e 0 and
Ae= pe Note that an eigenvector always exists since det[pl — A] = 0. Find eigenvectors for
each of the two eigenvalues of the matrices in examples13.24 and 13.26.

29. E Let A be a sguare matrix with eigenvalue p and corresponding eigenvector e. Determine
the response of the following.

(@) s(k+1) =Agk),k>0; s(0)=e.
(b) s(t) =Agt),t >0; s(0)=e

Hint. Show that A"e = p"e and €”e = e'e,

30. T Verify (13.50). Hint. First show that

1
1 s
sl—A b=
[ ] Ntay N1+ +ay )
S‘Nfl

by multiplying both sides by [sl — A]. Then check (13.50).



Chapter 14

Composition and Feedback Control

A mgjor theme of this book is that interesting systems are often compositions of ssimpler systems.
Systems are functions, so their composition is function composition, as discussed in section2.1.5.

However, systems are often not directly described as functions, so function composition is not the
easiest tool to useto understand the composition. We have seen systems described as state machines,
frequency responses, and transfer functions. In chapter4 we obtained the state machine of the com-

posite system from its component state machines. In section8.5 we obtained the frequency response
of the composite system from the frequency response of its component linear time-invariant (LTI)
systems. We extend the latter study in this chapter to the composition of LTI systems described
by their transfer functions. This important extension allows us to consider unstable systems whose
impulse response has a Z or Laplace transform, but not a Fourier transform.

As before, feedback systems prove challenging. A particularly interesting issue is how to maintain
stability, and how to construct stable systems out of unstable ones. We will find that some feedback
compositions of stable systems result in unstable systems, and conversely, some compositions of
unstable systems result in stable systems. For example, we can stabilize the helicopter in example
12.2 using feedback, in fact we can precisely control its orientation, despite the intrinsic instability.
The family of techniques for doing this is known as feedback control. This chapter serves as an
introduction to that topic. Feedback control can aso be used to drive stable systems, in which
case it serves to improve their response. For example, feedback can result in faster or more precise
responses, and can also prevent overshoot, where a system overreacts to a command.

We will consider three styles of composition, cascade composition, parallel composition, and
feedback composition. In each case, two LTI systems with transfer functionsH; and H, are com-
bined to get a new system. The transfer functionsH,; and H, are the (Z or Laplace) transforms of
the respective impulse responses, hy and hp. Much of our discussion applies equally well whether
the system is a continuous-time system or a discrete-time system, so in many cases we leave this
unspecified.

479
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|
v
e
I
T i =
e
&
o
V‘<

Figure 14.1: Cascade composition of two LTI systems with transfer func-
tions Hy and Ho.

14.1 Cascade composition

Consider the cascade composition shown in figure14.1. The composition is the grey box, and it
has transfer function

A = AyFe.
Notice that because of this simple form, if we know the pole and zero locations of the component
systems, then it is easy to determine the pole and zero locations of the composition. Unless a pole
of one is cancelled by a zero of the other, the poles and zeros of the composition are simply the
aggregate of the poles and zeros of the components. Moreover, any pole of H must be a pole of
either H; or Hy, soif Hy and H, are both stable, then soisH.

14.1.1 Stabilization

The possihility for pole-zero cancellation suggests that cascade composition might be used to stabi-
lize an unstable system.

Example 14.1: Consider a discrete-time system with transfer function
z
z—11°
This is a proper rational polynomial with a region of convergence of the form for a

causal signal, so it must be a causal system. However, it is not stable, because the
region of convergence does not include the unit circle.

Vze{z||Z> 11}, Hi(2)=

To stabilize this system, we might consider putting it in cascade with

n -11
vV ze Complex Hy(z) = z -

Thisisacausa and stable system. The transfer function of the cascade composition is
A z z-11
H(z) = z—11 z
The pole at z= 1.1 has been cancelled, and the resulting region of convergence is the
entire complex plane. Thus, the cascade composition isacausal and stable system, and
we can recoghize from table 13.1 that the impulse response is h(n) = &(n).

1.
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Stahilizing systems by cancelling their poles in a cascade composition, however, is aimost never a
good idea. If the pole is not precisely cancelled, then no matter how small the error, the resulting
system is still unstable.

Example 14.2: Suppose that in the previous example the pole location is not known
precisely, and turns out to be at z= 1.1001 instead of z= 1.1. Then the cascade com-
position has transfer function

I:I(z) B z z—11 o Z- 1.1
-~ z—-11001 z = z—1.1001’

which is unstable.

14.1.2 Equalization

While cascade compositions do not usually work well for stabilization, they do often work well for
equalization. Anequalizer isacompensator that reverses distortion. The source of the distortion,
which is often called a channel, must be an LTI system, and the equalizer is composed in cascade
with it. At first sight thisis easy to do. If the channel has transfer functionH;, then the equalizer
could have transfer function
A=A, L,

in which case the cascade composition will have transfer function

A=A =1,
which is certainly distortion-free.

Example 14.3: Some acoustic environments for audio have resonances, where certain
frequencies are enhanced as the sound propagates through the environment (see |abC.8
for an example). This will typically occur if the physics of the acoustic environment
results in atransfer function with poles near the unit circle (for a discrete-time model)
or near the imaginary axis (for a continuous-time model). Suppose for example that
the acoustic environment is well modeled by a discrete-time LTI system with transfer
function
7

Vze{z||7>095}, Hi(z2)= Z-a)z—a)

where a = 0.95¢“1 for some frequency wy. Using the methods of section 13.2, we can
infer that the magnitude response will have a strong peak at frequencies w3 and —wy,
because the positions on the unit circle €1 and e~'“* are very close to the poles. This
will result in distortion of the audio signal, where frequencies near «y will be amplified.

An equalizer that will compensate for this distortion has transfer function

Ha(2) = [Fu(2)] t = (Z—a)z(zz—a*) _ 22—2Re£§1}z_|_ o
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As in example 13.2, we can recognize this as the Z transform of an FIR filter with
impulse response

Vnelntegers hy(n) =3(n) —2Re{a}d(n—1) + |a|?d(n—2).

Thisfilter is causal and stable, and hence can serve as an effective equalizer.

There are a number of potential problems with this approach, however. First, the transfer function
of the channel is probably not known, or at least not known precisely. Second, the channel may not
have a stable and causal inverse.

Let usfirst examine thefirst difficulty, that the channel may not be known (precisely). If the channel
model H; and itsinverse H,, are both stable, then the cascade composition is at least assured of being
stable, even if the channel has been misconstrued. Moreover, if the equalizer is close to the inverse
of the true channel, then often the distortion is significantly reduced despite the errors (see exercise
1).

This difficulty can sometimes be dealt with by adaptively varying the equalizer based on measure-
ments of the distortion. One way to measure the distortion is to send through the channel a known
sequence called atraining sequence and observe the output of the channel. Suppose that the train-
ing sequenceisasignal x with Z transformX, and that the channel H is unknown. If we can observe
the output y of the channel, and calculate its Z transformY, then the channel transfer function is

simply
(2

X(z) '

where RoQ(hy ) isdetermined by identifying the poles and zeros of therational polynomialy (z) /X (2)
and finding the one ring-shaped region that includes the unit circle and is bordered by poles. This
results in a stable channel model.

-<>

Vze ROC(hl), Hl( )

Training sequences are commonly used in digital communication systems, where, for example, a
radio channel introduces distortion. However, it is also common for such channels to change over
time. Radio channels, for example, change if either the transmitter or receiver moves, or if the
weather changes, or if obstacles appear or disappear. Repeatedly transmitting training sequences is
an expensive waste of radio bandwidth, and fortunately, is not usually necessary, asillustrated in the
following example.

Example 14.4: Consider a digital communication system where the channel is mod-
eled as a discrete-time LTI system with transfer function Hy, representing for example
aradio transmission subsystem. Suppose that this digital communication system trans-
mits a bit sequence represented as a discrete-time signal x of form

x:Integers— {0,1}.

Suppose further that we use a training sequence to obtain an initial estimateH, of
the inverse of the channel. But over time, the channel drifts, so thatH, is no longer
the inverse of Hy. Assumi ng the drift is relatively slow, then after a short time, H; is
still close to the inverse of Hy, in that the cascade HyH, yields only mild distortion.
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That is, if x(n) = 0 for some n, then y(n) ~ 0. Similarly, if x(n) = 1 for some n, then
y(n) =~ 1. Thus, we can quantize y, getting an accurate estimate x without it having to
be a known training sequence. That is, when y(n) ~ 0, we assume that x(n) = 0, and
when y(n) ~ 1, we assume that x(n) = 1. These assumptions are called decisions, and
in fact, such decisions must be made anyway for digital communication to occur. We
have to decide whether a1 or a0 was transmitted, and closeness to 1 or 0 seemslike an
eminently reasonable basis on which to make such a decision.

Assuming there are no errorsin these decisions, we can infer that

HiHXg =Y,

where Xy isthe Z transform of the decision sequence. So, without using another training
seguence, we can revise our estimate of the channel transfer function as follows,

A~

~ Y
Fy=
HoXg

We replace our equalizer H, with

A H
Ay = Ay 1= T2

Of course, we now start using H, which will come closer to correcting the channel
distortion, which will make our decisions more reliable for the next update.

Example 14.4 outlines a widely used technique called decision-directed adaptive equalization.
It is so widely used, in fact, that it may be found in every digital cellular telephone and almost
every modem, including voiceband data modems, radio modems, cable modems, DSL modems,
etc. The algorithms used in practice to update the transfer function of the equalizer are not exactly
as shown in the example, and their details are beyond the scope of this text, but they follow the
genera principle in the example.

Let us now turn our attention to the second difficulty with equalization, that the channel may not
have a stable and causal inverse. We begin with an example.

Example 14.5: Suppose that, similar to example 14.3, a channel has transfer function

z

Vzin{z| |7 >095}, Hi(z) = —az—a)

9

where a = 0.95d“1 for some frequency wy. Theinverseis

_a\(7_ g _ 2
Ay = (z a)iz a) _ Z2 2Re{j}z+|a| ) |

which is not a proper rational polynomial. Thus, this cannot be the Z transform of a
causal signal. Implementing a non-causal equalizer will usually be impossible, since
it will require knowing future inputs. However, suppose we simply force the equalizer
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have aproper rati pnal polynomial transfer function by dividing by ahigh enough power
M of zto make [H1(2)]~1/Z™ proper. In this example, M = 1 is sufficient, so we define
the equalizer to be

A~

-1 _ 2
fie) - Fal@I ™ _ 2= 2Reajz s a)

which we again recognize as the Z transform of an FIR filter with impul se response
¥ neintegers hy(n) =8(n) — 2Refa}d(n— 1) + |a]?5(n — 2).

Thisfilter is causal and stable, but doesit serve as an effective equalizer? Consider now
the cascade,

From section 13.1.2 we recognize this as the transfer function of the unit delay system.
That is, the equalizer completely compensates for the distortion, but at the expense of
introducing a one sample delay. Thisisusualy aperfectly acceptable cost.

Example 14.5 demonstrates that when the channel inverse is not a proper rational polynomial, then
introducing a delay may enable construction of a stable and causal equalizer. Not all equalization
stories have such a happy ending, however. Consider the following example.

Example 14.6: Consider a channel with the following transfer function,

Vze {zc Complex z# 0}, Hi(2) = 2;22 .

Thisisastable and causal channel. Itsinverseis

This has a pole at z= 2, so in order to be stable, it would have to be anti-causal (so
that the region of convergence can include the unit circle). Implementing an anti-causal
equalizer is usualy not possible.

Example 14.6 shows that not all channels can be inverted by an equalizer. All is not lost, however.
Given a channel Hy(2) that has arational Z transform, we can usually find a transfer functionHa(2)
that compensates for the magnitude response part of the distortion. That is, we can find a transfer
function I3|2(z) that is stable and causal such that the magnitude response of the composite satisfies

[H1(00)Hz(00)| = [H1(€)H(€)] = L.

For some applications, thisis sufficient. In audio equalization, for example, this is almost always
sufficient, because the human ear is not very sensitive to the phase of audio signals. It hears only
the magnitude of the frequency components.
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Example 14.7: Continuing example 14.6, let H, be given by

z 05z
1-2z z-05°
Thishasapole at z= 0.5, and is a proper rational polynomial, so it can be the transfer
function of a causal and stable filter. Consider the cascade composition,

1 (26 (2) — z—2 -05z 1-05z

~z z-05 z-05"
This hardly looks like what we want, but if we rewrite it dightly, it is easy to show that
the magnitude frequency response has value one for al w,

i, =

N 1-05z z1-05
N =~ 05 =% 05

The magnitude frequency response is

| — (do. [e =05 _
()] = 1A = 6] g -

1.

This magnitude is equal to 1 because the numerator, e®_ 0.5, is the complex conju-
gate of the denominator, € — 0.5, so they have the same magnitude.

The method in example 14.7 can be generalized so that for most channels it is possible to cancel
any magnitude distortion. The key isthat if the channel transfer function has a zero outside the unit
circle, say at z= a, then its inverse has a pole at the same location, z= a. A pole outside the unit
circle makes it impossible to have a stable and causal filter. So the trick isto place a pole instead at
z=1/a". Thispole will cancel the effect on the magnitude (but not the phase) of the zero at z= a.

There are still channels for which this method will not work.

Example 14.8: Consider achannel given by

Vze {zc Complex z# 0}, Hi(2) = Z;Zl .
Thishasapole at z=0 and a zero at z= 1. Its inverse cannot be stable because it
will have apole at z= 1. In fact, no equalization is possible. Thisis intuitive because
the frequency response is zero at w = 0, and no stable equalizer in cascade with this
channel can reconstruct the original component at w = 0. It would have to have infinite
gain at w= 0, which would make it unstable.

14.2 Parallel composition

Consider the parallel composition shown in figure14.2. The transfer function of the composition
systemis
H =H,+Ho.
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Figure 14.2: Parallel composition of two LTI systems with transfer functions
H; and Ho.

Thisisvalid whether these are Laplace transforms or Z transforms. Once again, notice that a pole
of H must be apole of either Hy or Hy, so if Hy and H, are stable, then soisH. At the poles of Hy,

H1(2) isinfinite, so very likely apole of H; will also be apole of H. However, just asin the cascade
compoasition, this pole may be cancelled by a zero.

Determining the location of the zeros of the composition, however, isslightly more complicated than
for cascade composition. The sum has to be put into rational polynomial form, and the polynomials
then need to be factored.

14.2.1 Stabilization

Just as with cascade composition, stabilizing systems by cancelling their polesin a parallel compo-
sition is possible, but isamost never agood idea.

Example 14.9: Consider a discrete-time system with transfer function
z
z—-11°

This describes a causal but unstable system. Suppose we combine thisin parallel with
a system with transfer function

Vze{z||Z> |11}, Hi(2)=

N -11
Vze{z||Z> 11}, H(9=_—7-
Thisisagain causal and unstable. The transfer function of the parallel composition is

- z -11 z—11
HE) = it~ 11
The pole at z= 1.1 has been cancelled, and the resulting region of convergence is the

entire complex plane. Thus, the parallel composition isacausa and stable system with
impulse response h(n) = d(n).
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I w
- Wy +
Hy —)@W
X O
-
H, -

Figure 14.3: Structure of a noise canceller.

However, if the pole is not precisely cancelled, then no matter how small the error, the resulting
system is still unstable.

Example 14.10: Suppose that in the previous example the pole location is not known
precisely, and turns out to be at z= 1.1001 instead of z= 1.1. Then the paralel com-
position has transfer function

- z -11 72 —2.2z+1.21001
H(z) = + = )
z—11001 z-11 (z—1.1001)(z—1.1)

which is unstable.

14.2.2 Noise cancellation

While parallel compositions do not usually work well for stabilization, with a small modification
they do often work well for noise cancellation. A noise canceller is a compensator that removes
an unwanted component from a signal. The unwanted component is called noise.

The pattern of a noise cancellation problem is shown in figure14.3. The signal X is a noise source.
This signa is filtered by H; and added to the desired signal w. The result is a noisy §ignal. To
cancel the noise, the signal from the noise source is filtered by a noise cancelling filterH, and the
result is added to the noisy signal. If x has (Laplace or Z) transformX, w has transform W, and y
has transform Y, then

Y =W+ (|:|1+ |‘A|2))A(
From thisit is evident that if we choose

Hp = —Hq,

then y will be a clean (noise-free) signal, equal to w. The following examples describe real-world
applications of this pattern.
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Figure 14.4:. A telephone central office converts the two-wire connection
with a customer telephone into a four-wire connection with the telephone
network using a device called a hybrid. An imperfect hybrid leaks, causing
echo. An echo canceller removes the leaked signal.

Example 14.11: A connection to the telephone network uses two wires (called a
twisted pair, consisting of tip and ring) to connect atelephone to acentral office. The
central office may be, perhaps, 4 kilometers away. The two wires carry voice signals to
and from the customer premises, representing the voice signals as a voltage difference
across the two wires. Since two wires can only have one voltage difference across them,
the incoming voice signal and the outgoing voice signal share the same twisted pair.

The central office needs to separate the voice signal from the local customer premises
(called the near-end signal) from the voice signal that comes from the other end of the
connection (called the far-end signal). The near end signal istypically digitized (sam-
pled and quantized), and a discrete-time representation of the voice signal istransmitted
over the network to the far end. The network itself consists of circuits that can carry
voice signalsin onedirection at atime. Thus, in the network, four wires (or equival ent)
are required for atelephone connection, one wire pair for each direction.

Asindicated in figure 14.4, the conversion from atwo-wire to afour-wire connection is
done by adevice called ahybrid.* A connection between subscribers A and B involves

1A hybrid is a Wheatstone bridge, a circuit that can separate two signals based on the electrical impedance looking
into the local twisted pair and the electrical impedance looking into the network. The design of this circuit is a suitable
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two hybrids, one in each subscriber’s central office. The hybrid in B's central office
ideally will pass all of theincoming signal x to B'stwo-wire circuit, and none back into
the network. However, the hybrid is not perfect, and some of the incoming signal x
leaks through the hybrid into the return path back to A. The signal y in the figureis the
sum of the signal from B and the leaked signal from A. A hears the leaked signal as an
echo, sinceitis A’sown signal, delayed by propagation through the telephone network.

If the telephone connection includes a satellite link, then the delay from one end of the
connection to the other is about 300ms. This is the time it takes for aradio signa to
propagate to a geosynchronous satellite and back. The echo traverses this link twice:
once going from A to B, and the second time coming back. Thus, the echo is A’'s
own signal delayed by about 600ms. For voice signals, 600ms of delay is enough to
create avery annoying echo that can make it difficult to speak. Humans have difficulty
speaking when they hear their own voices 600ms later. Consequently, the designers of
the telephone network have put echo cancellers in to prevent the echo from occuring.

Let Hy be the transfer function of the hybrid leakage path. The echo canceller is the
filter H, placed in parallel composition with the hybrid, as shown in the figure. The
output w» of this filter is added to the output wy + w of the hybrid, so the signal that
actually goes back isy =w, +wg +w. If

|:|2 — _Fllv

then y = w and the echo is cancelled perfectly. Moreover, note that as long asH; is
stable and causal, so will be the echo canceller H,.

However, Hy is not usually known in advance, and also it changes over time. So either
afixed H, isdesigned to match a ‘typical’ Hy, or an adaptive echo canceller is designed
that estimates the characteristics of the echo path (H;) and changes H, accordingly.
Adaptive echo cancellers are common in the telephone network today.

The following example combines cascade and parallel composition to achieve noise cancellation.

Example 14.12: Consider a microphone in a noisy environment. For example, a
traffic helicopter might be used to deliver live traffic reports over the radio, but the
(considerable) background noise of the helicopter would be highly undesirable on the
radio. Fortunately, the background noise can be cancelled. Referring to figurel4.5,

suppose that w is the announcer’s voice, x is the engine noise, andH; represents the
acoustic path from the engine noise to the microphone. The microphone picks up both
the engine noise and the announcer’s voice, producing the noisy signal w. We can

place a second microphone somewhere far enough from the announcer so asto not pick
up much of his or her voice. Since this microphone isin a different place, say on the
back of the announcer’s helmet, the acoustic path is different, so we model that path
with another transfer function H,. To cancel the noise, we design afilter Hz. Thisfilter

needs to equalize (invert) H, and cancel Hy. That is, itsideal vaueis

Hz = —Hi/Ha.

topic for atext on electrical circuits.
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Figure 14.5: Traffic helicopter noise cancellation/equalization problem.
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Figure 14.6: Negative feedback composition of two LTI systems with trans-
fer functions H; and H,.

Of course, as with the equalization scenario, we have to ensure that this filter remains
stable. Once again, in practice, it is necessary to make the filter adaptive.

14.3 Feedback composition

Consider the feedback composition in figure 14.6. It is a composition of two systems with transfer
functions H; and Hy. We assume that these systems are causal and thatH; and H, are proper rational
polynomialsin zor s. The regions of convergence of these two transfer functions are those suitable
for causal systems (the region outside the largest circle passing through a pole, for discrete time,
and the region to the right of the pole with the largest rea part, for continuous-time).

In terms of Laplace or Z transforms, the signals in the figure are related by

Y = HyHE,

and
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Notice that, by convention, the feedback term is subtracted, as indicated by the minus sign adjacent
to the adder (for this reason, this composition is called negative feedback). Combining these two
equations to elimintate E, we get
Y =HiH(X -Y),
which we can solve for the transfer function of the composition,
HiH;

1+ |:|1|:|2 ’
This is often called the closed-loop transfer function, to contrast it with the open-loop transfer
function, whichissimply HiH,. Wewill assume that this resulting system is causal, and that the re-

gion of convergerlcerf thistransfer function istherefore determined by the roots of the denominator
polynomial, 1+ H;Ho.

Y
H=== 14.1
s (141)

The closed-loop transfer function is valid as long as the denominator 1-+H;H, is not identically
zero (that is, it is not zero for all s or zin Complex- it may be zero some r zin Compley. This
is sufficient for the feedback loop to be well-formed, although in general, this fact is not trivial to
demonstrate (exercise 8 considers the easier case whereH1H, is causal and strictly proper, in which
case the system H1H, has state-determined output). We will assume henceforth, without comment,
that the denominator is not identically zero.

Feedback composition is useful for stabilizing unstable systems. In the case of cascade and parallel
composition, a pole of the composite must be a pole of one of the components. The only way to
remove or alter apole of the componentsisto cancel it with azero. For this reason, cascade and par-
alel composition are not effective for stabilizing unstable systems. Any error in the specification of
the unstable pole location results in afailed cancellation, which results in an unstable composition.

In contrast, the poles of the feedback compositi on are thg roots of the denominator 1-+H;H>, which
are generaly quite different from the poles of H; and H,. This leads to the following important
conclusion:

The poles of a feedback composition can be different from the poles of its com-
ponent subsystems. Consequently, unstable system can be effectively and robustly
stabilized by feedback.

The stabilization is robust in that small changes in the pole or zero locations do not result in the
composition going unstable. We will be able to quantify this robustness.

14.3.1 Proportional controllers

In control applications, one of the two systems being composed, sayHo, is called the plant. Thisisa
physical system that is given to usto control. Itstransfer function is determined by its physics. The
second system being composed, say Hy, is the controller. We design this system to get the plant
to do what we want. The following example illustrates a simple strategy called a proportional
controller or P controller.
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Figure 14.7: A negative feedback proportional controller with gain K.

Example 14.13: For this example we take as the plant the simplified continuous-time
helicopter model of example 12.2,

(1) = Swit).

M

Here y(t) is the angular velocity at timet and w(t) is the torque. M is the moment of
inertia.
We have renamed the input w (instead of x) because we wish to control the helicopter,
and the control input signal will not be the torque. Instead, let’s define the input X to
be the desired angular velocity. So, to get the helicopter to not rotate, we provide input
X(t) =0.
Let us call the impulse response of the plant hy, to conform with the notation in figure
14.6; it isgiven by

VteReals hy(t)=u(t)/M,

where u is the unit step. The transfer function isHo(s) = 1/(Ms), with RoQh) = {s e
Complex| Rgs) > 0}. Hy hasapole at s= 0, so thisis an unstable system.

As a compensator we can simply place again K in a negative feedback composition,
as shown in figure 14.7. The intuition is as follows. Suppose we wish to keep the he-
licopter from rotating. That is, we would like the output angular velocity to be zero,
y(t) = 0. Then we should apply an input of zero, x(t) = 0. However, the plant is un-
stable, so even with a zero input, the output diverges (even the smallest non-zero initia
condition or the smallest input disturbance will cause it to diverge). With the feedback
arrangement in figure 14.7, if the output angular velocity rises above zero, then the in-
put is modified downwards (the feedback is negative), which will result in a negative
torque being applied to the plant, which will counter the rising velocity. If the output
angular velocity drops below zero, then the torque will be modified upwards, which
again will tend to counter the dropping velocity. The output velocity will stabilize at
zexro.

To get the helicopter to rotate, for example to execute a turn, we smply apply a non-
zero input. The feedback system will again compensate so that the helicopter will rotate
at the angular velocity specified by the input.
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Figure 14.8: Root locus of the helicopter P controller.

The signal eisthe difference between the input X, which isthe desired angular velocity,
and the output y, which is the actual angular velocity. It is called the error signal.
Intuitively, this signal is zero when everything is as desired, when the output angular
velocity matches the input.

A compensator like that in example 14.13 and figure 14.7 is called a proportional controller or
P controller. Theinput w to the plant is proportional to the error e. The objective of the control
system is to have the output y of the plant track the input x as closely as possible. |.e., the error e
needs to be small. We can use (14.1) to find the transfer function of the closed-loop system.

Example 14.14: Continuing with the helicopter of example 14.13, the closed loop
system transfer function is

A, KH(s)  K/M
Cl9 =TT KAE ~ stk

(14.2)

which hasapoleat s= —K /M. If K > 0, the closed loop system is stable, and if K < O,
it isunstable. Thus, we have considerable freedom to choose K. How should we choose
its value?

As K increases from 0 to o, the pole at at s= —K /M moves left from 0 to —c0. As
K decreases from 0 to —oo, the pole moves to the right from 0 to «. The locus of the
pole as K varies is caled the root locus, since the pole is aroot of the denominator
polynomial.

Figure 14.8 showsthe root locus as athick gray line, on which are marked the locations
of the pole for K = 0,£2,+c. Since there is only one pole, the root locus comprises
only one ‘branch’. In general the root locus has as many branches as the number of
poles, with each branch showing by the movement of one pole asK varies.

Notethat in principle, the same transfer function as the closed-loop transfer function can be achieved
by acascade composition. But asin example14.1, the resulting system is not robust, in that even the
smallest change in the pole location of the plant can cause the system to go unstable (see problem
6). The feedback system, however, is robust, as shown in the following example
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Example 14.15; Continuing with the P controller for the helicopter, suppose that our
model of the plant is not perfect, and its actua transfer function is
- 1
Ho(s) = ——
29) M(s—eg)’
for some small value of € > 0. In that case, the closed loop transfer function is
- K/M
g /

(8)= s—e+K/M”’
which has apole at s= € — K/M. So the feedback system remains stable so long as
e <K/M.

In practice, when designing feedback controllers, we first quantify our uncertainty about the plant,
and then determine the controller parameters so that under all possible plant transfer functions, the
closed-loop system is stable.

Example 14.16: Continuing the helicopter example, we might say that € < 0.5. In that
case, if we choose K so that K/M > 0.5, we would guarantee stability for all values of
€ < 0.5. We then say that the proportional feedback controller is robust for all plants
with € < 0.5.

Westill have alarge number of choicesfor K. How do we select one? To understand theimplications
of different choices of K we need to study the behavior of the output y (or the error signal €) for
different choices of K. In thefollowing examples we use the closed-loop transfer function to analyze
the response of a proportional controller system to various inputs. The first example studies the
response to a step function input.

Example 14.17: Continuing the helicopter example, suppose that the input is a step
function, Vt,x(t) = au(t) whereaisaconstant and u isthe unit step. Thisinput declares
that at timet = 0, we wish for the helicopter to begin rotating with angular velocity a.
The closed-loop transfer function is given by (14.2), and the Laplace transform of x is
X(s) = a/s, from table 13.3, so the Laplace transform of the output is

N Ao K/M a
Y(s) = G(s)X(s) = =
(8 =6X() = i s
Carrying out the partial fraction expansion, this becomes
- —a a

YO=grkm s
We can use this to find the inverse Laplace transform,
vt,  y(t) = —ae KYMuy(t) +au(t).

The second term is the steady-state response yss, which in this case equals the input.
So thefirst termisthetracking error ., which goes to zero faster for larger K. Hence
for step inputs, the larger the gain K, the smaller the tracking error.
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In the previous example, we find that the error goes to zero when the input is a step function.
Moreover, the error goes to zero faster if the gain K is larger than if it is smaller. In the following
example, wefind that if the input is sinusoidal, then larger gain K resultsin an ability to track higher
frequency inputs.

Example 14.18: Suppose the input to the P controller helicopter system is a sinusoid
of amplitude A and frequency wy,

VteReals x(t)=A(cosupt)u(t).

We know that the response can be decomposed asy = i, + Yss The transient response
Vir isdueto the poleat s= —K/M, and so it is of the form

VteReals y(t) = Re /M

for some constant R. The steady-state response is determined by the frequency response
at wyp. The frequency response is

o K/M
VweReals H(w)=H(iw) = Ot K/M
with magnitude and phase given by
K/M LM
H = /H(w) = —t —.

So the steady-state response is

W, Ysslt) = [H () Acos(ext + ZH (wp)).

Thus the steady-state output is a sinusoid of the same frequency as the input but with a
smaller amplitude (unless wy = 0). Thelarger wy is, the smaller the output amplitude.

Hence, the ability of the closed-loop system to track asinusoidal input decreases as the
frequency of the sinusoidal input increases. However, increasing K reduces this effect.
Thus, larger gain in the feedback loop improves its ability to track higher frequency
sinusoidal inputs.

In addition to the reduction in amplitude, the output has a phase difference. Again,
if wp = 0, there is no phase error, because ta1(0) = 0. As ay increases, the phase
lag increases (the phase angle decreases). Once again, however, increasing the gain K
reduces the effect.

The previous two examples suggest that large gain in the feedback |oop is always better. For a step
function input, it causes the transient error to die out faster. For a sinusoidal input, it improves the
ability to track higher frequency inputs, and it reduces the phase error in the tracking. A large gain
is not always a good idea, however, as seen in the next example, a DC motor.
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Example 14.19: The angular position y of a DC motor is determined by the input
voltage w according to the differential equation

My(t) + Dy(t) = Lw(t),

where M is the moment of inertia of the rotor and attached load, Dy is the damping
force, and the torge Lw is proportional to the voltage. The transfer function is
N L L/M
Hay(s) = = .
2(s) Ms?2+Ds s(s+D/M)

which has one pole at s= 0 and one pole at s= —D/M. By itself the DC motor is
unstable because of the pole at s= 0. Thetransfer function of the feedback composition
with proportional gain K is

f(s) — KHa(s) KL
 1+KHy(s) Ms2+Ds+KL'

There are two closed loop poles—the roots of M& + Ds+ KL—Ilocated at

_b,. /P _KL
2M M2 M
The closed loop system is stable if both poles have negative real parts, which isthe case

if K> 0. If K < D?/(4ML) both poles are real. But if K > D?/(4ML), the two poles
form a complex conjugate pair located at

S=

D, /KL D?

M M 4M2 -
Theresal partisfixed at D/2M, but the imaginary part increases with K. We investigate
performance for the parameter values L/M = 10,D/M = 0.1. The transfer function is

. 10K
H(s)= =
(8= ZTo1s1 10K

S=

Because there are two poles, the root locus has two branches, as shown in figure14.9.

For K = 0, the two poles are located at 0 and -0.1, as illustrated by crosses in the
figure. As K increases the two poles move towards each other, coinciding at -0.05
when K = 0.00025. For larger values of K, the two branches split into apair of complex
conjugate poles.

To appreciate what values of K > 0to select for good tracking, we consider the response
to a step input x = u(t) for two different values of K. For K = 0.00025, the Laplace
transform of the output y is

Yo 1K 1 000251 10065 1
- £+01s+10Ks (s+0.052s  s+005 (s+0052 s’

So the time domain response is

v, y(t) = {—e "% _0.05te %% u(t) + u(t). (14.3)
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Figure 14.9: The root locus and step response for two values of K of a DC
motor with proportional feedback.

For K = 0.0025, the Laplace transform of the output y is

(9= 0.025 1 -05+i017 N 0.5 0.17i +}
T £+01s+0025s  s+005—i0.15 ' s+0.05+i0.15 s’
So
Vi, yt) = o 05t [0'527é'(0.15t+2.82) +0_527e—i(0.15t+2.82>]u(t) +u(t)
0.527e %% % 2¢0s(0.15t + 2.82)u(t) + u(t). (14.4)

The right-hand panel in figure 14.9 shows plots of the responses (14.3) and (14.4) that

illustrate the design tradeoffs. In both cases, the output approaches the input ast — o,
so the asymptotic tracking error is zero. The response for the higher gain is faster but it
overshoots the asymptotic value. The response for the lower gain is slower but thereis
no overshoot. In this example, K must be selected to balance speed of response versus
the magnitude of the overshoot. In some applications, overshoot may be completely
unacceptable.

We can now investigate the proportional feedback control in a general setting. Suppose the plant
transfer function is a proper rational polynomial

where A has degree M, B has degree N, and M < N (H; is proper). The closed loop transfer function
is . .
A(s) = KHQSS) _ KA(s)A '
1+KHy(s) B(s)+KA(s)

(14.5)
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The closed loop poles are the N roots of the equationB(s) + KA(s) = 0. These roots will depend on
K, so we denote them py(K),---, pn(K). AsK varies, these roots will trace out the N branches of
theroot locus. At K = 0, the poles are the roots of I§(s) =0, which arethe poles of the plant transfer
function A(s) /B(s). The stahility of the closed loop plant requires that K must be such that

Re{p1(K)} <0,---,Re{pa(K)} <O. (14.6)
Within those values of K that satisfy (14.6) we must select K to get a good response.
The following example shows that a proportional compensator may be unable to guarantee closed
loop stability.
Example 14.20: Consider aplant transfer function given by

. A(s) s+1

Ha(s) = B(s) (5—1)($+05s5+125)"

Thereisone zero at s= —1, one pole at s= 1 and a pair of complex conjugate poles at
s=—0.5+1i1.09. The plant is unstable because of the pole at s= 1. The closed loop
poles are the roots of the polynomial

P(K,s) = KA(s) 4+ B(S) = K(s+1) 4 (s— 1)((s+0.25)> 4 1.188).

Figure 14.10 shows the three branches of the root locus plot for K > 0. AsK increases,
the unstable pole moves towards the zero, while the complex conjugate poles moveinto
the right-half plane. We need to find the values of K that satisfy the stability condition
(14.6). The value of K for which the pole at s= 1 movesto s= 0 is obtained from the
condition P(K,0) = 0, which gives K — (0.5 + 1) = 0 or K = 1.25. So one condition
for stability is K > 1.25. The complex conjugate poles cross the imaginary axis at
s= #+il1l.15 for K = 0.6. So the second condition for stability is K < 0.6. The two
conditions K > 1.25 and K < 0.6 are inconsistent, so ho proportional compensator can
stabilize this system.

We return to the general discussion. Suppose the stability condition (L4.6) can be met. Among the
values of K that achieve stability, we select that value for which the output y closely tracks a step
input, X = u. In this case, the Laplace transform of theinput is 1/s, so the Laplace transform of y is,
from (14.5), .

A ~ 1 KA 1

Y(s)=H(s)= = KA 1

S B(s)+KA(s)s

Assuming for simplicity that all the poles py(K),---, pn(K) have multiplicity 1, Y has the partial
fraction expansion

(14.7)

Gg_v R R
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Figure 14.10: Root locus for example 14.20. Stability requires K > 1.25 and
K < 0.6. Therefore, there is no stabilizing proportional compensator.

The first term is the transient response, \;, and the second term is the steady-state response ys =
Rou. The transient response goes to zero, since from (14.6), Re{pi(K)} < O for @l i. Theinput is
the unit step, X = u. So the steady-state tracking error is |Ry — 1|, which depends on Ry. Itiseasy to
find the residue Ry. We simply multiply both sides of (14.7) by s and evaluate both sides at s= 0,
to get

A KH2(0)
=G(0)= ——~—.
Ro © 1+ KH(0)

To have zero steady-state error, we want Ry = 1, which can only happen if Hy(0) = . But this
means s = 0 must be a pole of the plant transfer functionH,. (Thisis the case in the examples of
the helicopter and the DC motor.) If the plant does not have a pole at s = 0, the steady-state error
will be

‘1_ KH,(0) ‘
1+KH(0)|

This error is smaller the larger the gain K. So to minimize the steady-state error we should choose
aslarge again as possible, subject to the stability requirement (14.6).

However, alarge value of K may lead to poor transient behavior by causing overshoots, as happened
in the DC motor example in figure 14.9 for the larger gain K = 0.0025. To decide the appropriate K
is a matter of trial and error. One studies the transient response for different (stabilizing) values of
K (aswe did for the DC motor) and selects K that gives a satisfactory transient behavior.
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Figure 14.11: A mass-spring-damper system.

14.4 PID controllers

The P controller discussed in the previous section achieves zero steady-state error if the plant has
apole a s= 0. This means that the plant includes an integrator, since the transfer function of an
integrator is 1/s, which has apole at s= 0. If the plant does not have a pole at s = 0, however, a
non-zero error results. While this error can be reduced by choosing alarge gain K in the controller,
this results in poor transient behavior.

In this section, we develop the well-known PID controller, which includes an integrator in the
controller. It can achieve zero steady-state error even if the plant does not have apole at s= 0, and
still achieve reasonable transient behavior. The PID controller isageneralization of the P controller,
in that with certain choices of parameters, it becomes a P controller.

We begin with an example that has rich enough dynamics to demonstrate the strengths of the PID
controller. This example describes a mechanical system, but just about any physical system that is
modeled by alinear second-order differential equation is subject to similar analysis. Thisincludes,
for example, electrical circuits having resistors, capcitors, and inductors.

Example 14.21: A basic mass-spring-damper system isillustrated in figure14.11.
This system has a mass M that slides on a frictionless surface, a spring that attaches
the mass to afixed physical object, and a damper, which absorbes mechanical energy.
A damper might be, for example, a dashpot, which is a cylinder filled with oil plus
apiston. A familiar example of such a damper is a shock absorber in the suspension
system of acar.

Suppose that an external force w is applied to the mass, where w is a continuous-time
signal. The differential equation governing the system is obtained by setting the sum
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of all forcesto zero,
MY(t) + Dy(t) +Cy(t) = w(t).

The output y(t) is the position of the mass at timet, My(t) is the inertial force, Dy(t)
is the damping force due to the damper, Cy(t) is the restoring force of the spring, and
w(t) is the externally applied force. We assume that y(t) = 0 when the spring isin its
equilibrium position (neither extended nor compressed). M, D, and C are constants.
Taking the Laplace transform, using the differentiation property from tablel3.4, gives

$?Y(s) +DsY(s) +CY(s) = W(s),
so the plant or open loop transfer function is

~ oY) 1
(9 =W ~MEiDsIC

Suppose for example that the constants have valuesM = 1, D = 1,and C = 1.25. Then

A 1

Ay(s) = — — 14.
2(8) L+s+125 (14.8)

In this case, the transfer function has a pair of complex poles at s= —0.5+i. Since
their real part is strictly negative, the system is stable.

Suppose we wish to drive the system to move the mass to the right one unit of distance
at timet = 0. We can apply an input force that is a unit step, scaled so that the steady-
state response places the mass at position y(t) = 1. The final steady-state output is
determined by the DC gain, which isH,(0) = 1/1.25 = 0.8, so we can apply an input
given by

1

Vi, w(t) = 0—8u(t) = 1.25u(t),

where u is the unit step signal. The resulting response \y has Laplace transform

Yol6) = 1 125 054025  —05-025 1
O = 92 1s+125 s  s+05—i s+05+i ' s’

We call this the open-loop step response, because there is no control 1oop (yet).

Taking the inverse transform gives the open-loop step response
Yt, yo(t) =e *%[(—0.5+0.25i)e" + (—0.5— 0.25i)e " ]u(t) + u(t).
By combining the complex conjugate terms, this can be expressed as
Vt, yo(t) = Re *>cos(t +8)u(t) 4 u(t),

where R= 1.12 and 6 = 2.68. Figure 14.12 displays a plot of this open-loop step
response yo. Notice that the mass settles to position y(t) = 1 for larget.
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Figure 14.12: The open loop step response yg of the mass-spring-damper

system.
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Figure 14.13: The mass-spring-damper system composed with a PID con-
troller in a feedback composition.

Thissystem in the previous example is stable, and therefore does not need afeedback control loop to
stabilize it. However, there are two difficulties with its open-loop response, shown in figure14.12,
that can be corrected using acontroller. First, it takes approximately 10 units of timefor the transient
to disappear, which may be too slow for some applications. Moreover, there is an overshoot of 20
percent beyond the final steady-state value, which may be too much.

We can correct for the slow response and the large overshoot, using a PID controller. The term
‘PID’ stands for proportional plus integral plus derivative. A PID controller generalizes the P con-
troller of the previous section by adding an integral and derivative term.

The general form of the transfer function of a PID controller is

K352 + Kis+ K

< (14.9)

A K
Hl(S) = K1+ zz + KgS:

Wewill compose thiswith the plant in afeedback loop, as shown in figurel4.13. Here K1, Ky, K3 are
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constants to be selected by the designer. If Ko = K3 = 0, then we have aP controller. If Ky = Kz =0,
Hi(s) = Kz/s, we have an integral contoller, so called because 1/s is the transfer function of an
integrator. That is, if the input to the integral controller is e, and the output isw, then

v, W(t):Kz/_t e(1)dr.

If K1 =Ky=0, I3|2(s) = K3s, then we have aderivative controller, so called because sisthe transfer
function of adifferentiator. That is, if the input to the derivative controller is e, and the output isw,
then

Vi, w(t) =Ksé(t).

The following table offers guidelines for selecting the parameters of a PID controller. Of course,
these are guidelines only—the actual performance of the closed loop system depends on the plant
transfer function and must be checked in detail.

Parameter Responsespeed Overshoot Steady-state error
K1 Faster Larger Decreases

Ko Faster Larger Zero

Kz Minor change Smaller Minor change

Example 14.22: We now evaluate a PID controller for the mass-spring-damper system
of figure 14.11, using the feedback composition of figure14.6. We assume the parame-
tersvauesM =1, D=1, and C = 1.25, asin example 14.21. The closed-loop transfer
function with the PID controller is

A(s) = Hi(s)Ha(s) Ka& + Kis+ Kz
1+ Hi(9Ha(s) S+ (1+Kz)P+ (1.25+Ky)s+ Ky

Suppose we provide as input a unit step. This means that we wish to move the massto
the right one unit of distance, starting at timet = 0. The controller will attempt to track
thisinput. The response to a unit step input has Laplace transform

1 K3 + Kis+ Ky 1

- - 14.10
s S+ (1+Kg)s?+(1.25+Ky)s+Ky s ( )

Ypia(s) =H(s)-

We now need to select the values for the parameters of the PID controller, K, Ko, and
Ks. Wefirst try proportional control with Ky = 10, and K, = K3 = 0. In this case, the
step response has the Laplace transform

. 10 1
A P -
(&= g s11125 s

The inverse Laplace transform gives the time response y,, which is plotted in figure
14.14. The steady-state value is determined by the DC gain of the closed loop transfer
function,

10 10

| =—=-~089.
P4+s+11.25|_, 1125
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Figure 14.14: The step response for open loop, Yo, with P-control, y,, PD-
control, ypq, and PID-control, ypid'
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Thisyields an error of 11 percent, and the overshoot of 50 percent is much worse than
that of the open-loop response y,, aso shown in the figure. Thus, a P controller with
gan K = 10 isuseless for this application.

Following the guidelines in the table above, we add derivative control to reduce the
overshoot. The result is a so-caled PD controller, because it adds a proportional and
aderivative term. For the PD controller we choose K; = 10 and Kz = 10. Substitution
in (14.10) gives the Laplace transform of the step response,

10s+ 10 1

Vls) = - 0s+10 1
pa(S) S +11s+11.25 s

The steady-state value is given by the DC gain of the closed loop transfer function,

10s+ 10

T | ~089
L+ 11s+11.25|, ’

which is the same as the steady-state value for the P controller. The inverse Laplace
transform gives the time response Yod: which is plotted in figure 14.14. The overshoot
is reduced to 10 percent—a large improvement. Also, the response is quicker—the
transient disappears in about 4 time units.

Finaly, to eliminate the steady-state error we add integral control. For the PID con-
troller we choose K; = 10,K; = 5,K3 = 10. Substitution in (14.10) gives the Laplace
transform of the step response

N 10s? + 10s+5 1
Y, id(S) = R—
p S+ 112+ 11.255+5 s

The steady-state value is again given by the DC gain of the closed loop transfer func-
tion,

10¢+10s+5 B

S +112+11.255+ 5|, o

So the steady-state error is eliminated, as expected. The time response Yid is plotted
in figure 14.14. It shows significant improvement over the other responses. There is
no overshoot, and the transient disappears in about 4 time units. Further tuning of the
parameters K1, Ky, K3 could yield small improvements.

1

145 Summary

This chapter considers cascade, paralel, and feedback compositions of LTI systems described by
Z or Laplace transforms. Cascade composition is applied to equalization, paralel composition is
applied to noise cancellation, and feedback composition is applied to control.

Because we are using Z and Laplace transforms rather than Fourier transforms, we are able to con-
sider unstable systems. In particular, we find that while, in principle, cascade and parallel composi-
tions can be used to stabilize unstable systems, the result is not robust. Small changes in parameter
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values can result in the system being once again unstable. Feedback compaosition, on the other hand,
can be used to robustly stabilize unstable systems. We illustrate this first with a simple helicopter
example. The second example, a DC motor, benefits from more sophisticated controllers. The
third example, a mass-spring-damper system, motivates the development of the well-known PID
controller structure. PID controllers can be used to stabilize unstable systems and to improve the
response time, precision, and overshoot of stable systems.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire aplan of attack, those labeled C usually have more than one defensible answer.

1. E Thisexercise studies equalization when the c[lannel isonly known approximately. Qonsi der
the cascade composition of figure14.1, where Hy isthe channel to be equalized, andH; isthe
equalizer. If the equalizer is working perfectly, then x =y. For example, if

z—05

Hl(z):z—O.S and Hy(z) = .

then x = y because H1(2)Ha(2) = 1.

(8) Suppose that H,(2) is as given above, but the plant is a bit different,

- z
Hi(2) = z—05—¢"

Suppose that x = 9, the Kronecker delta function. Ploty —x fore =0.1and € = —0.1.
(b) Now suppose that the equalizer is

and the channel is

Tz-2-¢°
Again suppose that x = d, the Kronecker delta function. Plot y — x for e = 0.1, —0.1.

(c) For part (b), show that equalization error y — x grows without bound whenever € # 0,
le| < 1.

2. E Thisexercise studies equalization for continuous-time channels. Consider the cascade com-
position of figure 14.1, where H; isthe channel to be equalized, andH isthe equalizer. Both

are causal. If o1
|_’|\ = —
() S+2

then x = y because Hy (s)H2(s) = 1.

_s+2

and HZ(S) - S—|——1 5
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transmitted channel equalizer reconstructed
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005"
Channel Equalizer Decision

Figure 14.15: Arrangement of decision-directed equalization of exercise3.

(@) Suppose H, is as above but
A s+1
Hi(s) = :
1(s) S+2+¢
Suppose x = u, the unit step. Plot y—x for € = 0.1 and € = —0.1, and calculate the
steady state error.

(b) Now suppose the equalizer is

A s—1
H -2 -
2(8) s+2’
and the channel is )
N S+
H =
1(s) s—1-¢

Again suppose that x = u. Plot y—xfor e = 0.1, —-0.1.
(c) For part (b) show that the error y — x grows without bound for any € # 0, |g| < 1.

3. T This exercise explores decision-directed equalization. The arrangement is shown in figure
14.15. The transmitted signal is a binary sequence x : Integers— {0, 1}. The causal channel
transfer function is Hy and the equalizer transfer function isH,. The channel output is the
real-valued signal v : Integers— Reals The equalizer output is the real-valued signal vy :
Integers— Reals Thissignal isfed to adecision unit whose binary output at timen, w(n) =0
if y(n) < 0.5and w(n) = 1if y(n) > 0.5. Thus the decision unit is a (nonlinear) memoryless
system,

Decision: [Integers— Real$ — [Integers— {0,1}],

defined by athreshold rule

. (Decisiony)(m = { § Y000

At each point in time, the receiver has an estimate I—Ile of the true channel transfer function,
H;. The equalizer is set at

~

Ha(2) = [HE(2)] . (14.11)

(8) Suppose that initially Hi(z) = 57, and the estimate is perfect, He = H;. (This perfect
estimate is achieved using a known training sequence for x.) Determine the respective
impulse responses by and hy.
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Now suppose the signal x is

0, n<O
vn, x(n)=< 1, n>0,neven (14.12)
0, n>0,nodd

Calculate the channel output v(n) = (hy * x)(n),n < 3. Then calculate the equalizer
output y(n) = (hp xv)(n),n < 3, and check that y(n) = x(n),n < 3. Also check that
w(n) =x(n),n < 3.

(b) Now suppose the channel transfer function has changed to

A z
H(2) =53
but the receiver’s estimate hasn’t changed, i.e.
N z
e —
12 =757

so the equalizer (14.11) hasn’'t change either. For the same input signal again calculate
the channel and equalizer outputs v(n),y(n),n < 3. Check that y(n) # x(n),n > 0. But
show that the decision w(n) = x(n),n < 3. So the equalizer correctly determines x.

(c) Sincethereceiver's decision w = x, it can make a new estimate of the channel using the
fact that Y = H{H,X = H{H,W. The new estimate is

~

Y
HaW

Jje _
=

(14.13)

Suppose time is 3, and the receiver has observed y(n),w(n),n < 3. Since the Z trans-
formsY and W also depend on values of y(n),w(n) for n > 3, these Z transforms can not
be calculated at time n = 3, and so the estimator (14.13) cannot be used. The following
approach will work, however.

Suppose the receiver knows that the unknown channel transfer function is of the form

~ V4
M@=

so that only the parameter a has to be estimated. Using this information, we have

- z z—-02 . z—0.2
Y(z):ﬁ - W(z) = a W(z).

Now take the inverse Z transform and express the time-domain relation between y and
w. Show that you can estimate a knowing y(0),y(1), w(0),w(1).

4. E This continues exercise 3. It shows that if the channel estimate HE is not sufficiently close

to the true channel Hy, the dgcision may become incorrect. Suppose the true channel is
Hi(2) = 5%, the estimate is HE(2) = ;4, the equalizer isHy(2) = [HE(2)] ! = £22, and
the decisionisasin figure14.15. Assume the input signal x to bethe same asin (14.12) Show

that if a= 0.6 then w(0) = x(0),w(1) =x(1),w(2) = x(2), but w(3) # Xx(3).
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5. E This exercise continues the discussion in examples 14.5, 14.6 for the continuous-time,
causal and stable channel with impulse response hy and transfer function

s—2

vse RoQhy) = {s|Re{s} > —1}, Hy(s) = sr1°

(@) Calculate hy and sketch it. (Observe how the zero in theright-half plane at s= 2 accounts
for the negative values.)
(b) Theinverse of Hy,
- s+1
=53
hasapole at s= 2. So as acausa system, the inverse is unstable. But as a non-causal
system, it is stable with RoC= {s | Re{s} < 2} which includes the imaginary axis.
Evaluate the impulse response h, of H, as an anti-causal system, and give a sketch.
(c) The impulse response hy, calculated in (a) is non-zero for t < 0. Consider the finite-
duration, anti-causal impulse response hg obtained by truncating h, before time -5,

ha(t), t> -5

Vt € Reals hg(t) = { 0 t{<_5

and sketch hs. Calculate the transfer function Hs, including its RoG, by using the defi-
nition of the Laplace transform.

(d) Obtain the causal impulse response hy by delaying hz by time T, i.e.
vVt € Reals hy(t) =hg(t+T).

Sketch h, and find its transfer function, Ha. Then H, is an approximate inverse of Hy
with adelay of 5 time units. (Note: hg has a delta function at 0.)

6. T The proportional controller of figure 14.7 stabilizes the plant for K > 1. In this exercise,
we try to achieve the same effect by the cascade compensator of figurel4.1.

(@) Assumethat the plant H isas given in figure 14.7. Design H; for the cascade composi-
tion of figure 14.1 so that H,H; is the same as the closed-loop transfer function achieved

infigure 14.7.
(b) Now suppose that the model of the plant is not perfect, and the plant’s real transfer
functionis 1
|:| =
2(S) M(s—¢)’

for some small value of € > 0. Using the sameH; that you designed in part (a), what is
the transfer function of the cascade composition? Isit stable?

7. T Consider adiscrete-time causal plant with transfer function

~ z
HQ(Z) = —2_2 .

(@) Where are the poles and zeros? Is the plant stable?
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(b) Find the impulse response of the plant. Isit bounded?

(c) Give the closed-loop transfer function for the P controller for this plant.

(d) Sketch theroot locus for the P controller for this plant.

(e) For what values of K isthe closed-loop system stable?

(f) Find the step response of the closed-loop system. Identify the transient and steady-state
responses. For K = 10, what is the steady-state tracking error?

(g) Suppose that the plant isinstead given by

z

|:| p—
2 Z—2—¢€

9

for some real € > 0. For what values of K is the P controller robust for plants with
le] < 0.5?

8. T Consider the feedback composition in figure14.6. Suppose that H1H, is causal and strictly
proper, meaning that the order of the numerator is greater than the order of the denominator.

(@) Show that if H1H, is causal and strictly proper, then so isH, the transfer function of the
feedback composition given by (14.1).

(b) For the discrete-time case, show that we can write
H1(2)H2(2) = 2 1G(2), (14.14)

where G(z) is proper, and is the transfer function of a causal system. Intuitively, this
means that there must be a net unit delay in the feedback loop, because z * isthe transfer
function of a unit delay.

(c) Usethe result of part (a) to argue that the systemH;H, has state-determined output.
(d) For the continuous-time case, show that we can write

Hi(s)Ha(s) = s 16(s), (14.15)

where G(s) is proper, and is the transfer function of a causal system. Intuitively, this
means that there must be an integration in the feedback loop, because st is the transfer
function of an integrator.

(6) Use the result of part (c) to argue that the system H;H, has state-determined outpu,
assuming that the input is bounded and piecewise continuous.

9. E Consider the mth order polynomial ¥+ aq_ 1™ 1+ --- 4 a;s+ ag. Suppose al its roots
have negative real parts. Show that al coefficients of the polynomia must be positive, i.e.,
am-1>0,---,80 > 0. Hint. Express the polynomial as (S—py)--- (S— pm) with Re{p;} > 0.
Note that complex roots must occur in complex conjugate pairs. (The positiveness of all
coefficients is a necessary condition. A sufficient condition is given by the Routh-Hurwitz
criterion, described in control theory texts.)

10. T Consider the feedback composition in figure14.6. The plant’s transfer function ist(s) =
1/8%.
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(8) Show that no PI controller in the form Hy(s) = Ky + Ko /s can stabilize the closed loop
system for any values of Ky, K. Hint. Use the result of problem 9.

(b) §how that by the proper choice of the coefficients Ky, K, of a PD controller in the form
H1(s) = K1 + Kzs, you can place the closed-loop poles at any locations p, p2 (these
must be complex conjugate if they are complex).

11. T Consider the feedback compositi on in figure14.6. The plant’s transfer function isHy(s) =
1/(> 4 2s+1). The Pl controller isH1(s) = Ky + Ka/s.

(a) Take Ky =0, and plot the root locus as K; varies. For what values of K; is the closed
loop system stable? What is the steady state error to a step input as afunction of K ?

(b) Select K1, K> such that the closed loop system is stable and has zero-steady state error.
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