
Chapter 12

Stability

The four Fourier transforms prove to be useful tools for analyzing signals and systems. When a
system is LTI, it is characterized by its frequency response H , and its input x and output y are
related simply by

∀ω∈ Reals, Y(ω) = H(ω)X(ω),

where Y is the Fourier transform of y, and X is the Fourier transform of x.

However, we ignored a lurking problem. Any of the three Fourier transforms, X, Y, or H , may not
exist. Suppose for example that x is a discrete-time signal. Then its Fourier transform (the DTFT)
is given by

∀ ω∈ Reals, X(ω) =
∞

∑
n=−∞

x(n)e−iωn. (12.1)

This is an infinite sum, properly viewed as the limit

∀ ω∈ Reals, X(ω) = lim
N→∞

N

∑
n=−N

x(n)e−iωn. (12.2)

As with all such limits, there is a risk that it does not exist. If the limit does not exist for any
ω∈ Reals, then the Fourier transform becomes mathematically treacherous at best (involving, for
example, Dirac delta functions), and mathematical nonsense at worst.

Example 12.1: Consider the sequence

x(n) =
{

0, n≤ 0
an−1, n > 0

,

where a > 1 is a constant. Plugging into (12.1), the Fourier transform should be

∀ ω∈ Reals, X(ω) =
∞

∑
n=0

an−1e−iωn.

At ω= 0, it is easy to see that this sum is infinite (every term in the sum is greater than
or equal to one). At other values of ω, there are also problems. For example, at ω= π,
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Figure 12.1: A highly simplified helicopter.

the terms of the sum alternate in sign and increase in magnitude as n gets larger. The
limit (12.2) clearly will not exist.

A similar problem arises with continuous-time signals. If x is a continuous-time signal, then its
Fourier transform (the CTFT) is given by

∀ ω∈Reals, X(ω) =
∞∫
−∞

x(t)e−iωtdt. (12.3)

Again, there is a risk that this integral does not exist.

This chapter studies signals for which the Fourier transform does not exist. Such signals prove to be
both common and useful. The signal in example 12.1 gives the bank balance of example 5.12 when
an initial deposit of one dollar is made, and no further deposits or withdrawals are made (thus, it is
the impulse response of the bank account). This signal grows without bound, and any signal that
grows without bound will cause difficulties when using the Fourier transform.

The bank account is said to be an unstable system, because its output can grow without bound even
when the input is always bounded. Such unstable systems are common, so it is unfortunate that the
frequency domain methods we have studied so far do not appear to apply.

Example 12.2: A helicopter is intrinsically an unstable system, requiring an electronic
or mechanical feedback control system to stabilize it. It has two rotors, one above,
which provides lift, and one on the tail. Without the rotor on the tail, the body of the
helicopter would start to spin. The rotor on the tail counteracts that spin. However, the
force produced by the tail rotor must perfectly counter the friction with the main rotor,
or the body will spin.

A highly simplified version of the helicopter is shown in figure 12.1. The body of the
helicopter is modeled as a horizontal arm with moment of intertia M. The tail rotor
goes on the end of this arm. The body of the helicopter rotates freely around the main
rotor shaft. Friction with the main rotor will tend to cause it to rotate by applying a
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torque as suggested by the curved arrow. The tail rotor will have to counter that torque
to keep the body of the helicopter from spinning.

Let the input x to the system be the net torque on the tail of the helicopter, as a function
of time. That is, at time t, x(t) is the difference between the frictional torque exerted by
the main rotor shaft and the counteracting torque exerted by the tail rotor. Let the output
y be the velocity of rotation of the body. From basic physics, torque equals moment of
inertial times rotational acceleration. The rotational acceleration is ẏ, the derivative of
y, so

ẏ(t) = x(t)/M.

Integrating both sides, assuming that the initial velocity of rotation is zero, we get the
output as a function of the input,

∀ t ∈ Reals, y(t) =
1
M

t∫
0

x(τ)dτ.

It is now easy to see that this system is unstable. Let the input be x = u, where u is the
unit step, given by

∀ t ∈ Reals, u(t) =
{

0, t < 0
1, t ≥ 0

. (12.4)

This input is clearly bounded. It never exceeds one in magnitude. However, the output
grows without bound.

In practice, a helicopter uses a feedback system to determine how much torque to apply
at the tail rotor to keep the body of the helicopter straight. We will see how to do this
in chapter 14.

In this chapter we develop the basics of modeling unstable systems in the frequency domain. We
define two new transforms, called the Z transform and Laplace transform. The Z transform
is a generalization of the DTFT and applies to discrete-time signals. The Laplace transform is a
generalization of the CTFT and applies to continuous-time signals. These generalizations support
frequency-domain analysis of signals that do not have a Fourier transform, and thus allow analysis
of unstable systems.

In particular, let X̂ denote the Laplace or Z transform of x, depending on whether it is a continuous
or discrete-time signal. Then the Laplace or Z transform of the output of an LTI system is given by
Ŷ = ĤX̂, where Ĥ is the Laplace or Z transform of the impulse response. This relation applies even
when the system is unstable. Thus, these transforms take the place of the Fourier transform when
the Fourier transform cannot be used. Ĥ is called the transfer function of the LTI system, and it is
a generalization of the frequency response.

12.1 Boundedness and stability

In this section, we identify a simple condition for the existence of the DTFT, which is that the signal
be absolutely summable. We then define a stable system and show that an LTI system is stable if
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and only if its impulse response is absolutely summable. Continuous-time signals are slightly more
complicated, requiring slightly more than that they be absolutely integrable. The conditions for the
existence of the CTFT are called the Dirichlet conditions, and once again, if the impulse response
of an LTI system satisfies these conditions, then it is stable.

12.1.1 Absolutely summable and absolutely integrable

A discrete-time signal x is said to be absolutely summable if

∞

∑
n=−∞

|x(n)|

exists and is finite. The “absolutely” in “absolutely summable” refers to the absolute value (or
magnitude) in the summation. The sum is said to converge absolutely. The following simple fact
gives a condition for the existence of the DTFT:

If a discrete-time signal x is absolutely summable, then its DTFT exists and is finite
for all ω.

To see that this is true, note that the DTFT exists and is finite if and only if

∀ ω∈ Reals, |X(ω)|=
∣∣∣∣∣

∞

∑
n=−∞

x(n)e−iωn

∣∣∣∣∣
exists and is finite. But ∣∣∣∣∣

∞

∑
n=−∞

x(n)e−iωn

∣∣∣∣∣ ≤
∞

∑
n=−∞

|x(n)e−iωn| (12.5)

=
∞

∑
n=−∞

|x(n)| · |e−iωn| (12.6)

=
∞

∑
n=−∞

|x(n)|. (12.7)

This follows from the following facts about complex (or real) numbers:

|a+b| ≤ |a|+ |b|,

which is known as the triangle inequality (and generalizes to infinite sums),

|ab| = |a| · |b|,

and
∀ θ∈ Reals, |eiθ|= 1.
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We can conclude from (12.5) that

∀ ω∈ Reals, |X(ω)| ≤
∞

∑
n=−∞

|x(n)|.

This means that if x is absolutely summable, then the DTFT exists and is finite. It follows from the
fact that if a sum converges absolutely, then it also converges (without the absolute value).

A continuous-time signal x is said to be absolutely integrable if

∞∫
−∞

|x(t)|dt

exists and is finite. A similar argument to that above (with summations replaced by integrals)
suggests that if a continuous-time signal x is absolutely integrable, then its CTFT should exist and be
finite for all ω. However, caution is in order. Integrals are more complicated than summations, and
we need some additional conditions to ensure that the integral is well defined. We can use essentially
the same conditions given on page 234 for the convergence of the continuous-time Fourier series.
These are called the Dirichlet conditions, and require three things:

• x is absolutely integrable;

• in any finite interval, x is of bounded variation, meaning that there are no more than a finite
number of maxima or minima; and

• in any finite interval, x is continuous at all but a finite number of points.

Most any signal of practical engineering importance satisfies the last two conditions, so the impor-
tant condition is that it be absolutely integrable. We will henceforth assume without comment that
all continuous-time signals satisfy the last two conditions, so the only important condition becomes
the first one. Under this assumption, the following simple fact gives a condition for the existence of
the CTFT:

An absolutely integrable continuous-time signal x has a CTFT X, and its CTFT
X(ω) is finite for all ω∈Reals.

12.1.2 Stability

A system is said to be bounded-input bounded-output stable (BIBO stable or just stable) if the
output signal is bounded for all input signals that are bounded.

Consider a discrete-time system with input x and output y. An input is bounded if there is a real
number M < ∞ such that |x(k)| ≤ M for all k ∈ Integers. An output is bounded if there is a real
number N < ∞ such that |y(n)| ≤ N for all n ∈ Integers. The system is stable if for any input
bounded by M, there is some bound N on the output.
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Consider a discrete-time LTI system with impulse response h. The output y corresponding to the
input x is given by the convolution sum,

∀n∈ Integers, y(n) = (h∗x)(n) =
∞

∑
m=−∞

h(m)x(n−m). (12.8)

Suppose that the input x is bounded with bound M. Then, applying the triangle inequality, we see
that

|y(n)| ≤
∞

∑
m=−∞

|h(m)||x(n−m)| ≤M
∞

∑
m=−∞

|h(m)|.

Thus, if the impulse response is absolutely summable, then the output is bounded with bound

N = M
∞

∑
m=−∞

|h(m)|.

Thus, if the impulse response of an LTI system is absolutely summable, then the system is stable.
The converse is also true, but more difficult to show. That is, if the system is stable, then the
impulse response is absolutely summable (see box on page 399). The same argument applies for
continuous-time signals, so in summary:

A discrete-time LTI system is stable if and only if its impulse response is abso-
lutely summable. A continuous-time LTI system is stable if and only if its impulse
response is absolutely integrable.

The following example makes use of the geometric series identity, valid for any real or complex
a where |a|< 1,

∞

∑
m=0

am =
1

1−a
. (12.9)

To verify this identity, just multiply both sides by 1−a to get

∞

∑
m=0

am−a
∞

∑
m=0

am = 1.

This can be written

a0 +
∞

∑
m=1

am−
∞

∑
m=1

am = 1.

Now note that a0 = 1 and that the two sums are identical. Since |a| < 1, the sums converge, and
hence they cancel, so the identity is true.

Example 12.3: As in example 12.1, the impulse response of the bank account of
example 5.12 is

h(n) =
{

0, n≤ 0
an−1, n > 0

,
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Probing further: Stable systems and their impulse response

Consider a discrete-time LTI system with real-valued impulse response h. In this
box, we show that if the system is stable, then its impulse response is absolutely
summable. To show this, we show the contrapositive.a That is, we show that if the
impulse response is not absolutely summable, then the system is not stable. To do
this, suppose that the impulse response is not absolutely summable. That is, the
sum

∞

∑
n=−∞

|h(n)|

is not bounded. To show that the system is not stable, we need only to find one
bounded input for which the output either does not exist or is not bounded. Such
an input is given by

∀ n∈ Integers, x(n) =
{

h(−n)/|h(−n)|, h(n) �= 0
0, h(n) = 0

This input is clearly bounded, with bound M = 1. Plugging this input into the
convolution sum (12.8) and evaluating at n = 0 we get

y(0) =
∞

∑
m=−∞

h(m)x(−m)

=
∞

∑
m=−∞

(h(m))2/|h(m)|

=
∞

∑
m=−∞

|h(m)|,

where the last step follows from the fact that for real-valued h(m), (h(m))2 =
|h(m)|2. But since the impulse response is not absolutely summable, y(0) does
not exist or is not finite, so the system is not stable.

A nearly identical argument works for continuous-time systems.

aThe contrapositive of a statement “if p then q” is “if not q then not p.” The contrapositive is true
if and only if the original statement is true.
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where a > 1 is a constant that reflects the interest rate. This impulse response is not
absolutely summable, so this system is not stable. A system with the same impulse
response, but where 0 < a < 1, however, would be stable, as is easily verified using
(12.9). To use this identity, note that

∞

∑
n=−∞

|h(n)| =
∞

∑
n=1

an−1

=
∞

∑
m=0

am

=
1

1−a
,

where the second step results from a change of variables, letting m= n−1.

Example 12.4: Consider a continuous-time LTI system with impulse response

∀ t ∈ Reals, h(t) = atu(t),

where a > 0 is a real number and u is the unit step, given by (12.4). To determine
whether this system is stable, we need to determine whether the impulse response is
absolutely integrable. That is, we need to determine whether the following integral
exists and is finite,

∞∫
−∞

|atu(t)|dt.

Since a > 0 and u is the unit step, this simplifies to

∞∫
0

atdt.

From calculus, we know that this integral is infinite if a≥ 1, so the system is unstable
if a≥ 1. The integral is finite if 0 < a < 1 and is equal to

∞∫
0

atdt =−1/ ln(a).

Thus, the system is stable if 0 < a < 1.

As we see, when all pertinent signals are absolutely summable (or absolutely integrable), then we
can use Fourier transform techniques with confidence. However, many useful signals do not fall in
this category (the unit step and sinusoidal signals, for example). Moreover, many useful systems
have impulse responses that are not absolutely summable (or absolutely integrable). Fortunately,
we can generalize the DTFT and CTFT to get the Z transform and Laplace transform, which easily
handle signals that are not absolutely summable.
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12.2 The Z transform

Consider a discrete-time signal x that is not absolutely summable. Consider the scaled signal xr
given by

∀ n∈ Integers, xr(n) = x(n)r−n, (12.10)

for some real number r ≥ 0. Often, this signal is absolutely summable when r is chosen appropri-
ately. This new signal, therefore, will have a DTFT, even if x does not.

Example 12.5: Continuing with example 12.3, the impulse response of the bank
account is

h(n) =
{

0, n≤ 0
an−1, n > 0

,

where a > 1. This system is not stable. However, the scaled signal

hr(n) = h(n)r−n

is absolutely summable if r > a. Its DTFT is

∀r > a,∀ω∈ Reals, Hr(ω) =
∞

∑
m=−∞

h(m)r−me−iωm

=
∞

∑
m=1

am−1(reiω)−m

=
∞

∑
n=0

an(reiω)−n−1

= (reiω)−1
∞

∑
n=0

(a(reiω)−1)n

=
(reiω)−1

1−a(reiω)−1 .

The second step is by change of variables, n = m− 1, and the final step applies the
geometric series identity (12.9).

In general, the DTFT of the scaled signal xr in (12.10) is

∀ ω∈ Reals, Xr(ω) =
∞

∑
m=−∞

x(m)(reiω)−m.

Notice that this is a function not just of ω, but also of r , and in fact, we are only sure it is valid for
values of r that yield an absolutely summable signal hr . If we define the complex number

z= reiω

then we can write this DTFT as

∀ z∈ RoC(x), X̂(z) =
∞
∑

m=−∞
x(m)z−m, (12.11)
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where X̂ is a function called the Z transform of x,

X̂:RoC(x)→ Complex

where RoC(x) ⊂ Complexis given by

RoC(x) = {z= reiω ∈ Complex| x(n)r−n is absolutely summable.} (12.12)

The term RoCis shorthand for region of convergence.

Example 12.6: Continuing example 12.5, we can recognize from the form of Hr(ω)
that the Z transform of the impulse response h is

∀ z∈RoC(h), Ĥ(z) =
z−1

1−az−1 =
1

z−a
,

where the last step is the result of multiplying top and bottom by z. The RoCis

RoC(h) = {z= reiω∈ Complex| r > a}

The Z tranform Ĥ of the impulse response h of an LTI system is called the transfer function of the
system.

12.2.1 Structure of the region of convergence

When a signal has a Fourier transform, then knowing the Fourier transform is equivalent to knowing
the signal. The signal can be obtained from its Fourier transform, and the Fourier transform can be
obtained from the signal. The same is true of a Z transform, but there is a complication. The Z
transform is a function X̂:RoC→ Complex, and it is necessary to know the set RoC to know the
function X̂. The region of convergence is a critical part of the Z transform. We will see that very
different signals can have very similar Z transforms that differ only in the region of convergence.

Given a discrete-time signal x, RoC(x) is defined to be the set of all complex numbers z= reiω for
which the following series converges:

∞

∑
m=−∞

|x(m)r−m|.

Notice that if this series converges, then so does

∞

∑
m=−∞

|x(m)z−m|

for any complex number z with magnitude r . This is because

|x(m)z−m|= |x(m)(reiω)−m|= |x(m)| · |r−m| · |e−iωm|= |x(m)| · |r−m|.
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Figure 12.2: Three possible structures for the region of convergence of a Z
transform.

Thus, the set RoCcould equally well be defined to be the set of all complex numbers z such that
x(n)z−n is absolutely summable.

Notice that whether this series converges depends only on r , the magnitude of the complex number
z= reiω, and not on ω, its angle. Thus, if any point z= reiω is in the set RoC, then all points z′ with
the same magnitude are also in RoC. This implies that the set RoC, a subset of Complex, will have
circular symmetry.

The set RoCturns out to have even more structure. There are only three possible patterns, illustrated
by the shaded areas in figure 12.2. Each figure illustrates the complex plane, and the shaded area
is a region of convergence. Each possibility has circular symmetry, in that whether a point is in the
RoCdepends only on its magnitude.

Figure 12.2(a) shows the RoCof a causal signal. A discrete-time signal x is causal if x(n) = 0 for
all n < 0. The RoCis the set of complex numbers z= reiω where following series converges:

∞

∑
m=−∞

|x(m)r−m|.

But if x is causal, then
∞

∑
m=−∞

|x(m)r−m|=
∞

∑
m=0

|x(m)r−m|.

If this series converges for some given r , then it must also converge for any r̃ > r (because for all
m≥ 0, r̃−m < r−m. Thus, if z∈ RoC, then the RoCmust include all points in the complex plane on
the circle passing through z and every point outside that circle.

Note further that not only must the RoC include every point outside the circle, but the series must
also converge in the limit as zgoes to infinity. Thus, for example, H(z) = zcannot be the Z transform
of a causal signal because its RoCcannot possibly include infinity (H(z) is not finite there).

Figure 12.2(c) shows the RoCof an anti-causal signal. A discrete-time signal x is anti-causal if
x(n) = 0 for all n > 0. By a similar argument, if z∈ RoC, then the RoCmust include all points in
the complex plane on the circle passing through z and every point inside that circle.

Figure 12.2(b) shows the RoCof a signal that is neither causal nor anti-causal. Such a signal is called
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a two-sided signal. Such a signal can always be expressed as a sum of a causal signal and an anti-
causal signal. The RoCis the intersection of the regions of convergence for these two components.
To see this, just note that the RoC is the set of complex numbers z = reiω where following series
converges:

∞

∑
m=−∞

|x(m)r−m|=
−1

∑
m=−∞

|x(m)r−m|+
∞

∑
m=0

|x(m)r−m|.

The first sum on the right corresponds to an anti-causal signal, and the second sum on the right to a
causal signal. For this series to converge, both sums must converge. Thus, for a two-sided signal,
the RoChas a ring structure.

Example 12.7: Consider the discrete-time unit step signal u, given by

u(n) =
{

0, n < 0
1, n≥ 0

. (12.13)

The Z transform is, using geometric series identity (12.9),

Û(z) =
∞

∑
m=−∞

u(m)z−m =
∞

∑
m=0

z−m =
1

1−z−1 =
z

z−1
,

with domain

RoC(u) = {z∈ Complex|
∞

∑
m=1

|z|−m < ∞}= {z | |z|> 1}.

This region of convergence has the structure of figure12.2(a), where the dashed circle
has radius one (that circle is called the unit circle). Indeed, this signal is causal, so this
structure makes sense.

Example 12.8: The signal v given by

v(n) =
{ −1, n < 0

0, n≥ 0
,

has Z transform

V̂(z) =
∞

∑
m=−∞

v(m)z−m =−
1

∑
m=−∞

z−m =−z
∞

∑
k=0

zk =
z

z−1
,

with domain

RoC(v) = {z∈ Complex|
1

∑
m=−∞

|z|−m < ∞}= {z | |z|< 1}.

This region of convergence has the structure of figure12.2(c), where the dashed circle
is again the unit circle. Indeed, this signal is anti-causal, so this structure makes sense.
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Notice that although the Z transform Û of u and V̂ of v have the samealgebraic form, namely,
z/(z−1), they are differentfunctions, because their domains are different. Thus the Z transform of
a signal comprises both the algebraic form of the Z transform as well as its RoC.

A right-sided signal x is where for some integer N,

x(n) = 0, ∀ n < N.

Of course, if N≥ 0, then this signal is also causal. However, if N < 0, then the signal is two sided.
Suppose N < 0. Then we can write the Z transform of x as

∞

∑
m=−∞

|x(m)r−m|=
−1

∑
m=N
|x(m)r−m|+

∞

∑
m=0

|x(m)r−m|.

The left summation on the right side is finite, and each term is finite for all z∈Complex, so therefore
it converges for all z∈Complex. Thus, the region of convergence is determined entirely by the right
summation, which is the Z transform of the causal part of x. Thus, the region of convergence of
a right-sided signal has the same form as that of a causal sequence, as shown in figure 12.2(a).
(However, if the signal is not causal, the Z transform does not converge at infinity.)

A left-sided signal x is where for some integer N,

x(n) = 0, ∀ n > N.

Of course, if N ≤ 0, then this signal is also anti-causal. However, if N > 0, then the signal is two
sided. Suppose N > 0. Then we can write the Z transform of x as

∞

∑
m=−∞

|x(m)r−m|=
0

∑
m=−∞

|x(m)r−m|+
N

∑
m=1

|x(m)r−m|.

The right summation is finite, and therefore converges for all z∈ Complexexcept z = 0, where
the individual terms of the sum are not finite. Thus, the region of convergence is that of the left
summation, except for the point z = 0. Thus, the region of convergence of a left-sided signal has
the same form as that of an anti-causal sequence, as shown in figure12.2(c), except that the origin
(z = 0) is excluded. This, of course, is simply the structure of 12.2(b) where the inner circle has
zero radius.

Some signals have no meaningful Z transform.

Example 12.9: The signal x with x(n) = 1, for all n, does not have a Z transform.
We can write x = u− v, where u and v are defined in the previous examples. Thus,
the region of convergence of x must be the intersection of the regions of convergence
of u and v. However, these two regions of convergence have an empty intersection, so
RoC(x) = /0.

Viewed another way, the set RoC(x) is the set of complex numbers z where

∞

∑
m=−∞

|x(m)z−m|=
∞

∑
m=−∞

|z−m|< ∞.

But there is no such complex number z.



406 CHAPTER 12. STABILITY

Note that the signal x in example 12.9 is periodic with any integer period p (because x(n+ p) = x(n)
for any p∈ Integers). Thus, it has a Fourier series representation. In fact, as shown in section10.6.3,
a periodic signal also has a Fourier transform representation, as long as we are willing to allow Dirac
delta functions in the Fourier transform. (Recall that this means that there are values of ω where
X(ω) will not be finite.) With periodic signals, the Fourier series is by far the simplest frequency-
domain tool to use. The Fourier transform can also be used if we allow Dirac delta functions. The
Z transform, however, is more problematic, because the region of convergence is empty.

12.2.2 Stability and the Z transform

If a discrete-time signal x is absolutely summable, then it has a DTFT X that is finite for all ω∈
Reals. Moreover, the DTFT is equal to the Z transform evaluated on the unit circle,

∀ ω∈ Reals, X(ω) = X̂(z)|z=eiω = X̂(eiω).

The complex number z= eiω has magnitude one, and therefore lies on the unit circle. Recall that an
LTI system is stable if and only if its impulse response is absolutely summable. Thus,

A discrete-time LTI system with impulse response h is stable if and only if the
transfer function Ĥ, which is the Z transform of h, has a region of convergence that
includes the unit circle.

Example 12.10: Continuing example 12.6, the transfer function of the bank account
system has region of convergence given by

RoC(h) = {z= reiω ∈ Complex| r > a},
where a > 1. Thus, the region of convergence includes only complex numbers with
magnitude greater than one, and therefore does not include the unit circle. The bank
account system is therefore not stable.

12.2.3 Rational Z tranforms and poles and zeros

All of the Z transforms we have seen so far are rational polynomials in z. A rational polynomial is
simply the ratio of two finite-order polynomials. For example, the bank account system has transfer
function

Ĥ(z) =
1

z−a

(see example 12.6). The unit step of example 12.7 and its anti-causal cousin of example 12.8 have
Z transforms given by

Û(z) =
z

z−1
, V̂(z) =

z
z−1

,

albeit with different regions of convergence.
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In practice, most Z transforms of practical interest can be written as the ratio of two finite order
polynomials in z,

X̂(z) =
A(z)
B(z)

.

The order of the polynomial A or B is the power of the highest power of z. For the unit step, the
numerator polynomial is A(z) = z, a first-order polynomial, and the denominator is B(z) = z− 1,
also a first-order polynomial.

Recall from algebra that a polynomial of order N has N (possibly complex-valued) roots, which
are values of z where the polynomial evaluates to zero. The roots of the numerator A are called the
zeroes of the Z transform, and the roots of the denominator B are called the poles of the Z transform.
The term “zero” refers to the fact that the Z transform evaluates to zero at a zero. The term “pole”
suggests an infinitely high tent pole, where the Z transform evaluates to infinity. The locations in
the complex plane of the poles and zeros turn out to yield considerable insight about a Z transform.
A plot of these locations is called a pole-zero plot. The poles are shown as crosses and the zeros as
circles.

Example 12.11: The unit step of example 12.7 and its anti-causal cousin of example
12.8 have pole-zero plots shown in figure 12.3. In each case, the Z transform has the
form

z
z−1

=
A(z)
B(z)

,

where A(z) = z and B(z) = z−1. A(z) has only one root, at z= 0, so the Z transforms
each have one zero, at the origin in the complex plane. B(z) also has only one root, at
z= 1, so the Z transform has one pole, at z= 1.

These plots also show the unit circle, with a dashed line, and the regions of convergence
for the two examples, as shaded areas. Note that RoC(u) has the form of a region of
convergence of a causal signal, as it should, and RoC(v) has the form of a region of
convergence of an anti-causal signal, as it should (see figure12.2). Note that neither
RoCincludes the unit circle, so if these signals were impulse responses of LTI systems,
then these systems would be unstable.

Consider a rational Z transform

X̂(z) =
A(z)
B(z)

.

The denominator polynomial B evaluates to zero at a pole. That is, if there is a pole at location z= p
(a complex number), then B(p) = 0. Assuming that A(p) �= 0, then X̂(p) is not finite. Thus, the
region of convergence cannot include any pole p that is not cancelled by a zero. This fact, combined
with the fact that a causal signal always has a RoCof the form of the left one in figure12.2, leads
to the following simple stability criterion for causal systems:

A discrete-time causal system is stable if and only if all the poles of its transfer
function lie inside the unit circle.
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|z|=1

Re z

Im z

RoC(u) |z|=1

Re z

Im z

RoC(v)

Figure 12.3: Pole-zero plots for the unit step u and its anti-causal cousin v.
The regions of convergence are the shaded area in the complex plane, not
including the unit circle. Both Z tranforms, Û and V̂, have one pole at z= 1
and one zero at z= 0.

A subtle fact about rational Z transforms is that the region of convergence is always bordered by the
pole locations. This is evident in figure 12.3, where the single pole at z= 1 lies on the boundary of
the two possible regions of convergence. In fact, the rational polynomial

z
z−1

can be associated with only three possible Z transforms, two of which have the two regions of
convergence shown in figure 12.3, plus the one not shown where RoC= /0.

Although a polynomial of order N has N roots, these roots are not necessarily distinct. Consider the
(rather trivial) polynomial

A(z) = z2.

This has order 2, and hence two roots, but both roots are at z= 0. Consider a Z transform given by

∀ z∈ RoC(x), X̂(z) =
z2

(z−1)2 .

This has two zeros at z= 0, and two poles at z= 1. We say that the zero at z= 0 has multiplicity
two. Similarly, the pole at z= 1 has multiplicity two. This multiplicity is indicated in a pole-zero
plot by a number adjacent to the pole or zero, as shown in figure12.4.

Example 12.12: Consider a signal x that is equal to the delayed Kronecker delta
function,

∀ n∈ Integers, x(n) = δ(n−M),

where M ∈ Integersis a constant. Its Z transform is easy to find using the sifting rule,

∀ z∈RoC(x), X̂(z) =
∞

∑
m=−∞

δ(m−M)z−m = z−M = 1/zM .

If M > 0, then this converges absolutely for any z �= 0. Thus, if M > 0,

RoC(x) = {z∈Complex| z �= 0}.
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Re z

Im z

RoC(x)

22

Figure 12.4: Poles and zeros with multiplicity greater than one are indicated
by a number next to the cross or circle.

This Z transform has M poles at z= 0. Notice that this region of convergence, appro-
priately, has the form of that of a causal signal, figure12.2(a), but where the circle has
radius zero.

If M < 0, then the region of convergence is the entire set Complex, and the Z transform
has M zeros at z= 0. This signal is anti-causal, and its RoCmatches the structure of
12.2(c), where the radius of the circle is infinite. Note that this Z transform does not
converge at infinity, which it would have to do if the signal were causal.

If M = 0, then X̂(z) = 1 for all z∈Complex, so RoC= Complex, and there are no poles
or zeros. This is a particularly simple Z transform.

Recall that for a causal signal, the Z transform must converge as z→∞. The region of convergence
must include everything outside some circle, including infinity.1 This implies that for a causal signal
with a rational Z transform, the Z transform must be proper. A rational polynomial is proper when
the order of the numerator is smaller than or equal to the order of the denominator. For example, if
M = −1 in the previous example, then x(n) = δ(n+ 1) and Ĥ(z) = z, which has numerator order
one and denominator order zero. It is not proper, and indeed, it does not converge as z→ ∞. Any
rational polynomial that has a denominator of higher order than the numerator will not converge as
z goes to infinity, and hence cannot be the Z transform of a causal signal.

In the following chapter, table 13.1 gives many common Z tranforms, all of which are rational
polynomials. Together with the properties discussed in the that chapter, we can find the Z transforms
of many signals.

12.3 The Laplace transform

Consider a continuous-time signal x that is not absolutely integrable. Consider the scaled signal xσ
given by2

∀ t ∈Reals, xσ(t) = x(t)e−σt , (12.14)

1Some texts consider poles and zeros at infinity, in which case a causal signal cannot have a pole at infinity.
2The reason that this is different from the scaling by r−n used to get the Z transform is somewhat subtle. The two

methods are essentially equivalent, if we let r = eσ. But scaling by e−σt turns out to be more convenient for continuous-
time systems, as we will see.
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for some real number σ. Often, this signal is absolutely integrable when σ is chosen appropriately.
This new signal, therefore, will have a CTFT, even if x does not.

Example 12.13: Consider the impulse response of the simplified helicopter system
described in example 12.2. The output as a function of the input is given by

∀ t ∈ Reals, y(t) =
1
M

t∫
0

x(τ)dτ.

The impulse response is found by letting the input be a Dirac delta function and using
the sifting rule to get

∀ t ∈ Reals, h(t) = u(t)/M,

where u is the continuous-time unit step in (12.4). This is not absolutely integrable, so
this system is not stable. However, the scaled signal

∀ t ∈ Reals, hσ(t) = h(t)e−σt

is absolutely integrable if σ > 0. Its CTFT is

∀ σ > 0,∀ω∈ Reals, Hσ(ω) =
∞∫
−∞

h(t)e−σt e−iωtdt

=
1
M

∞∫
0

e−σte−iωtdt

=
1
M

∞∫
0

e−(σ+iω)tdt

=
1

M(σ+ iω)
.

The last step in example 12.13 uses the following useful fact from calculus,

b∫
a

ectdt =
1
c
(ecb−eca) , (12.15)

for any c∈ Complexand a,b∈ Reals∪{−∞,∞} where ecb and eca are finite.

In general, the CTFT of the scaled signal xσ in (12.14) is

∀ ω∈ Reals, Xσ(ω) =
∫ ∞

−∞
x(t)e−(σ+iω)tdt.

Notice that this is a function not just of ω, but also of σ. We are only sure it is valid for values of σ
that yield an absolutely integrable signal hσ.
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Define the complex number
s= σ+ iω.

Then we can write this CTFT as

∀ s∈ RoC(x), X̂(s) =
∞∫
−∞

x(t)e−stdt, (12.16)

where X̂ is a function called the Laplace transform of x,

X̂:RoC(x)→ Complex

where RoC(x) ⊂ Complexis given by

RoC(x) = {s= σ+ iω∈Complex| x(t)e−σt is absolutely integrable.} (12.17)

The Laplace tranform Ĥ of the impulse response h of an LTI system is called the transfer function
of the system, just as with discrete-time systems.

Example 12.14: Continuing example 12.13, we can recognize from the form of Hσ(ω)
that the transfer function of the helicopter system is

∀ s∈RoC(h), Ĥ(s) =
1

Ms
.

The RoCis
RoC(h) = {s= σ+ iω∈Complex| σ < 0}

12.3.1 Structure of the region of convergence

As with the Z transform, the region of convergence is an essential part of a Laplace transform. It
gives the domain of the function X̂. Whether a complex number s is in the RoCdepends only on σ,
not on ω, as is evident in the definition (12.17). Since s= σ+ iω, whether a complex number is in
the region of convergence depends only on its real part. Once again, there are only three possible
patterns for the region of convergence, shown in figure 12.5. Each figure illustrates the complex
plane, and the shaded area is a region of convergence. Each possibility has vertical symmetry, in
that whether a point is in the RoCdepends only on its real part.

Figure 12.5(a) shows the RoCof a causal or right-sided signal. A continuous-time signal x is right-
sided if x(t) = 0 for all t < T for some T ∈Reals. The RoCis the set of complex numbers s= σ+ iω
where following integral converges:

∞∫
−∞

|x(t)e−σt |dt.

But if x is right-sided, then
∞∫
−∞

|x(t)e−σt |dt =
∞∫

T

|x(t)e−σt |dt.
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Figure 12.5: Three possible structures for the region of convergence of a
Laplace transform.

If T ≥ 0 and this integral converges for some given σ, then it must also converge for anyσ̃ > σ
because for all t ≥ 0, e−σ̃t < e−σt . Thus, if s= σ+ iω∈ RoC(x), then the RoC(x) must include all
points in the complex plane on the vertical line passing through sand every point to the right of that
line.3

If T < 0, then
∞∫

T

|x(t)e−σt |dt =
0∫

T

|x(t)e−σt |dt +
∞∫

0

|x(t)e−σt |dt,

then the finite integral exists and is finite for all σ, so the same argument applies.

Figure 12.5(c) shows the RoC of a left-sided signal. A continuous-time signal x is left-sided if
x(t) = 0 for all t > T for some T ∈ Reals. By a similar argument, if s= σ+ iω∈ RoC(x), then the
RoC(x) must include all points in the complex plane on the vertical line passing through sand every
point to the left of that line.

Figure 12.5(b) shows the RoCof a signal that is a two-sided signal. Such a signal can always be
expressed as a sum of a right-sided signal and left-sided signal. The RoCis the intersection of the
regions of convergence for these two components.

Example 12.15: Using the same methods as in examples 12.13 and 12.14 we can find
the Laplace transform of the continuous-time unit step signal u, given by

∀ t ∈ Reals, u(t) =
{

0, t < 0
1, t ≥ 0

. (12.18)

The Laplace transform is

∀ s∈RoC(u), Û(s) =
∞∫
−∞

u(t)e−stdt

3It is convenient but coincidental that the region of convergence is the right half of a plane when the sequence is right
sided.
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=
∞∫

0

e−stdt

=
1
s
,

where again we have used (12.15). The domain of Û is

RoC(u) = {s∈Complex| Re{s}> 0}.

This region of convergence has the structure of figure 12.5(a), where the dashed line
sits exactly on the imaginary axis. The region of convergence, therefore, is simply the
right half of the complex plane.

Example 12.16: The signal v given by

∀ t ∈ Reals, v(t) =−u(−t) =
{ −1, t < 0

0, t ≥ 0
,

has Laplace transform

∀ s∈ RoC(v), V̂(s) =
∞∫
−∞

v(t)e−stdt

= −
0∫

−∞

e−stdt

=
1
s

with domain
RoC(v) = {s∈ Complex| Re{s} < 0}.

This region of convergence has the structure of figure 12.5(c), where the dashed line
coincides with the imaginary axis.

Notice that although the Laplace transforms Û and V̂ have the same algebraic form, namely, 1/s,
they are in fact different functions, because their domains are different.

Some signals have no meaningful Laplace transform.

Example 12.17: The signal x with x(t) = 1, for all t ∈ Reals, does not have a Laplace
transform. We can write x = u− v, where u and v are defined in the previous exam-
ples. Thus, the region of convergence of x must be the intersection of the regions of
convergence of u and v. However, these two regions have an empty intersection, so
RoC(x) = /0.
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Viewed another way, the set RoC(x) is the set of complex numbers s where

∞∫
−∞

|x(t)e−st|dt =
∞∫
−∞

|e−st|dt < ∞.

But there is no such complex number s.

Note that the signal x in example12.17 is periodic with any period p∈Reals(because x(t + p) = x(t)
for any p∈ Reals). Thus, it has a Fourier series representation. In fact, as shown in section10.6.3,
a periodic signal also has a Fourier transform representation, as long as we are willing to allow
Dirac delta functions in the Fourier transform. (Recall that this means that there are values of
ω where X(ω) will not be finite.) In the continuous-time case as in the discrete-time case, with
periodic signals, the Fourier series is by far the simplest frequency-domain tool to use. The Fourier
transform can also be used if we allow Dirac delta functions. The Laplace transform, however, is
more problematic, because the region of convergence is empty.

12.3.2 Stability and the Laplace transform

If a continuous-time signal x is absolutely integrable, then it has a CTFT X that is finite for all
ω∈Reals. Moreover, the CTFT is equal to the Laplace transform evaluated on the imaginary axis,

∀ ω∈Reals, X(ω) = X̂(s)|s=iω = X̂(iω).

The complex number s= iω is pure imaginary, and therefore lies on the imaginary axis. Recall that
an LTI system is stable if and only if its impulse response is absolutely integrable. Thus

A continuous-time LTI system with impulse response h is stable if an only if the
transfer function Ĥ, which is the Laplace transform of h, has a region of conver-
gence that includes the imaginary axis.

Example 12.18: Consider the exponential signal h given by

∀ t ∈ Reals, h(t) = e−atu(t),

for some real or complex number a, where, as usual, u is the unit step. The Laplace
transform is

∀ s∈ RoC(h), Ĥ(s) =
∞∫
−∞

h(t)e−stdt

=
∞∫

0

e−ate−stdt
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=
∞∫

0

e−(s+a)tdt

=
1

s+a
,

where again we have used (12.15). It is evident from (12.15) that for this integral to be
valid, the domain of Ĥ must be

RoC(h) = {s∈ Complex| Re{s}>−Re{a}}.
This region of convergence has the structure of figure12.5(a), where the vertical dashed
line passes through a.

Now suppose that h is the impulse response of an LTI system. That LTI system is stable
if an only if Re{a}> 0. Indeed, if Re{a}< 0, then the impulse response grows without
bound, because e−at grows without bound as t gets large.

12.3.3 Rational Laplace tranforms and poles and zeros

All of the Laplace transforms we have seen so far are rational polynomials in s. In practice, most
Laplace transforms of interest can be written as the ratio of two finite order polynomials in s,

X̂(s) =
A(s)
B(s)

.

An exception is illustrated in the following example.

Example 12.19: Consider a signal x that is equal to the delayed Dirac delta function,

∀ t ∈ Reals, x(t) = δ(t− τ),

where τ ∈ Realsis a constant. Its Laplace transform is easy to find using the sifting
rule,

∀ s∈ RoC(x), X̂(s) =
∞∫
−∞

δ(t− τ)e−stdt = e−sτ.

This has no finite-order rational polynomial representation.

Unlike the discrete-time case, pure time delays turn out to be rather difficult to realize in many
physical systems that are studied using Laplace transforms, so we need not be overly concerned
with them. We focus henceforth on rational Laplace transforms.

For a rational Laplace transform, the order of the polynomial A or B is the power of the highest
power of s. For the exponential of example 12.18, the numerator polynomial is A(s) = 1, a zero-
order polynomial, and the denominator is B(s) = s+ a, a first-order polynomial. As with the Z
transform, the roots of the numerator polynomial are called the zeros of the Laplace transform, and
the roots of the denominator polynomial are called the poles.
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Figure 12.6: Pole-zero plot for the exponential signal of example 12.18,
assuming a has a positive real part.

Example 12.20: The exponential of example 12.18 has a single pole at s=−a, and no
zeros.4 A pole-zero plot is shown in figure 12.6, where we assume that a is a complex
number with a positive real part. The region of convergence includes the imaginary
axis, so this signal is absolutely integrable.

As with Z transforms, the region of convergence of a rational Laplace transform bordered by the
pole locations. Hence,

A continuous-time causal system is stable if and only if all the poles of its transfer
function lie in the left half of the complex plane. That is, all the poles must have
negative real parts.

Table 13.3 in the following chapter gives many common Laplace tranforms.

12.4 Summary

Many useful signals have no Fourier transform. A sufficient condition for a signal to have a Fourier
transform that is finite at all frequencies is that the signal be absolutely summable (if it is a discrete-
time signal) or absolutely integrable (if it is a continuous-time system).

Many useful systems are not stable, which means that even with a bounded input, the output may
be unbounded. An LTI system is stable if and only if its impulse response is absolutely summable
(discrete-time) or absolutely integrable (continuous-time).

Many signals that are not absolutely summable (integrable) can be scaled by an exponential to get
a new signal that is absolutely summable (integrable). The DTFT (CTFT) of the scaled signal is
called the Z transform (Laplace transform) of the signal.

4In some texts, it will be observed that as s approaches infinity, this Laplace transform approaches zero, and hence it
will be said that there is a zero at infinity. So to avoid conflict with such texts, we might say that this Laplace transform
has no finite zeros.



12.4. SUMMARY 417

The Z transform (Laplace transform) is defined over a region of convergence, where the structure
of the region of convergence depends on whether the signal is causal, anti-causal, or two-sided.
The Z transform (Laplace transform) of the impulse response is called the transfer function of an
LTI system. The region of convergence includes the unit circle (imaginary axis), if and only if the
system is stable.

A rational Z transform (Laplace transform) has poles and zeros, and the poles bound the region of
convergence. The locations of the poles and zeros yield considerable information about the system,
including whether it is stable.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire a plan of attack, those labeled C usually have more than one defensible answer.

1. E Consider the signal x given by

∀ n∈ Integers, x(n) = anu(−n),

where a is a complex constant.

(a) Find the Z transform of x. Be sure to give the region of convergence.

(b) Where are the poles and zeros?

(c) Under what conditions on a is x absolutely summable?

(d) Assuming that x is absolutely summable, find its DTFT.

2. T Consider the signal x given by

∀ n∈ Integers, x(n) =
{

1, |n| ≤M
0, otherwise

,

for some integer M > 0.

(a) Find the Z transform of x. Simplify so that there remain no summations. Be sure to give
the region of convergence.

(b) Where are the poles and zeros? Do not give poles and zeros that cancel each other out.

(c) Under what conditions is x absolutely summable?

(d) Assuming that x is absolutely summable, find its DTFT.

3. T Consider the unit ramp signal w given by

∀ n∈ Integers, w(n) = nu(n),
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where u is the unit step. The following identity will be useful,

∞

∑
m=0

(m+ 1)am = (
∞

∑
m=0

am)2 =
1

(1−a)2 . (12.19)

This is a generalization of the geometric series identity, given by (12.9). This series converges
for any complex number a with |a|< 1, because

∞

∑
m=0

(m+ 1)|a|m = 1+ 2|a|+ 3|a|2 + · · ·

= (1+ |a|+ |a|2 + · · ·)(1+ |a|+ |a|2 + · · ·)
= (

∞

∑
m=0

|a|m)2

< ∞.

(a) Use the given identity to find the Z transform of the unit ramp. Be sure to give the region
of convergence. Check your answer against that given on page432.

(b) Sketch the pole-zero plot of the Z transform.

(c) Is the unit ramp absolutely summable?

4. E Sketch the pole-zero plots and regions of convergence for the Z transforms of the follow-
ing impulse responses, and indicate whether a discrete-time LTI system with these impulse
responses is stable:

(a) h1(n) = δ(n)+ 0.5δ(n−1).

(b) h2(n) = (0.5)nu(n).

(c) h3(n) = 2nu(n).

5. E Consider the anti-causal continuous-time exponential signal x given by

∀ t ∈Reals, x(t) =−e−atu(−t),

for some real or complex number a, where, as usual, u is the unit step.

(a) Show that the Laplace transform of x is

X̂(s) =
1

s+a

with region of convergence

RoC(x) = {s∈ Complex| Re{s} <−Re{a}}.

(b) Where are the poles and zeros?

(c) Under what conditions on a is x absolutely integrable?

(d) Assuming that x is absolutely integrable, find its CTFT.
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6. E This exercise demonstrates that the Laplace transform is linear. Show that if x and y are
continuous-time signals, a and b are complex (or real) constants, and w is given by

∀ t ∈Reals, w(t) = ax(t)+by(t),

then the Laplace transform is

∀ s∈ RoC(w), Ŵ(s) = aX̂(s)+bŶ(s),

where
RoC(w)⊃RoC(x)∩RoC(y).

7. T Let the causal sinusoidal signal y be given by

∀ t ∈ Reals, y(t) = cos(ω0t)u(t),

where ω0 is a real number and u is the unit step.

(a) Show that the Laplace transform is

∀ s∈ {s | Re{s}> 0}, Ŷ(s) =
s

s2 +ω2
0

.

Hint: Use linearity, demonstrated in exercise 6, and Euler’s relation.

(b) Sketch the pole-zero plot and show the region of convergence.

8. E Consider a discrete-time LTI system with impulse response

∀n, h(n) = an cos(ω0n)u(n),

for some ω0 ∈Reals. Determine for what values of a this system is stable.

9. T The continuous-time unit ramp signal w is given by

∀t ∈Reals, x(t) = tu(t),

where u is the unit step.

(a) Find the Laplace transform of the unit ramp, and give the region of convergence.
Hint: Use integration by parts in (12.16) and the fact that

∫ ∞
0 te−σtdt < ∞ for σ > 0.

(b) Sketch the pole-zero plot of the Laplace transform.

10. E Let h and g be the impulse response of two stable systems. They may be discrete-time or
continuous-time. Let a and b be two complex numbers. Show that the system with impulse
response ah+bg is stable.

11. T Consider a series composition of two (continuous- or discrete-time) systems with impulse
response h and g. The output v of the first system is related to its input x by v = h∗x. The
output y of the second system (and of the series composition) is y = g∗ v. Suppose both
systems are stable. Show that the series composition is stable.
Hint: Use the definition of stability.
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Figure 12.7: System composition for exercise 13.

12. T Let h be the impulse response of a stable discrete-time system, so it is absolutely summable,
and denote

‖h‖=
∞

∑
n=−∞

|h(n)|.

(‖h‖ is called the norm of the impulse response.)

(a) Suppose the input signal x is bounded by M, i.e. ∀n, |x(n)| ≤M. Show that the output
y = h∗x is bounded by ‖h‖M.

(b) Consider the input signal x where

∀n∈ Integers, x(n) =
{

h(−n)/|h(−n)|, h(n) �= 0
0, h(n) = 0.

Show that ‖h‖ is the smallest bound of the output y = h∗x.

(c) Let g be the impulse response of another stable system with norm ‖g‖. Show that the
norm satisfies the triangle inequality,

‖h+g‖ ≤ ‖h‖+‖g‖.

(d) Suppose the two systems are placed in series. The composition has the impulse response
h∗g. Show that

‖h∗g‖ ≤ ‖h‖×‖g‖.
13. E Show that the series-parallel composition of figure 12.7 is stable if the four component

systems are stable. Let h be the impulse response of the composition. Express h in terms
of the component impulse responses and then estimate ‖h‖ in terms of the norms of the
components.

14. E Let x be a discrete-time signal of finite duration, i.e. x(n) = 0 for n < M and n > N where
M and N are finite integers (positive or negative). Let X̂ be its Z transform.

(a) Show that all its poles (if any) are at z= 0.

(b) Show that if x is causal it has N poles at z= 0.

15. T This problem relates the Z and Laplace transforms. Let x be a discrete-time signal with Z
transform X̂ : RoC(x)→ Complex. Consider the continuous-time signal y related to x by

∀t ∈Reals, y(t) =
∞

∑
n=−∞

x(n)δ(t−nT).
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Here T > 0 is a fixed period. So y comprises delta functions located at t = nT of magnitude
x(n).

(a) Use the sifting property and the definition (12.16) to find the Laplace transform Ŷ of y.
What is RoC(y)?

(b) Show that Ŷ(s) = X̂(esT), where X̂(esT) is X̂(z) evaluated at s= esT.

(c) Suppose X̂(z) = 1
z−1 with RoC(x) = {z | |z|> 1}. What are Ŷ and RoC(y)?
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Chapter 13

Laplace and Z Transforms

In the previous chapter, we defined Laplace and Z transforms to deal with signals that are not
absolutely summable and systems that are not stable. The Z transform of the discrete-time signal x
is given by

∀ z∈ RoC(x), X̂(z) =
∞

∑
m=−∞

x(m)z−m,

where RoC(x) is the region of convergence, the region in which the sum above converges abso-
lutely.

The Laplace transform of the continuous-time signal x is given by

∀ s∈ RoC(x), X̂(s) =
∞∫
−∞

x(t)e−stdt,

where RoC(x) is again the region of convergence, the region in which the integral above converges
absolutely.

In this chapter, we explore key properties of the Z and Laplace transforms and give examples of
transforms. We will also explain how, given a rational polynomial in z or s, plus a region of con-
vergence, one can find the corresponding time-domain function. This inverse transform proves
particularly useful, because compositions of LTI systems, studied in the next chapter, often lead to
rather complicated rational polynomial descriptions of a transfer function.

Z transforms of common signals are given in table 13.1. Properties of the Z transform are summa-
rized in table 13.2 and elaborated in the first section below.

13.1 Properties of the Z tranform

The Z transform has useful properties that are similar to those of the four Fourier transforms. They
are summarized in table 13.2 and elaborated in this section.

423
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Discrete-time signal
∀ n∈ Integers

Z transform
∀ z∈ RoC(x)

Roc(x)⊂ Complex Reference

x(n) = δ(n−M) X̂(z) = z−M Complex Example
12.12

x(n) = u(n) X̂(z) = z
z−1

{z | |z|> 1} Example
12.7

x(n) = anu(n) X̂(z) = z
z−a

{z | |z|> |a|} Example
13.3

x(n) = anu(−n) X̂(z) = 1
1−a−1z

{z | |z|< |a|} Exercise 1
in chapter

12

x(n) = cos(ω0n)u(n) X̂(z) = z2−zcos(ω0)
z2−2zcos(ω0)+1

{z | |z|> 1} Example
13.3

x(n) = sin(ω0n)u(n) X̂(z) = zsin(ω0)
z2−2zcos(ω0)+1 , {z | |z|> 1} Exercise 1

x(n) =
1

(N−1)! (n−1) · · · (n−N +1)

an−Nu(n−N)

X̂(z) = 1
(z−a)N

{z | |z|> |a|} ( 13.13)

x(n) =
(−1)N

(N−1)! (N−1−n) · · · (1−n)

an−Nu(−n)

X̂(z) = 1
(z−a)N

{z | |z|< |a|} (13.14)

Table 13.1: Z transforms of key signals. The signal u is the unit step (12.13),
δ is the Kronecker delta, a is any complex constant, ω0 is any real constant,
M is any integer constant, and N > 0 is any integer constant.
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Time domain
∀ n∈ Integers

Frequency domain
∀ z∈RoC

RoC Name
(reference)

w(n) = ax(n)+by(n) Ŵ(z) = aX̂(z)+bŶ(z) RoC(w)⊃ RoC(x)∩RoC(y) Linearity
(section 13.1.1)

y(n) = x(n−N) Ŷ(z) = z−NX̂(z) RoC(y) = RoC(x) Delay
(section 13.1.2)

y(n) = (x∗h)(n) Ŷ(z) = X̂(z)Ĥ(z) RoC(y)⊃RoC(x)∩RoC(h) Convolution
(section 13.1.3)

y(n) = x∗(n) Ŷ(z) = [X̂(z∗)]∗ RoC(y) = RoC(x) Conjugation
(section 13.1.4)

y(n) = x(−n) Ŷ(z) = X̂(z−1) RoC(y) =
{z | z−1 ∈RoC(x)}

Time reversal
(section 13.1.5)

y(n) = nx(n) Ŷ(z) =−z d
dzX̂(z) RoC(y) = RoC(x) Scaling by n

(page 432)

y(n) = a−nx(n) Ŷ(z) = X̂(az) RoC(y) =
{z | az∈RoC(x)}

Exponential
scaling

(section 13.1.6)

Table 13.2: Properties of the Z transform. In this table, a,b are complex
constants, and N is an integer constant.
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13.1.1 Linearity

Suppose x and y have Z transforms X̂ and Ŷ, that a,b are two complex constants, and that

w = ax+by.

Then the Z transform of w is

∀ z∈ RoC(w), Ŵ(z) = aX̂(z)+bŶ(z).

This follows immediately from the definition of the Z transform,

Ŵ(z) =
∞

∑
m=−∞

w(m)z−m

=
∞

∑
m=−∞

(ax(m)+by(m))z−m

= aX̂(z)+bŶ(z).

The region of convergence of w must include at least the regions of convergence of x and y, since
if x(n)r−n and y(n)r−n are absolutely summable, then certainly (ax(n) + by(n))r−n is absolutely
summable. Conceivably, however, the region of convergence may be larger. Thus, all we can assert
in general is

RoC(w)⊃ RoC(x)∩RoC(y). (13.1)

Linearity is extremely useful because it makes it easy to find the Z transform of complicated signals
that can be expressed a linear combination of signals with known Z transforms.

Example 13.1: We can use the results of example 12.12 plus linearity to find, for
example, the Z transform of the signal x given by

∀ n∈ Integers, x(n) = δ(n)+ 0.9δ(n−4)+ 0.8δ(n−5).

This is simply

X̂(z) = 1+ 0.9z−4 + 0.8z−5.

We can identify the poles by writing this as a rational polynomial in z (multiply top and
bottom by z5),

X̂(z) =
z5 + 0.9z+ 0.8

z5 ,

from which we see that there are 5 poles at z= 0. The signal is causal, so the region
of convergence is the region outside the circle passing through the pole with the largest
magnitude, or in this case,

RoC(x) = {z∈Complex| z �= 0}.
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Example 13.1 illustrates how to find the transfer function of any finite impulse response (FIR) filter.
It also suggests that the transfer function of an FIR filter always has a region of convergence that
includes the entire complex plane, except possibly z= 0. The region of convergence will also not
include z= ∞ if the FIR filter is not causal.

Linearity can also be used to invert a Z transform. That is, given a rational polynomial and a region
of convergence, we can find the time-domain function that has this Z transform. The general method
for doing this will be considered in the next chapter, but for certain simple cases, we just have to
recognize familiar Z transforms.

Example 13.2: Suppose we are given the Z transform

∀ z∈ {z∈ Complex| z �= 0}, X̂(z) =
z5 + 0.9z+ 0.8

z5 .

We can immediately recognize this as the Z transform of a causal signal, because it is a
proper rational polynomial and the region of convergence includes the entire complex
plane except z= 0 (thus, it has the form of figure 12.2(a)).

If we divide through by z5, this becomes

∀ z∈ {z∈ Complex| z �= 0}, X̂(z) = 1+ 0.9z−4 + 0.8z−5.

By linearity, we can see that

∀ n∈ Integers, x(n) = x1(n)+ 0.9x2(n)+ 0.8x3(n),

where x1 has Z transform 1, x2 has Z transform z−4, and x3 has Z transform z−5. The
regions of convergence for each Z transform must be at least that of x, or at least {z∈
Complex| z �= 0}. From example 12.12, we recognize these Z transforms, and hence
obtain

∀ n∈ Integers, x(n) = δ(n)+ 0.9δ(n−4)+ 0.8δ(n−5).

Another application of linearity uses Euler’s relation to deal with sinusiodal signals.

Example 13.3: Consider the exponential signal x given by

∀ n∈ Integers, x(n) = anu(n),

where a is a complex constant. Its Z transform is

X̂(z) =
∞

∑
m=−∞

x(m)z−m =
∞

∑
m=0

amz−m =
1

1−az−1 =
z

z−a
, (13.2)

where we have used the geometric series identity (12.9). This has a zero at z= 0 and a
pole at z= a. The region of convergence is

RoC(x) = {z∈ Complex|
∞

∑
m=0

|a|m|z|−m < ∞}= {z | |z|> |a|}, (13.3)
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Re z

Im z

RoC(x) |z|=1

Re z

Im z

RoC(y)

a

|z|=|a|

eiω0

e-iω0

(a) (b)

Figure 13.1: Pole-zero plots for the exponential signal x and the sinusoidal
signal y of example 13.3.

the region of the complex plane outside the circle that passes through the pole. A pole-
zero plot is shown in figure 13.1(a).

We can use this result plus linearity of the Z transform to determine the Z transform of
the causal sinusoidal signal y given by

∀ n∈ Integers, y(n) = cos(ω0n)u(n).

Euler’s relation implies that

y(n) =
1
2
{eiω0nu(n)+e−iω0nu(n)}.

Using (13.2) and linearity,

Ŷ(z) =
1
2

{
z

z−eiω0
+

z
z−e−iω0

}

=
1
2

2z2−z(eiω0 +e−iω0)
(z−eiω0)(z−e−iω0)

=
z(z− cos(ω0))

z2−2zcos(ω0)+ 1
.

This has a zero at z = 0, another zero at z = cos(ω0), and two poles, one at z = eiω0

and the other at z= e−iω0 . Both of these poles lie on the unit circle. A pole-zero plot
is shown in figure 13.1(b), where we assume that ω0 = π/4. We know from (13.1) and
(13.3) that the region of convergence is at least the area outside the unit circle. In this
case, we can conclude that it is exactly the area outside the unit circle, because it must
be bordered by the poles, and it must have the form of a region of convergence of a
causal signal.

13.1.2 Delay

For any integer N (positive or negative) and signal x, let y = DN(x) be the signal given by

∀n∈ Integers, y(n) = x(n−N).
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Suppose x has Z transform X̂ with domain RoC(x). Then RoC(y) = RoC(x) and

∀z∈ RoC(y), Ŷ(z) =
∞

∑
m=−∞

y(m)z−m =
∞

∑
m=−∞

x(m−N)z−m = z−NX̂(z). (13.4)

Thus

If a signal is delayed by N samples, its Z transform is multiplied by z−N.

13.1.3 Convolution

Suppose x and h have Z transforms X̂ and Ĥ. Let

y = x∗h.

Then
∀z∈ RoC(y), Ŷ(z) = X̂(z)Ĥ(z). (13.5)

This follows from using the definition of convolution,

∀n∈ Integers, y(n) =
∞

∑
m=−∞

x(m)h(n−m),

in the definition of the Z transform,

Ŷ(z) =
∞

∑
n=−∞

y(n)z−n =
∞

∑
n=−∞

∞

∑
m=−∞

x(m)z−mh(n−m)z−(n−m)

=
∞

∑
l=−∞

∞

∑
m=−∞

x(m)z−mh(l)z−l = X̂(z)Ĥ(z).

The Z transform of y converges absolutely at least at values of z where both X̂ and Ĥ converge
absolutely. Thus,

RoC(y)⊃ RoC(x)∩RoC(h).

This is true because the double sum above can be written as

∞

∑
n=−∞

y(n)z−n =

(
∞

∑
m=−∞

x(m)z−m

)(
∞

∑
l=−∞

h(l)z−l

)
.

This obviously converges absolutely if each of the two factors converges absolutely. Note that the
region of convergence may actually be larger than RoC(x)∩RoC(h). This can occur, for example,
if the product (13.5) results in zeros of X̂(z) cancelling poles of Ĥ(z) (see exercise 3).

If h is the impulse response of an LTI system, then its Z transform is called the transfer function
of the system. The result (13.5) tells us that the Z transform of the output is the product of the Z
transform of the input and the transfer function. The transfer function, therefore, serves the same
role as the frequency response. It converts convolution into simple multiplication.
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13.1.4 Conjugation

Suppose x is a complex-valued signal. Let y be defined by

∀ n∈ Integers, y(n) = [x(n)]∗.

Then
∀ z∈ RoC(y), Ŷ(z) = [X̂(z∗)]∗,

where
RoC(y) = RoC(x).

This follows because

∀ z∈ RoC(x), Ŷ(z) =
∞

∑
n=−∞

y(n)z−n

=
∞

∑
n=−∞

x∗(n)z−n

=

[
∞

∑
n=−∞

x(n)(z∗)−n

]∗
= [X̂(z∗)]∗.

If x happens to be a real signal, then y = x, soŶ = X̂, so

X̂(z) = [X̂(z∗)]∗.

The key consequence is:

For the Z transform of a real-valued signal, poles and zeros occur in complex-
conjugate pairs. That is, if there is a zero at z = q, then there must be a zero at
z= q∗, and if there is a pole at z= p, then there must be a pole at z= p∗.

This is because
0 = X̂(q) = (X̂(q∗))∗

Similarly, if there is a pole at z= p, then there must also be a pole at z= p∗.

Example 13.4: Example 13.3 gave the Z transform of a signal of the form x(n) =
anu(n), where a is allowed to be complex, and the Z tranform of a signal of the form
y(n) = cos(ω0n)u(n), which is real-valued. The pole-zero plots are shown in figure
13.1. In that figure, the complex signal has a pole at z = a, and none at z = a∗. But
the real signal has a pole at z = eiω0 and a matching pole at the complex conjugate,
z= e−iω0 .
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13.1.5 Time reversal

Suppose x has Z transform X̂ and y is obtained from x by reversing time, so that

∀ n∈ Integers, y(n) = x(−n).

Then
∀z∈ {z∈ Complex| z−1 ∈ Roc(x)}, Ŷ(z) = X̂(z−1).

This is evident from the definition of the Z transform, which implies that

Ŷ(z) =
∞

∑
m=−∞

x(−m)z−m =
∞

∑
n=−∞

x(n)(z−1)−n = X̂(z−1),

where X̂(z−1) is X̂ evaluated at z−1.

13.1.6 Multiplication by an exponential

Suppose x has Z transform X̂, a is a complex constant, and y(n) = a−nx(n) for all n. Then

∀z∈ {z∈Complex| az∈RoC(x)}, Ŷ(z) = X̂(az),

where X̂(az) is X̂ evaluated at az. This is because

Ŷ(z) =
∞

∑
m=−∞

y(m)z−m =
∞

∑
m=−∞

x(m)(az)−m = X̂(az).

Note that if X̂ has a pole at p (or a zero at q), then Ŷ has a pole at p/a (or a zero at q/a).

Example 13.5: Suppose x is given by

∀ n∈ Integers, x(n) = anu(n).

Then we know from example 13.3 that

∀ z∈ {z | |z|> |a|}, X̂(z) =
z

z−a
.

This has a pole at z= a. Now let y(n) = a−nx(n) = u(n). The Z transform is

Ŷ(z) = X̂(az) =
az

az−a
=

z
z−1

,

as expected. Moreover, this has a pole at z= a/a = 1, as expected, and the region of
convergence is indeed given by

{z∈ Complex| az∈ RoC(x)} = {z∈ Complex| |z|> 1}.
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Probing further: Derivatives of Z transforms

Calculus on complex-valued functions of complex variables can be somewhat intri-
cate. Suppose X̂ is a function of a complex variable. The derivative can be defined
as a limit,

d
dz

X̂(z) = lim
ε→0

X̂(z+ ε)− X̂(z)
ε

,

where ε is a complex variable that can approach zero from any direction in the
complex plane. The derivative exists if the limit does not depend on the direction.
If the derivative exists at all points within a distance ε > 0 of a point z in the complex
plane, then X̂ is said to be analytic at z. A Z transform is a series of the form

∀ z∈ RoC(x), X̂(z) =
∞

∑
n=−∞

x(n)z−n.

This is called a Laurent series in the theory of complex variables. It can be shown
that a Laurent series is analytic at all points z∈ RoC(x), and that the derivative is

∀ z∈ RoC(x),
d
dz

X̂(z) =
∞

∑
m=−∞

−mx(m)z−m−1.

We can use this fact to show that the Z transform of y given by y(n) = nx(n) is

∀z∈Roc(x), Ŷ(z) =−z
d
dz

X̂(z).

This is because

Ŷ(z) =
∞

∑
n=−∞

nx(n)z−n =
∞

∑
n=−∞

(−z)
d
dz

x(n)z−n =−z
d
dz

X̂(z).

It is not difficult to show that Roc(y) = Roc(x) (see exercise 5).

This property can be used to find other Z transforms. For example, the Z transform
of the unit step, x = u, is X̂(z) = z/(z−1), with RoC(x) = {z∈Complex| |z|> 1}.
So the Z transform of the unit ramp y, given by y(n) = nu(n), is

Ŷ(z) =−z
d
dz

z
z−1

=
z

(z−1)2 ,

with RoC(y) = {z∈Complex| |z|> 1}. Another method for finding the Z transform
of the unit ramp is given in exercise 3 of chapter 12.
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13.1.7 Causal signals and the initial value theorem

Consider a causal discrete-time signal x. Its Z transform is

∀ z∈ {z∈ Complex| |z|> r}, X̂(z) =
∞

∑
m=0

x(m)z−m,

for some r (the largest magnitude of a pole). Then

lim
z→∞

∞

∑
m=0

x(m)z−m = x(0)+ lim
z→∞

∞

∑
m=1

x(m)z−m = x(0).

This is because as z goes to ∞, each term x(m)z−m goes to zero. Thus

If x is causal, x(0) = lim
z→∞

X̂(z) .

This is called the initial value theorem.

Example 13.6: The Z transform of the unit step x(n) = u(n) is X̂(z) = z/(z−1), so, as
expected,

x(0) = lim
z→∞

X̂(z) = lim
z→∞

z
z−1

= lim
z→∞

1
1−z−1 = 1,

because
lim
z→∞

z−1 = 0.

Suppose a Z transform X̂ is the rational polynomial

X̂(z) =
aMzM +aM−1zM−1 · · ·+a0

zN +bN−1zN−1 + · · ·+b0
.

If x is causal, then this rational polynomial must be proper. Were this not the case, if M > N, then
by the initial value theorem, we would have

x(0) = lim
z→∞

X̂(z) = ∞,

which is certainly not right.

Example 13.7: Consider the Z transform

∀ z∈ Complex, X̂(z) = z.

This is not a proper rational polynomial (the numerator has order 1 and the denominator,
which is 1, has order 0). From example 12.12, we know that this corresponds to

∀ n∈ Integers, x(n) = δ(n+ 1).

This is not a causal signal.
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13.2 Frequency response and pole-zero plots

A pole-zero plot can be used to get a quick estimate of key properties of an LTI system. We have
already seen that it reveals whether the system is stable. It also reveals key features of the frequency
response, such as whether the system is highpass or lowpass.

Consider a stable discrete-time LTI system with impulse response h, frequency response H , and
rational transfer function Ĥ. We know that the frequency response and transfer function are related
by

∀ω∈ Reals, H(ω) = Ĥ(eiω).

That is, the frequency response is equal to the Z transform evaluated on the unit circle. The unit
circle is in the region of convergence because the system is stable.

Assume that Ĥ is a rational polynomial, in which case we can express it in terms of the first-order
factors of the numerator and denominator polynomials,

Ĥ(z) =
(z−q1) · · · (z−qM)
(z− p1) · · · (z− pN)

,

with zeros at q1, · · · ,qM and poles at p1, · · · , pN. The zeros and poles may be repeated (i.e., they may
have multiplicity greater than one). The frequency response is therefore

∀ ω∈ Reals, H(ω) =
(eiω−q1) · · · (eiω−qM)
(eiω− p1) · · · (eiω− pN)

.

The magnitude response is

∀ ω∈ Reals, |H(ω)|= |e
iω−q1| · · · |eiω−qM|
|eiω− p1| · · · |eiω− pN| .

Each of these factors has the form
|eiω−b|

where b is the location of either a pole or a zero. The factor |eiω−b| is just the distance from eiω to
b in the complex plane.

Of course, eiω is a point on the unit circle. If that point is close to a zero at location q, then the factor
|eiω−q| is small, so the magnitude response will be small. If that point is close to a pole at p, then
the factor |eiω− p| is small, but since this factor is in the denominator, the magnitude response will
be large. Thus,

The magnitude response of a stable LTI system may be estimated from the pole-
zero plot of its transfer function. Starting at ω= 0, trace counterclockwise around
the unit circle as ω increases. If you pass near a zero, then the magnitude response
should dip. If you pass near a pole, then the magnitude response should rise.
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Example 13.8: Consider the causal LTI system of example 9.16, which is defined by
the difference equation

∀ n∈ Integers, y(n) = x(n)+ 0.9y(n−1).

We can find the transfer function by taking Z transforms on both sides, using linearity,
to get

Ŷ(z) = X̂(z)+ 0.9z−1Ŷ(z).

The transfer function is

Ĥ(z) =
Ŷ(z)
X̂(z)

=
1

1−0.9z−1 =
z

z−0.9
.

This has a pole at z = 0.9, which is closest to z = 1 on the unit circle, and a zero at
z= 0, which is equidistant from all points on the unit circle. The zero, therefore, has
no effect on the magnitude response. The pole is closest to z= 1, which corresponds to
ω= 0, so the magnitude response peaks at ω= 0, as shown in figure9.12.

Example 13.9: Consider a legnth-4 moving average. Using methods like those in
example 9.12, we can show that the transfer function is

∀ z∈ {z∈ Complex| z �= 0}, Ĥ(z) =
1
4
· 1−z−4

1−z−1 =
1
4

z4−1
z3(z−1)

.

The numerator polynomial has roots at the four roots of unity, which are z= 1, z= eiπ/2,
z=−1, and z= ei3π/2. Thus, we can write this transfer function as

∀ z∈ {z∈Complex| z �= 0},

Ĥ(z) =
1
4

(z−1)(z−eiπ/2)(z+ 1)(z−ei3π/2)
z3(z−1)

=
1
4

(z−eiπ/2)(z+ 1)(z−ei3π/2)
z3 .

The (z−1) factors in the numerator and denominator cancel (fortunately, or we would
have a pole at z= 1, on the unit circle, and we would have to conclude that the system
was unstable). A pole-zero plot is shown in figure 13.2.

The magnitude response is shown in figure 9.8. Relating that figure to the pole-zero
plot, we see that the frequency response peaks at z= 1, and as we move around the unit
circle, we pass through zero at ω= π/2, or z= eiπ/2, and again through zero at ω= π.
The magnitude response is periodic with period 2π, so the zero at z= e3iπ/2 is also a
zero at z= e−iπ/2, corresponding to a frequency of ω=−π/2.
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Continuous-time signal
∀ t ∈Reals

Laplace transform
∀ s∈ RoC(x)

Roc(x) Reference

x(t) = δ(t− τ) X̂(s) = e−sτ Complex Exercise
12.19

x(t) = u(t) X̂(s) = 1/s {s∈Complex| Re{s} > 0} Example
12.15

x(t) = e−atu(t)

X̂(s) =
1

s+a

{s∈Complex| Re{s} >
−Re{a}}

Example
12.18

x(t) =−e−atu(−t)

X̂(s) =
1

s+a

{s∈Complex| Re{s} <
−Re{a}}

Exercise 5

x(t) = cos(ω0t)u(t)
X̂(s) =

s

s2 +ω2
0

{s | Re{s}> 0} Exercise 7

x(t) = sin(ω0t)u(t)
X̂(s) =

ω0

s2 +ω2
0

{s | Re{s}> 0} Example
13.10

x(t) =
tN−1

(N−1)!
e−atu(t) X̂(z) =

1
(s+a)N

{s∈Complex| Re{s} >
−Re{a}}

—

x(t) =− tN−1

(N−1)!
e−atu(−t) X̂(z) =

1
(s+a)N

{s∈Complex| Re{s} <
−Re{a}}

—

Table 13.3: Laplace transforms of key signals. The signal u is the unit
step (12.18), δ is the Dirac delta, a is any complex constant, ω0 is any real
constant, τ is any real constant, and N is a positive integer.
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Time domain
∀ t ∈Reals

s domain
∀ s∈RoC

RoC Name
(reference)

w(t) = ax(t)+by(t) Ŵ(s) = aX̂(s)+bŶ(s) RoC(w)⊃ RoC(x)∩RoC(y) Linearity
(exercise 6)

y(t) = x(t− τ) Ŷ(s) = e−sτX̂(s) RoC(y) = RoC(x) Delay
(exercise 7)

y(t) = (x∗h)(r) Ŷ(s) = X̂(s)Ĥ(s) RoC(y)⊃RoC(x)∩RoC(h) Convolution
(exercise 8)

y(t) = x∗(t) Ŷ(s) = [X̂(s∗)]∗ RoC(y) = RoC(x) Conjugation
(exercise 9)

y(t) = x(ct) Ŷ(s) = X̂(s/c)/|c| RoC(y) =
{s | s/c∈RoC(x)}

Time scaling
(exercise 10)

y(t) = tx(t)

Ŷ(s) =− d
ds

X̂(s)

RoC(y) = RoC(x) Scaling by t
—

y(t) = eatx(t) Ŷ(s) = X̂(s−a) RoC(y) =
{s | s−a∈ RoC(x)}

Exponential
scaling

(exercise 11)

y(t) =
t∫
−∞

x(τ)dτ Ŷ(s) = X̂(s)/s RoC(y)⊃
RoC(x)∩{s | Re{s}> 0}

Integration
(section 13.3.1)

y(t) =
d
dt

x(t)
Ŷ(s) = sX̂(s) RoC(y)⊃ RoC(x) Differentiation

(page 44)

Table 13.4: Properties of the Laplace transform. In this table, a,b are com-
plex constants, c and τ are real constants.
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|z|=1

Re z

Im z

3

Figure 13.2: Pole-zero plot for a length-4 moving average system.

13.3 Properties of the Laplace transform

The Laplace transform has useful properties that are similar to those of the Z transform. They
are summarized in table 13.4 and elaborated mostly in the exercises at the end of this chapter. In
this section, we elaborate on one of the properties that is not shared by the Z transform, namely
integration, and then use the properties to develop some examples. Key Laplace transforms are
given in table 13.3.

13.3.1 Integration

Let y be defined by

∀ t ∈Reals, y(t) =
t∫

−∞

x(τ)dτ.

The Laplace tranform is

∀ s∈ RoC(y), Ŷ(s) = X̂(s)/s,

where

RoC(y)⊃ RoC(x)∩{s | Re{s} > 0}.

This follows from the convolution property in table13.4. We recognize that

y(t) = (x∗u)(t),

where u is the unit step. Hence, from the convolution property,

Ŷ(s) = X̂(s)Û(s)

and

RoC(y)⊃ RoC(x)∩RoC(u).

Û and RoC(u) are given in example 12.15, from which the property follows.
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Im s

Re s

RoC

s = iω

s = − iω

Figure 13.3: Pole-zero plot for the sinusoidal signal y of example 13.10.

13.3.2 Sinusoidal signals

Sinusoidal signals have Laplace transforms with poles on the imaginary axis, as illustrated in the
following example.

Example 13.10: Let the causal sinusoidal signal y be given by

∀ t ∈ Reals, y(t) = sin(ω0t)u(t),

where ω0 is a real number and u is the unit step. Euler’s relation implies that

y(t) =
1
2i

[eiω0tu(t)−e−iω0tu(t)].

Using (12.18) and linearity,

Ŷ(s) =
1
2i

{
1

s+ iω0
− 1

s− iω0

}
=

ω0

s2 +ω2
0

.

This has no finite zeros and two poles, one at s= iω0 and the other at s= −iω0. Both
of these poles lie on the imaginary axis, as shown in figure13.3. The region of conver-
gence is the right half of the complex plane. Note that if this were the impulse response
of an LTI system, that system would not be stable. The region of convergence does not
include the imaginary axis.

13.3.3 Differential equations

We can use the differentiation property in table 13.4 to solve differential equations with constant
coefficients.

Example 13.11: ?? In the tuning fork example of example2.16, the displacement y of
a tine is related to the acceleration of the tine by

ÿ(t) =−ω2
0y(t),



440 CHAPTER 13. LAPLACE AND Z TRANSFORMS

where ω0 is a real constant. Let us assume that the tuning fork is initially at rest, and an
external input x (representing say, a hammer strike) adds to the acceleration as follows,

ÿ(t) =−ω2
0y(t)+x(t).

We can use Laplace transforms to find the impulse response of this LTI system. Taking
Laplace transforms on both sides, using linearity and the differentiation property,

∀ s∈ RoC(y)∩RoC(x), s2Ŷ(s) =−ω2
0Ŷ(s)+ X̂(s).

From this, we can find the transfer function of the system,

Ĥ(s) =
Ŷ(s)
X̂(s)

=
1

s2 +ω2
0

.

Comparing this with example 13.10, we see that this differs only by a scaling by ω0

from the Laplace transform in that example. Thus, the pole-zero plot of the tuning fork
is shown in figure 13.3, and the impulse response is given by

∀ t ∈ Reals, h(t) = sin(ω0t)u(t)/ω0.

Interestingly, this implies that the tuning fork is not stable. This impulse response is
not absolutely integrable. However, this model of the tuning fork is idealized. It fails
to account for loss of energy due to friction. A more accurate model would be stable.

The above example can be easily generalized to find the transfer function of any LTI system de-
scribed by a differential equation. In fact, Laplace transforms offer a powerful and effective way to
solve differential equations.

In the previous example, we inverted the Laplace transform by recognizing that it matched the
example before that. In the next chapter, we will give a more general method for inverting a Laplace
transform.

13.4 Frequency response and pole-zero plots, continuous time

Just as with Z transforms, the pole-zero plot of a Laplace transform can be used to get a quick
estimate of key properties of an LTI system. Consider a stable continuous-time LTI system with
impulse response h, frequency response H , and rational transfer function Ĥ. We know that the
frequency response and transfer function are related by

∀ω∈ Reals, H(ω) = Ĥ(iω).

That is, the frequency response is equal to the Laplace transform evaluated on the imaginary axis.
The imaginary axis is in the region of convergence because the system is stable.

Assume that Ĥ is a rational polynomial, in which case we can express it in terms of the first-order
factors of the numerator and denominator polynomials,

Ĥ(s) =
(s−q1) · · · (s−qM)
(s− p1) · · · (s− pN)

,
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with zeros at q1, · · · ,qM and poles at p1, · · · , pN. The zeros and poles may be repeated (i.e., they may
have multiplicity greater than one). The frequency response is therefore

∀ ω∈ Reals, H(ω) =
(iω−q1) · · · (iω−qM)
(iω− p1) · · · (iω− pN)

.

The magnitude response is

∀ ω∈ Reals, |H(ω)|= |iω−q1| · · · |iω−qM|
|iω− p1| · · · |iω− pN| .

Each of these factors has the form
|iω−b|

where b is the location of either a pole or a zero. The factor |iω−b| is just the distance from iω to
b in the complex plane.

Of course, iω is a point on the imaginary axis. If that point is close to a zero at location q, then the
factor |iω−q| is small, so the magnitude response will be small. If that point is close to a pole at p,
then the factor |iω− p| is small, but since this factor is in the denominator, the magnitude response
will be large. Thus,

The magnitude response of a stable LTI system may be estimated from the pole-
zero plot of its transfer function. Starting at iω= 0, trace upwards and downwards
along the imaginary axis to increase or decrease ω. If you pass near a zero, then
the magnitude response should dip. If you pass near a pole, then the magnitude
response should rise.

Example 13.12: Consider an LTI system with transfer function given by

∀ s∈ {s | Re{s} > Re{a}}, H(s) =
s

(s−a)(s−a∗)
.

Suppose that a = c+ iω0. Figure 13.4 shows three pole-zero plots for ω0 = 1 and
three values of c, namely c = −1, c = −0.5, and c = −0.1. The magnitude frequency
responses can be calculated and plotted using the following Matlab code:

omega = [-10:0.05:10];
a1 = -1.0 + i;
H1 = i*omega./((i*omega - a1).*(i*omega-conj(a1)));
a2 = -0.5 + i;
H2 = i*omega./((i*omega - a2).*(i*omega-conj(a2)));
a3 = -0.1 + i;
H3 = i*omega./((i*omega - a3).*(i*omega-conj(a3)));
plot(omega, abs(H1), omega, abs(H2), omega, abs(H3));

The plots are shown together at the bottom of figure 13.4. The plot with the higher
peaks corresponds to the pole-zero plot with the poles closer to the imaginary axis.
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Im s

Re s

RoC

s = − 1 + i

2 4 6− 2− 4− 6

ω

|H(ω)| 

s = − 1 − i

Im s

Re s

RoC

s = − 0.5 + i

s = − 0.5 − i

Im s

Re s

RoC

s = − 0.1 + i

s = − 0.1 − i

Figure 13.4: Pole-zero plots for the three transfer functions in example
13.12, and the three corresponding magnitude frequency responses.



13.5. THE INVERSE TRANSFORMS 443

13.5 The inverse transforms

There are two inverse transforms. The inverse Z transform recovers the discrete-time signal x from
its Z transform X̂. The inverse Laplace transform recovers the continuous-time signal x from its
Laplace transform X̂. We study the inverse Z transform in detail. The inverse Laplace transform is
almost identical. The general approach is to break down a complicated rational polynomial into a
sum of simple rational polynomials whose inverse transforms we recognize. We consider only the
case where X̂ can be expressed as a rational polynomial.

13.5.1 Inverse Z transform

The procedure is to construct the partial fraction expansion ofX̂, which breaks it down into a sum
of simpler rational polynomials.

Example 13.13: Consider a Z transform given by

∀ z∈RoC(x), X̂(z) =
1

(z−1)(z−2)
=
−1

z−1
+

1
z−2

. (13.6)

This sum is called the partial fraction expansion of X̂, and we will see below how to
find it systematically. We can write this as

∀ z∈ RoC(x), X̂(z) = X̂1(z)+ X̂2(z),

where X̂1(z) =−1/(z−1) and X̂2(z) = 1/(z−2) are the two terms.

To determine the inverse Z transforms of the two terms, we need to know their regions
of convergence. Recall from the linearity property that RoC(x) includes the intersection
of the regions of convergence of the two terms,

RoC(x) ⊃ RoC(x1)∩RoC(x2). (13.7)

Once we know these two regions of convergence, we can use table 13.1 to obtain the
inverse Z transform of each term. By the linearity property the sum of these inverses is
the inverse Z transform of X̂.

X̂ given by (13.6) has one pole at z= 1 and one pole at z= 2. From section 12.2.3 we
know that RoC(x) is bordered by these poles, so it has one of three forms:

1. RoC(x) = {z∈ Complex| |z|< 1},
2. RoC(x) = {z∈ Complex| 1 < |z|< 2}, or

3. RoC(x) = {z∈ Complex| |z|> 2}.
Suppose we have case (1), which implies that x is anti-causal. From (13.7), the region
of convergence of the term −1/(z− 1) must be {z∈ Complex| |z| < 1}. The only
other possibility is {z∈ Complex| |z| > 1}, which would violate (13.7) unless the
intersection is empty (which would not be an interesting case). Thus, from table13.1,
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the inverse Z transform of the first term must be the anti-causal signal x1(n) = u(−n),
for all n∈ Integers.

For the second term, 1/(z−2), its region of convergence could be either {z∈Complex| |z|<
2} or {z∈ Complex| |z| > 2}. Again, the second possibility would violate (13.7), so
we must have the first possibility. This results in x2(n) = −2n−1u(−n), from the last
entry in table 13.1. Hence, the inverse Z transform is

∀ n∈ Integers, x(n) = u(−n)−2n−1u(−n).

If RoC(x) is given by case (2), we rewrite (13.6) slightly as

X̂(z) =−z−1 z
z−1

+
1

z−2
.

The inverse Z transform of the first term is obtained from table 13.1, together with the
delay property in table 13.2. The inverse Z transform of the second term is the same as
in case (1). We conclude that in case (2) the inverse Z transform is the two-sided signal

∀n, x(n) =−u(n−1)−2n−1u(−n).

In case (3), we write (13.6) as

X̂(z) =−z−1 z
z−1

+z−1 z
z−2

,

and conclude that the inverse Z transform is the causal signal

∀n, x(n) =−u(n−1)+ 2n−1u(n−1).

We can generalize this example. Consider any strictly proper rational polynomial

X̂(z) =
A(z)
B(z)

=
aMzM + · · ·+a1z+a0

zN +bN−1zN−1 + · · ·+b1z+b0
.

The numerator is of order M, the denominator is of order N. ‘Strictly proper’ means that M < N.
We can factor the denominator,

X̂(z) =
aMzM + · · ·+a1z+a0

(z− p1)m1(z− p2)m2 · · · (z− pk)mk
. (13.8)

Thus X̂ has k distinct poles at pi , each with multiplicy mi . Since the order of the denominator is N,
it must be true that

N =
k

∑
i=1

mi . (13.9)

The partial fraction expansion of (13.8) is

X̂(z) =
k

∑
i=1

[
Ri1

(z− pi)
+

Ri2

(z− pi)2 + · · ·+ Rimi

(z− pi)mi

]
. (13.10)
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A pole with multiplicity mi contributes mi terms to the partial fraction expansion, so the total number
of terms is N, the order of the denominator, from (13.9). The coefficients Ri j are complex numbers
called the residues of the pole pi .

We assume that the poles p1, · · · , pN are indexed so that |p1| ≤ · · · |pN|. The RoC(x) must have one
of the following three forms:

1. RoC= {z∈ Complex| |z|< |p1|},
2. RoC= {z∈ Complex| |pj−1|< |z|< |pj |}, for j ∈ {2, · · · ,k}, or

3. RoC= {z∈ Complex| |z|> |pk|} .

As in example 13.13, each term in the partial fraction expansion has two possible regions of conver-
gence, only one of which overlaps with RoC(x). Thus, if we know RoC(x), we can determine the
region of convergence of each term of the partial fraction expansion, and then use table13.1 to find
its inverse.

The following example illustrates how to find the residues.

Example 13.14: We will find the inverse Z transform of

X̂(z) =
2z+ 3

(z−1)(z+ 2)
=

R1

z−1
+

R2

z+ 2
.

The residues R1,R2 can be found by matching coefficients on both sides. Rewrite the
right-hand side as

(R1 +R2)z+(2R1−R2)
(z−1)(z+ 2)

.

Matching the coefficients of the numerator polynomials on both sides we conclude that
R1 +R2 = 2 and 2R1−R2 = 3. We can solve these simultaneous equations to determine
that R1 = 5/3 and R2 = 1/3.

Alternatively, we can find residue R1 by multiplying both sides by (z−1) and evaluating
at z= 1. That is,

R1 =
2z+ 3
z+ 2

∣∣∣∣
z=1

=
5
3
.

Similarly, we can find R2 by we multiplying both sides by z+ 2 and evaluating at
z=−2, to get

2z+ 3
z−1

|z=−2 = R2,

so R2 = 1/3. Thus the partial fraction expansion is

X̂(z) =
5/3
z−1

+
1/3
z+ 2

.

RoC(x) is either

1. {z∈ Complex| |z|< 1},
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2. {z∈ Complex| 1 < |z|< 2}, or

3. {z∈ Complex| |z|> 2}.
Knowing which case holds, we can find the inverse Z transform of each term from table
13.1. In the first case, x is the anti-causal signal

∀n, x(n) =−5
3

u(−n)− 1
3
(−2)n−1u(−n).

In the second case it is the two-sided signal

∀n, x(n) =
5
3

u(n−1)− 1
3
(−2)n−1u(−n).

In the third case it is the causal signal

∀n, x(n) =
5
3

u(n−1)+
1
3
(−2)n−1u(n−1).

If some pole of X̂ has multiplicity greater than one, it is slightly more difficult to carry out the partial
fraction expansion. The following example illustrates the method.

Example 13.15: Consider the expansion

X̂(z) =
2z+ 3

(z−1)(z+ 2)2 =
R1

z−1
+

R21

z+ 2
+

R22

(z+ 2)2 .

Again we can match coefficients and determine the residues. Alternatively, to obtain
R1 we multiply both sides by (z− 1) and evaluate the result at z= 1, to get R1 = 5/9.
To obtain R22 we multiply both sides by (z+ 2)2 and evaluate the result at z= −2, to
get R22 = 1/3.

To obtain R21 we multiply both sides by (z+ 2)2,

2z+ 3
z−1

=
(z+ 2)2R1

z−1
+R21(z+ 2)+R22,

and then differentiate both sides with respect to z. We evaluate the result at z= −2, to
get

d
dz

2z+ 3
z−1

∣∣∣∣
z=−2

= R21.

Hence R21 =−5/9. So the partial fraction expansion is

2z+ 3
(z−1)(z+ 2)2 =

5/9
z−1

− 5/9
z+ 2

+
1/3

(z+ 2)2 .

Knowing the RoC, we can now obtain the inverse Z transform ofX̂. For instance, in the
case where RoC= {z∈Complex| |z|> 2}, the inverse Z transform is the causal signal

∀n, x(n) =
5
9

u(n−1)− 5
9
(−2)n−1u(n−1)+

1
3
(n−1)(−2)n−2u(n−2).
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In example 13.15, we used the next to the last entry in table 13.1 to find the inverse transform of
the term (1/3)/(z+ 2)2. That entry in the table is based on a generalization of the geometric series
identity, given by (12.9). The first generalization is

∞

∑
n=0

(n+ 1)an = (
∞

∑
n=0

an)2 =
1

(1−a)2 . (13.11)

The series above converges for any complex number a with |a| < 1 (see exercise3 of chapter 12).
The broader generalization, for any integer k≥ 1, is

1
k!

∞

∑
n=0

(n+k)(n+k−1) · · · (n+ 1)an =
1

(1−a)k+1 , (13.12)

for any complex number a with |a|< 1.

Consider then a Z transform X̂ that has a pole at p of multiplicity m and no zeros. Since the pole p
cannot belong to RoC, the RoCis either

{z∈ Complex| |z|> |p|} or {z∈ Complex| |z|< |p|}.

In the first case we expand X̂ in a series involving only the terms z−n,n≥ 0,

X̂(z) =
1

(z− p)m

=
z−m

(1− pz−1)m

= z−m 1
(m−1)!

∞

∑
n=0

(m+n−1) · · ·(n+ 1)(pz−1)n, using (13.12)

=
1

(m−1)!

∞

∑
k=m

(k−1) · · · (k−m+ 1)pk−mz−k, defining k = n+m,

and the series converges for any z with |z| > |p|. We can match the coefficients of the powers of z
in the Z transform definition,

X̂(z) =
∞

∑
k=−∞

x(k)z−k,

from which we can recognize that

∀k∈ Integers, x(k) =

{
0, k < m

1
(m−1)!(k−1) · · · (k−m+ 1)pk−m, k≥m

=
1

(m−1)!
(k−1) · · · (k−m+ 1)pk−mu(k−m). (13.13)

In the second case, RoC= {z∈ Complex| |z| < |p|}, we expand X̂ in a series involving only the
terms z−n,n≤ 0,

X̂(z) =
1

(z− p)m
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=
1

(−p)m

1
(1− p−1z)m

=
1

(−p)m

1
(m−1)!

∞

∑
n=0

(m+n−1) · · ·(n+ 1)(p−1z)n, using (13.12)

=
(−1)m

(m−1)!

0

∑
k=−∞

(m−k−1) · · ·(1−k)pk−mz−k, defining k =−n,

and the series converges for any z with |z| < |p|. Again, we match powers of z in the Z transform
definition to get

∀k∈ Integers, x(k) =

{
(−1)m

(m−1)!(m−1−k) · · ·(1−k)pk−m, k≤ 0

0, k > 0

=
(−1)m

(m−1)!
(m−1−k) · · ·(1−k)pk−mu(−k). (13.14)

Example 13.16: Suppose

X̂(z) =
1

(z−2)2

with RoC= {z∈ Complex| |z| > 2}. Then, by (13.13), X̂ is the Z transform of the
signal

∀k∈ Integers, x(k) =
{

0, k < 2
(k−1)2k−2, k≥ 2

.

Suppose

Ŷ(z) =
1

(z−2)2

with RoC= {z∈ Complex| |z| < 2}. Then, by (13.14), Ŷ is the Z transform of the
signal

∀k∈ Integers, y(k) =
{

(1−k)2k−2, k≤ 0
0, k > 0

.

Since the unit circle {z∈Complex| |z|= 1} ⊂RoC, the DTFT of y is defined and given
by

∀ω∈ Reals, Y(ω) = Ŷ(eiω) =
1

(eiω−2)2 .

Now that we know how to inverse transform all the terms of the partial fraction expansion, we can
generalize the method used in example 13.15 to calculate the inverse Z transform of any X̂ of the
form

X̂(z) =
aMzM + · · ·+a0

zN +bN−1zN−1 + · · ·+b0
.

Step 1 If M ≥ N, divide through to obtain

X̂(z) = cM−NzM−N + · · ·+c0 +Ŵ(z),
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where Ŵ is strictly proper.

Step 2 Carry out the partial fraction expansion ofŴ and, knowing the RoC, obtain the inverse Z
transform w. Then from table 13.1,

∀n, x(n) = cm+l−Nδ(n+m+ l−N)+ · · ·+c0δ(n)+w(n).

Example 13.17: We follow the procedure for

X̂(z) =
z2 +z+ 1+z−1

(z+ 2)2 .

First, to get this into the proper form, as a rational polynomial in z, notice that

X̂(z) = z−1Ŷ(z),

where

Ŷ(z) =
z3 +z2 +z+ 1

(z+ 2)2 .

Since z−1 corresponds to a one-step delay,

x(n) = y(n−1),

so if we find the inverse Z transform of Ŷ, then we have found the inverse Z trasform
of X̂.

Working now with Ŷ, step 1 yields

Ŷ(z) = z−3+
9z+ 13

z2 + 4z+ 4
.

Step 2 gives

Ŵ(z) =
9z+ 13
(z+ 2)2 =

−5
(z+ 2)2 +

9
z+ 2

.

Suppose RoC= {z∈ Complex| |z|> 2}. Then from table 13.1,

∀n, w(n) = −5(n−1)(−2)n−2u(n−2)+ 9(−2)n−1u(n−1),
∀n, y(n) = δ(n+ 1)−3δ(n)+w(n),
∀n, x(n) = y(n−1).

Hence, for all n∈ Integers,

x(n) = δ(n)−3δ(n−1)−5(n−2)(−2)n−3u(n−3)+ 9(−2)n−2u(n−2).
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13.5.2 Inverse Laplace transform

The procedure to calculate the inverse Laplace transform is virtually identical. Suppose the Laplace
transform X̂ is a rational polynomial

X̂(s) =
aMsM + · · ·+a0

sN +bN−1sN−1 + · · ·+b0
.

We follow Steps 1 and 2 above. We divide through in case M ≥ N to obtain

X̂(s) = cM−NsM−N + · · ·+c0 +Ŵ(s),

where Ŵ is strictly proper. We carry out the partial fraction expansion ofŴ. Knowing RoC(x),
we can again infer the region of convergence of each term. We then obtain the inverse Laplace
transform term by term using table 13.3,

∀t ∈ Reals, x(t) = cm−nδ(M−N)(t)+ · · ·+c0δ(t)+w(t).

Here w is the inverse Laplace transform of Ŵ, δ is the Dirac delta function, and δ(i) is the ith
derivative of the Dirac delta function.1

Example 13.18: We follow the procedure and obtain the partial fraction expansion of

X̂(s) =
s3 +s2 +s+ 1

s(s+ 2)2

= 1+
−3s2−3s+ 1

s(s+ 2)2

= 1+
1/4
s

+
−13/4
s+ 2

+
5/2

(s+ 2)2 .

X̂ has one pole at s= 0 and a pole at s=−2 of multiplicity two. So its RoChas one of
three forms:

1. RoC= {s∈ Complex| Re{s}<−2},
2. RoC= {s∈ Complex| −2 < Re{s} < 0}, or

3. RoC= {s∈ Complex| Re{s}> 0}.
We now use table 13.3 to obtain the inverse Laplace transform of each term. In case
(1), the continuous-time signal is the anti-causal signal

∀ t, x(t) = δ(t)− 1
4

u(−t)+
13
4

e−2tu(−t)− 5
2

te−2tu(−t).

In case (2), it is the two-sided signal,

∀t, x(t) = δ(t)− 1
4

u(−t)− 13
4

e−2tu(t)+
5
2

te−2tu(t).

In case (3), it is the causal signal,

∀t, x(t) = δ(t)+
1
4

u(t)− 13
4

e−2tu(t)+
5
2

te−2tu(t).

1The derivative of δ is a function only in a formal sense, and we obtain its Laplace transform using the differentiation
property in table 13.4.
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Probing further: Inverse transform as an integral

Even if the Z transform is not a rational polynomial, we can recover the signal
x from its Z transform, X̂ : RoC(x) → Complex, using the DTFT. A non-empty
RoC(x) contains the circle of radius r for some r > 0. So the series in the equation

X̂(reiω) =
∞

∑
m=−∞

x(m)(reiω)−m =
∞

∑
m=−∞

(x(m)r−m)e−iωm

is absolutely summable. Hence the signal xr : ∀n,xr(n) = x(n)r−n, has DTFT Xr :
∀ω,Xr(ω) = X̂(reiω). We can, therefore, obtain xr as the inverse DTFT of Xr

∀n, xr(n) = r−nx(n) =
1

2π

∫ 2π

0
X̂(reiω)eiωndω.

Multiplying both sides by rn, we can recover x as

∀n∈ Integers, x(n) =
1

2π

∫ 2π

0
X̂(reiω)(reiω)ndω. (13.15)

This formula defines the inverse Z transform as an integral of the real variable ω. It
is conventional to write the inverse Z transform differently. Express z as z= reiω.
Then as ω varies from 0 to 2π, z varies as

dz= reiωidω= zidω, or dω=
dz
iz

.

Substituting this in (13.15) gives,

∀n, x(n) =
1

2π

∮
X̂(z)zn dz

iz
=

1
2πi

∮
X̂(z)zn−1dz.

Here the ‘circle’ in the integral sign,
∮

, means that the integral in the complex z-
plane is along any closed counterclockwise circle contained in RoC(x). (An integral
along a closed contour is called a contour integral.) In summary,

∀n∈ Integers, x(n) = 1
2πi

∮
X̂(z)zn−1dz, (13.16)

where the integral is along any closed counterclockwise circle inside RoC(x).

We can similarly use the CTFT to recover any continuous-time signal x from its
Laplace transform by

∀t ∈ Reals, x(t) = 1
2πi

σ+i∞∫
σ−i∞

X̂(s)estds

where the integral is along any vertical line (σ− i∞,σ+ i∞) contained in RoC(x).
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Probing further: Differentiation property of the Laplace transform

We can use the inverse Laplace transform as given in the box on page451 to demon-
strate the differentiation property in table 13.4. Let y be defined by

∀ t ∈ Reals, y(t) =
d
dt

x(t).

We can write x in terms of its Laplace transform as

∀t ∈ Reals, x(t) =
1

2πi

∫ σ+i∞

σ−i∞
X̂(s)estds.

Differentiating this with respect to t is easy,

∀t ∈ Reals,
d
dt

x(t) =
1

2πi

∫ σ+i∞

σ−i∞
sX̂(s)estds.

Consequently, y(t) = dx(t)/dt is the inverse transform of sX̂(s), so

∀ s∈ RoC(y), Ŷ(s) = sX̂(s),

where RoC(y) ⊃RoC(x).

13.6 Steady state response

Although it has been a fair amount of work, being able to compute an inverse transform for an
arbitrary rational polynomial proves useful. Our first use will be to study the stead-state response
of a causal and stable LTI system that has a sinusoidal input that starts at time zero.

If the input to an LTI system is a complex exponential,

∀t ∈ Reals, x(t) = eiωt ,

then the output y is an exponential of the same frequency but with amplitude and phase given by
H(ω),

∀t ∈ Reals, y(t) = H(ω)eiωt ,

where H is the frequency response. However, this result requires the exponential input to start at
t = −∞. In practice, of course, an input may start at some finite time, say at t = 0, but this result
does not describe the output if the input is

∀t ∈Reals, x(t) = eiωtu(t). (13.17)

We will see that if the system is stable and causal,2 then the output y decomposes into two parts, a

2This result can be generalized to non-causal systems, but causal systems will be sufficient for our purposes.
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transient output and a steady state output,

y = ytr +yss,

where the transient becomes vanishingly small for large t. That is,

lim
t→∞

ytr(t) = 0.

Moreover, the steady state signal is the exponential,

∀t, yss(t) = H(ω)eiωtu(t). (13.18)

Thus for stable systems, we can use the frequency response to describe the eventual output to sinu-
soidal signals that start at some finite time.

For the special case ω= 0, the input (13.17) is the unit step, x = u, and yss= H(0)u. So for stable
systems, the steady state response to a unit step input is a step of size H(0). (H(0) is called the dc
gain.) This case is important in the design of feedback control, considered in the next chapter.

Let h be the impulse response and Ĥ be the Laplace transform of a stable and causal LTI system.
We assume for simplicity that Ĥ is a strictly proper rational polynomial all of whose poles have
multiplicity one,

Ĥ(s) =
A(s)

(s− p1) · · · (s− pN)
.

Because the system is causal, RoC(h) has the form

RoC(h) = {s | Re{s} > q},
where q is the largest real part of any pole. Since the system is stable, q < 0, so that the region of
convergence includes the imaginary axis.

From table 13.3 the Laplace transform X̂ of the signal (13.17) is

X̂(s) =
1

s− iω
,

with RoC(x) = {s∈ Complex| Re{s} > 0}.
The Laplace transform of the output y = h∗x is

Ŷ = ĤX̂,

with
RoC(y)⊃RoC(h)∩RoC(x) = {s∈ Complex| Re{s}> 0}.

The partial fraction expansion ofŶ is

Ŷ(s) = Ĥ(s)X̂(s) =
A(s)

(s− p1) · · · (s− pN)
· 1
s− iω

(13.19)

=
R1

s− p1
+ · · ·+ RN

s− pN
+

Rω

s− iω
. (13.20)
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Because everything is causal, each term must be causal, so from table13.3 we obtain

∀t, y(t) =
N

∑
k=1

Rke
pktu(t)+Rωeiωtu(t).

We decompose y = ytr +yss, with

∀t, ytr(t) =
N

∑
k=1

Rke
pktu(t),

∀t, yss(t) = Rωeiωtu(t).

Since Re{pk}< 0 for k = 1, · · · ,N,
lim
t→∞

ytr(t) = 0.

Thus, the steady-state response yss is eventually all that is left.

Finally, the residue Rω is obtained by multiplying both sides of (13.19) by s− iω and evaluating at
s= iω to get Rω = Ĥ(iω) = H(ω), so that

∀t, yss(t) = H(ω)eiωtu(t).

This analysis reveals several interesting features of the total response y. First, from (13.20) we see
the poles p1, · · · , pN of the transfer function contribute to the transient response ytr , and the pole of
the input X̂ at iω contributes to the steady state response. Second we can determine how quickly the
transient response dies down. The transient response is

∀t, ytr(t) = R1ep1tu(t)+ · · ·+RNepNtu(t).

The magnitude of the terms is

|R1|eRe{p1}t , · · · , |RN|eRe{pN}t .

Each term decreases exponentially with t, since the real parts of the poles are negative. The slowest
decrease is due to the pole with the least negative part. Thus the pole of the stable, causal transfer
function with the least negative part determines how fast the transient response goes to zero. Indeed
for large t, we can approximate the response y as

y(t) ≈ Rie
pit +H(ω)eiωt ,

where pi is the pole with the largest (least negative) real part.

There is a similar result for discrete-time systems, and it is obtained in the same way. Suppose an
exponential input

∀n∈ Integers, x(n) = eiωnu(n),

is applied to a stable and causal system with impulse response h, transfer functionĤ, and frequency
response H . Then the output y = h∗x can again be decomposed as

∀n, y(n) = ytr(n)+yss(n),
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where the transient ytr(n)→ 0 as n→ ∞, and the steady state response is

∀n, yss(n) = Ĥ(eiω)eiωnu(n) = H(ω)eiωnu(n).

For large n, the transient response decays exponentially as pni , i.e.

y(n)≈ Ri p
n
i +yss(n),

where pi is the pole with the largest magnitude (which must be less than one, since the system is
stable).

13.7 Linear difference and differential equations

Many natural and man-made systems can be modeled as linear differential equations or difference
equations. We have seen that when such systems are initially at rest, they are LTI systems. Hence,
we can use their transfer functions (which are Z transforms or Laplace transforms) to analyze the
response of these systems to external inputs.

However, physical systems are often not initially at rest. Dealing with non-zero initial conditions
introduces some complexity in the analysis. Mathematicians call such systems with non-zero initial
conditions initial value problems. We can adapt our methods to deal with initial conditions. The
rest of this chapter is devoted to these methods.

Example 13.19: In example 13.8 we considered the LTI system described by the
difference equation

y(n)−0.9y(n−1) = x(n).

The transfer function of this system is Ĥ(z) = z/(z− 0.9). If the system is initially at
rest, we can calculate its response y from its Z transformŶ = ĤX̂. For instance, if the
input is the unit step, X̂(z) = z/(z−1),

Ŷ(z) =
z2

(z−0.9)(z−1)
=
−9z

z−0.9
+

10z
z−1

,

and so y(n) =−9(0.9)n + 10,n≥ 0.

We cannot use the transfer function, however, to determine the response if the initial
condition at time n= 0 is y(−1) = ȳ(−1), and the input is x(n) = 0,n≥ 0. The response
to this initial condition is

y(n) = ȳ(−1)(0.9)n+1, n≥−1.

We can check that this expression is correct by verifying that it satisfies both the initial
condition and the difference equation.

If the initial condition is y(−1) = ȳ(−1) and the input is a unit step, the response turns
out to be the sum of the response due to the input (with zero initial condition) and the
response due to the initial condition (with zero input),

y(n) = [−9(0.9)n + 10]+ [ȳ(−1)(0.9)n+1], n≥ 0.
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For small values of n the response depends heavily on the initial condition, especially
if ȳ(0) is large. Because this system is stable, the effect of the initial condition becomes
vanishingly small for large n.

An LTI difference equation has the form

y(n)+a1y(n−1)+ · · ·+amy(n−m) = b0x(n)+ · · ·+bkx(n−k), n≥ 0. (13.21)

We interpret this equation as describing a causal discrete-time LTI system in which x(n) is the input
and y(n) is the output at time n. The ai and bj are constant coefficients that specify the system.

We have used difference equations before. In section 8.2.1 we used this form and the discrete time
Fourier transform to find the frequency response of this system. In section 9.5 we showed how
to realize such systems as IIR filters. In example 13.19 we used the transfer function to find the
response. But in all these cases, we had to assume that the system was initially at rest. We now
develop a method to find the response for arbitrary inital conditions.

We assume the input signal x starts at some finite time, which we take to be zero, x(n) = 0,n< 0. We
wish to calculate y(n),n≥ 0. From (13.21) we can see that we need to be given m initial conditions,

y(−1) = ȳ(−1), · · · ,y(−m) = ȳ(−m).

Given the input signal and these initial conditions, there is a straightforward procedure to calculate
the output response y(n),n≥ 0: Rewrite (13.21) as

y(n) =−a1y(n−1)−·· ·−amy(n−m)+b0x(n)+ · · ·+bkx(n−k), (13.22)

and recursively use (13.22) to obtain y(0),y(1),y(2), · · ·. For n = 0, (13.22) yields

y(0) = −a1y(−1)−·· ·−amy(−m)+b0x(0)+ · · ·+bkx(−k)
= −a1ȳ(−1)−·· ·−amȳ(−m)+b0x(0).

All the terms on the right are known from the initial conditions and the input x(0), so we can
calculate y(0). Next, taking n = 1 in (13.22),

y(1) =−a1y(0)+ · · ·+amy(1−m)+b0x(1)+ · · ·+bkx(1−k).

All the terms on the right are known either from the given data or from precalculated values—y(0)
in this case. Proceeding in this way we can calculate the remaining values of the output sequence
y(2),y(3), · · ·, one at a time.

We now use the Z transform to calculate the entire output sequence. Multiplying both sides of
(13.21) by u(n), the unit step, gives us a relation that holds among signals whose domain is Integers:

y(n)u(n)+a1y(n−1)u(n)+ · · ·+amy(n−m)u(n) = b0x(n)u(n)+ · · ·+bkx(n−k)u(n), n∈ Integers.

We can now take the Z transforms of both sides. We multiply both sides by z−n and sum,

∞

∑
n=0

y(n)z−n+a1

∞

∑
n=0

y(n−1)z−n+ · · ·+am

∞

∑
n=0

y(n−m)z−n = b0

∞

∑
n=0

x(n)z−n+ · · ·+bk

∞

∑
n=0

x(n−k)z−n.

(13.23)
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Define

X̂(z) =
∞

∑
n=0

x(n)z−n, Ŷ(z) =
∞

∑
n=0

y(n)z−n.

Each sum in (13.23) can be expressed in terms ofŶ or X̂. In evaluting the Z transforms of the signals
y(n−1)u(n),y(n−2)u(n), · · · we need to include the initial conditions:

∞

∑
n=0

y(n−1)z−n = ȳ(−1)z0 +z−1
∞

∑
n=1

y(n−1)z−(n−1) = ȳ(−1)z0 +z−1Ŷ(z),

∞

∑
n=0

y(n−2)z−n = ȳ(−2)z0 + ȳ(−1)z−1 +z−2
∞

∑
n=2

y(n−2)z−(n−2)

= ȳ(−2)z0 + ȳ(−1)z−1 +z−2Ŷ(z),
· · ·

∞

∑
n=0

y(n−m)z−n = ȳ(−m)z0 + · · ·+ ȳ(−1)z−(m−1) +z−m
∞

∑
n=m

y(n−m)z−(n−m)

= ȳ(−m)z0 + · · ·+ ȳ(−1)z−(m−1) +z−mŶ(z).

Because x(n) = 0,n < 0, by assumption, the sums on the right in (13.23) are simpler:

∞

∑
n=0

x(n−1)z−n = x(−1)z0 +z−1X̂(z) = z−1X̂(z)

∞

∑
n=0

x(n−2)z−n = x(−2)z0 +x(−1)z−1 +z−2X̂(z) = z−2X̂(z)

· · ·
∞

∑
n=0

x(n−k)z−n = x(−k)z0 + · · ·+x(−1)z−(k−1) +z−kX̂(z) = z−kX̂(z).

(If there were non-zero initial conditions for x(−1), · · · ,x(−k), we could include them in the Z
transforms of x(n−1)u(n), · · · ,x(n−k)u(n).) Substituting these relations in (13.23) yields

Ŷ(z) + a1[z−1Ŷ(z)+ ȳ(−1)z0]+ · · ·+am[z−mŶ(z)+ ȳ(−m)z0 + · · · ȳ(−1)z−(m−1)]
= b0X̂(z)+b1z−1X̂(z)+ · · ·bkX̂z−k, (13.24)

from which, by rearranging terms, we obtain

[1+a1z−1 + · · ·+amz−m]Ŷ(z) = [b0 +b1z−1 + · · ·+bkz
−k]X̂(z)+Ĉ(z),

where Ĉ(z) is an expression involving only the initial conditions ȳ(−1), · · · , ȳ(−m). Therefore,

Ŷ(z) =
b0 +b1z−1 + · · ·bkz−k

1+a1z−1 + · · ·+amz−m
X̂(z)+

Ĉ(z)
1+a1z−1 + · · ·+amz−m

.

We rewrite this relation as

Ŷ(z) = Ĥ(z)X̂(z)+
Ĉ(z)

1+a1z−1 + · · ·+amz−m. (13.25)
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where

Ĥ(z) = b0+b1z−1+···+bkz−k

1+a1z−1+···+amz−m . (13.26)

Observe that if the initial conditions are all zero, Ĉ(z) = 0, and we only have the first term on the
right in (13.25); and if the input is zero—i.e., x(n) = 0 for all n, then X̂(z) = 0, and we only have
the second term.

By definition, Ŷ(z) is the Z transform of the causal signal y(n)u(n),n∈ Integers. So its RoC= {z∈
Complex| |z| > |p|} in which p is the pole of the right side of (13.25) with the largest magnitude.
The inverse Z transform of Ŷ can be expressed as

∀n≥ 0, y(n) = yzs(n)+yzi(n), (13.27)

where yzs(n), the inverse Z transform of ĤX̂, is the zero-state response, and yzi(n), the inverse Z
transform of Ĉ(z)/[1 + a1z−1 + · · ·+ amz−m], is the zero-input response. The zero-state response,
also called the forced response, is the output when all initial conditions are zero. The zero-input
response, also called the natural response, is the output when the input is zero.

Thus the (total) response is the sum of the zero-state and zero-input response. We first encountered
this property of linearity in chapter 5.

By definition, the transfer function is the Z transform of the zero-state impulse response. Taking
Ĉ = 0 and X̂ = 1 in (13.25) shows that the transfer function is Ĥ(z). From (13.26) we see that Ĥ
can be written down by inspection of the difference equation (13.21). If the system is stable—all
poles of Ĥ are inside the unit circle—the frequency response is

∀ω, H(ω) = Ĥ(eiω) =
b0 +b1e−iω+ · · ·+bke−ikω

1+a1e−iω+ · · ·+ame−imω .

We saw this relation in (8.21).

Example 13.20: Consider the difference equation

y(n)− 5
6

y(n−1)+
1
6

y(n−2) = x(n), n≥ 0.

Taking Z transforms as in (13.24) yields

Ŷ(z)− 5
6
[z−1Ŷ(z)+ ȳ(−1)]+

1
6
[z−2Ŷ(z)+ ȳ(−2)+ ȳ(−1)z−1] = X̂(z).

Therefore

Ŷ(z) =
1

1− 5
6z−1 + 1

6 z−2
X̂(z)+

5
6 ȳ(−1)+ 1

6 ȳ(−2)+ 1
6 ȳ(−1)z−1

1− 5
6z−1 + 1

6z−2

=
z2

z2− 5
6 z+ 1

6

X̂(z)+
[5

6 ȳ(−1)+ 1
6 ȳ(−2)]z2 + 1

6 ȳ(−1)z

z2− 5
6z+ 1

6

,

from which we can obtain Ŷ for a specified X̂ and initial conditions ȳ(−1), ȳ(−2). The
transfer function is

Ĥ(z) =
z2

z2− 5
6z+ 1

6

=
z2

(z− 1
3)(z− 1

2)
,
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which has poles at z= 1/3 and z= 1/2 (and two zeros at z= 0). The system is stable.
The zero-state impulse response h is the inverse Z transform ofĤ(z), which we obtain
using partial fraction expansion,

Ĥ(z) = z

[
−2

z− 1
3

+
3

z− 1
2

]

so that

∀n∈ Integers, h(n) =−2

(
1
3

)n

u(n)+ 3

(
1
2

)n

u(n).

We can recognize that the impulse response consists of two terms, each contributed by
one pole of the transfer function.

Suppose the initial conditions are ȳ(−1) = 1, ȳ(−2) = 1 and the input x is the unit step,
so X̂(z) = z/(z−1). Then the zero-input response, yzi, has Z transform

Ŷzi(z) =
[5

6 ȳ(−1)+ 1
6 ȳ(−2)]z2 + 1

6 ȳ(−1)z
(z− 1

3)(z− 1
2)

=
z2 + 1

6z

(z− 1
3)(z− 1

2)
= z

[
−3

z− 1
3

+
4

z− 1
2

]
,

so

∀n, yzi(n) =−3

(
1
3

)n

u(n)+ 4

(
1
2

)n

u(n).

The zero-state response, yzs, has Z transform

Ŷzs(z) = Ĥ(z)X̂(z) =
z3

(z− 1
3 )(z− 1

2)(z−1)

= z

[
1

z− 1
3

+
−3

z− 1
2

+
3

z−1

]
,

so

∀n, yzs(n) =
(

1
3

)n

u(n)−3

(
1
2

)n

u(n)+ 3u(n).

The (total) response

∀n∈ Integers, y(n) = yzs(n)+yzi(n) = 3u(n)+ [−2(1/3)n +(1/2)n]u(n),

can also be expressed as the sum of the steady-state and the transient response with
yss(n) = 3u(n) and ytr(n) = −2(1/3)nu(n)+ (1/2)nu(n). Note that the decomposition
of the response into the sum of the zero-state and zero-input responses is different from
its decomposition into the steady-state and transient responses.
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13.7.1 LTI differential equations

The analogous development for continuous time concerns systems described by a LTI differential
equation of the form

dmy
dtm

(t)+am−1
dm−1y
dtm−1 (t)+ · · ·+a1

dy
dt

(t)+a0y(t) = bk
dkx
dtk

(t)+ · · ·+b1
dx
dt

(t)+b0x(t), t ≥ 0.

(13.28)
We interpret this equation as describing a causal continuous-time LTI system in which x(t) is the
input and y(t) is the output at time t. The constant coefficients ai and bj specify the system.

In section 8.2.1 we used this form to find the frequency response. In example 13.11, we used the
Laplace transform to find the transfer function of a tuning force. But in both cases, we assumed that
the system was initially at rest. We now develop a method to find the response to arbitrary initial
conditions. We begin with a simple circuit example.

Example 13.21: A series connection of a resistor R, a capacitor C, and a voltage
source x, is described by the differential equation

dy
dt

(t)+
1

RC
y(t) = x(t),

in which y is the voltage across the capacitor. The differential equation is obtained from
Kirchhoff’s voltage law. The transfer function of this system isĤ(s) = 1/(s+ 1/RC).
So if the system is initially at rest, we can calculate the response y from its Laplace
transform Ŷ = ĤX̂. For instance, if the input is a unit step, X̂(s) = 1/s,

Ŷ(s) =
1

(s+ 1/RC)s
=
−RC

s+ 1/RC
+

RC
s

,

therefore, y(t) =−RCe−t/RC+RC, t ≥ 0.

We cannot use this transfer function, however, to determine the response if the initial
capacitor voltage is y(0) = ȳ(0) and x(t) = 0, t ≥ 0. The response in this case is

y(t) = ȳ(0)e−t/RC, t ≥ 0.

We can check that expression is correct by verifying that it satisfies the given initial
condition and the differential equation.

If the initial condition is y(0) = ȳ(0) and the input is a unit step, the response turns
out to be the sum of the response due to the input (with zero initial condition) and the
response due to the initial condition (with zero input),

y(t) = [−RCe−t/RC+RC]+ [ȳ(0)e−t/RC], t ≥ 0.

For the general case (13.28) we assume that the input x starts at some finite time which we take to
be zero, so x(t) = 0, t < 0. We wish to calculate y(t), t ≥ 0. From the theory of differential equations
we know that we need to be given m initial conditions,

y(0) = ȳ(0),
dy
dt

(0) = ȳ(1)(0), · · · , dm−1y
dtm−1 (0) = ȳ(m−1)(0),
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in order to calculate y(t), t ≥ 0.

Because time is continuous, there is no recursive procedure for calculating the output from the given
data as we did in (13.22). Instead we calculate the output signal using the Laplace transform. We
define the Laplace transforms of the signals y(t)u(t),y(1)(t)u(t), · · · ,y(m)(t)u(t),x(t)u(t):

Ŷ(s) =
∫ ∞

−∞
y(t)u(t)e−stdt =

∫ ∞

0
y(t)e−stdt

Ŷ(i)(s) =
∫ ∞

−∞
y(i)(t)u(t) =

∫ ∞

0
y(i)(t)e−stdt, i = 1, · · · ,m

X̂(s) =
∫ ∞

−∞
x(t)u(t)e−stdt =

∫ ∞

0
x(t)e−stdt.

Here we use the notation y(i)(t) = dit
dti y(t), t ≥ 0. We now derive the relations between these Laplace

transforms.

The derivative y(1)(t) = dy
dt (t) and y are related by

y(t)u(t) = y(0)u(t)+
∫ t

0
y(1)(τ)u(τ)dτ = ȳ(0)u(t)+

∫ t

0
y(1)(τ)u(τ)dτ, t ∈ Reals.

Using integration by parts,

Ŷ(s) =
∫ ∞

0
y(t)e−stdt =

∫ ∞

0
ȳ(0)e−stdt +

∫ ∞

0

(∫ t

0
y(1)(τ)dτ

)
e−stdt

=
1
s
ȳ(0)− 1

s

∫ t

0
y(1)(τ)dτe−st |∞t=0 +

1
s

∫ ∞

0
y(1)(t)e−stdt

=
1
s
[Ŷ(1)(s)+ ȳ(0)].

Therefore,

Ŷ(1)(s) = sŶ(s)− ȳ(0). (13.29)

Repeating this procedure, we get the Laplace transforms of the higher-order derivatives,

Ŷ(2)(s) = sŶ(1)(s)− ȳ(1)(0)
= s2Ŷ(s)−sȳ(0)− ȳ(1)(0)
· · ·

Ŷ(m)(s) = smŶ(s)−sm−1ȳ(0)−sm−2ȳ(1)(0)−·· ·− ȳ(m−1)(0).

On the other hand, because x(i)(t) = dix
dti (t) for all t ∈ Reals, using the differentiation property in

table 13.4, we obtain

X̂(1)(s) = sX̂(s)
· · ·

X̂(k)(s) = skX̂(s).
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By substituting from the relations just derived, we obtain the Laplace transforms of all the terms in
(13.28),

[smŶ(s)−sm−1ȳ(0)−·· ·− ȳm−1(0)]+am−1[sm−1Ŷ(s)−sm−2ȳ(0)−·· ·− ȳm−2(0)]
· · ·+a1[sŶ(s)− ȳ(0)]+a0Ŷ(s) = bks

kX̂(s)+ · · ·+b1sX̂(s)+b0X̂(s). (13.30)

Rearranging terms yields

[sm+am−1sm−1 + · · ·+a1s+a0]Ŷ(s) = [bks
k + · · ·+b1s+b0]X̂(s)+Ĉ(s),

in which Ĉ is an expression involving only the intial conditions ȳ(0), · · · , ȳ(m−1)(0). Therefore,

Ŷ(s) =
bksk +bk−1sk−1 + · · ·b1s+b0

sm+am−1sm−1 + · · ·a1s+a0
X̂(s)+

Ĉ(s)
sm+am−1sm−1 + · · ·a1s+a0

, (13.31)

which we also write as

Ŷ(s) = Ĥ(s)X̂(s)+
Ĉ(s)

sm+am−1sm−1 + · · ·a1s+a0
, (13.32)

in which

Ĥ(s) = bksk+···+b1s+b0
sm+···+a1s+a0

. (13.33)

If the initial conditions are all zero,Ĉ(s) = 0, and we only have the first term on the right in (13.32);
if the input is zero—i.e., x(t) = 0 for all t, then X̂(s) = 0, and we only get the second term in (13.32).

By definition, Ŷ(s) is the Laplace transform of the causal signal y(t)u(t), t ∈ Reals. So its RoC=
{s∈ Complex| Re{s} > Re{p}}, where p is a pole of the right side of (13.32) with the largest real
part.

Taking the inverse Laplace transform ofŶ, we can decompose the output signal y as

∀t, y(t) = yzs(t)+yzi(t),

where yzs, the inverse Laplace transform of ĤX̂, is the zero-state or forced response and yzi, the
inverse Laplace transform ofĈ(s)/[sm+ · · ·+a0], is the zero-input or natural response. The (total)
response is the sum of the zero-state and zero-input response, which is a general property of linear
systems.

By definition, the transfer function is the Laplace transform of the zero-state impulse response.
Taking Ĉ = 0 and X̂ = 1 (the Laplace transform of the unit impulse) in (13.32) shows that the
transfer function is Ĥ(s) which, as we see from (13.33), can be written down by inspection of the
differential equation (13.28). If the system is stable—all poles of Ĥ(s) have real parts strictly less
than zero—the frequency response is

∀ω, H(ω) = Ĥ(iω) =
bk(iω)k + · · ·+b1iω+b0

(iω)m+ · · ·+a1iω+a0
.

We saw this relation in (??).
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Example 13.22: We find the response y(t), t ≥ 0, for the differential equation

d2y
dt2

+ 3
dy
dt

+ 2y = 3x(t)+
dx
dt

,

when the input is a unit step x(t) = u(t) and the initial conditions are y(0) = 1,y(1)(0) =
2. Taking Laplace transforms of both sides as in (13.30),

[s2Ŷ(s)−sȳ(0)− ȳ(1)(0)]+ 3[sŶ(s)− ȳ(0)]+ 2Ŷ(s) = 3X̂(s)+sX̂(s).

Therefore,

Ŷ(s) =
s+ 3

s2 + 3s+ 2
X̂(s)+

sȳ(0)+ ȳ(1)(0)+ 3ȳ(0)
s2 + 3s+ 2

.

Substituting X̂(s) = 1/s, ȳ(0) = 1, ȳ(1) = 2, yields

Ŷ(s) =
s+ 3

s(s2 + 3s+ 2)
+

s+ 5
s2 + 3s+ 2

= [
3/2

s
− 2

s+ 1
+

1/2
s+ 2

]+ [
4

s+ 1
− 3

s+ 2
].

Taking inverse Laplace transforms gives

∀t, y(t) = yzs(t)+yzi(t)

= [
3
2

u(t)−2e−tu(t)+
1
2

e−2tu(t)]+ [4e−tu(t)−3e−2tu(t)]

=
3
2

u(t)+ [2e−t − 5
2

e−2t ]u(t)

= yss(t)+ytr(t).

As in the case of difference equations, the decomposition of the response into zero-
state and zero-input responses is different from the decomposition into transient and
steady-state responses. (Indeed, the steady-state response does not exist if the system
is unstable, whereas the former decomposition always exists.)

13.8 State-space models

This section is mathematically more advanced in that it uses the operation of matrix inverse.

In section 5.3 we introduced single-input, single-output (SISO) multidimensional state-space mod-
els of discrete-time and continuous-time LTI systems. For LTI systems, state-space models provide
an alternative description to difference or differential equation representations. The advantage of
state-space models is that by using matrix notation we have a very compact representation of the
response, independent of the order of the system. We develop a method that combines this matrix
notation with transform techniques to calculate the response.

The discrete-time SISO state-space model is

∀ n≥ 0, s(n+ 1) = As(n)+bx(n), (13.34)

y(n) = cTs(n)+dx(n), (13.35)
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in which s(n) ∈ RealsN is the state, x(n) ∈ Realsis the input, and y(n) ∈ Realsis the output at time
n. In this [A,b,c,d] representation, A is an N×N (square) matrix, b,c are N-dimensional column
vectors, and d is a scalar. If the initial state is s(0), and the input sequence is x(0),x(1), · · ·, by
recursively using (13.34) and (13.35) we obtain the state and output responses:

s(n) = Ans(0)+
n−1

∑
m=0

An−1−mbx(m), (13.36)

y(n) = cTAns(0)+{
n−1

∑
m=0

cTAn−1−mbx(m)+dx(n)}, (13.37)

for all n≥ 0. Notice that these “closed-form” formulas for the response are independent of the order
N. Difference equation representations do not have such a closed-form formula.

Example 13.23: Consider the system described by the difference equation

y(n)−2y(n−1)−3y(n−2) = x(n).

As in section 5.3, we can construct a state-space model for this system by noting that
the state at time n should remember the previous two inputs y(n−1),y(n−2). Define
the two-dimensional state vector s(n) = [s1(n) s2(n)]T by s1(n) = y(n− 1),s2(n) =
ay(n−2), in which a �= 0 is a constant. Problem 23 at the end of this chapter asks you
to show that the [A,b,c,d] representation for this choice of state is given by

A =
[

2 3/a
a 0

]
, b =

[
1
0

]
, cT = [2 3/a], and d = 1.

Different choices of a give a different state-space model. However, they all have the
same input-output relation because they all have the same transfer function.

We will obtain the Z transforms of the response sequences (13.36), (13.37). The key is to compute
the Z transform of the entire N×N matrix sequence Anu(n),n∈ Integers. This Z transform is

∑∞
n=0 z−nAn = [I −z−1A]−1 = z[zI−A]−1. (13.38)

Here z is a complex number and I is the N×N identity matrix. The series on the left is an infinite
sum of N×N matrices which converges to the N×N matrix on the right, for z∈ RoC. RoC is
determined later.

Assuming the series converges, it is easy to check the equality (13.38): Just multiply both sides by
[I −z−1A] and verify that

[I −z−1A]
∞

∑
n=0

z−nAn =
∞

∑
n=0

z−nA−n−
∞

∑
n=0

z−(n+1)An+1 = z0A0 = I .

Next, denote by F the matrix inverse,

F(z) = [I −z−1A]−1 = z[zI−A]−1, (13.39)
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and the coefficients of An and F(z) by

An = [ai j (n) | 1≤ i, j ≤ N], F(z) = [ fi j (z) | 1≤ i, j ≤ N].

Then fi j (z) = ∑∞
n=0 z−nai j (n) is the Z transform of the sequence ai j (n),n≥ 0, 1 ≤ i, j ≤ N. So we

can obtain An,n≥ 0, by taking the inverse Z transform of each of the N2 coefficients of F(z).

Example 13.24: Let

A =
[

2 1
3 4

]
,

then

[zI−A]−1 =
[

z−2 −1
−3 z−4

]−1

=
1

det[zI−A]

[
z−4 1

3 z−2

]
,

in which det[zI−A] denotes the determinant of [zI−A],

det[zI−A] = (z−2)(z−4)−3 = z2−6z+ 5 = (z−1)(z−5).

Hence,

F(z) = z[zI−A]−1 =
z

(z−1)(z−5)

[
z−4 1

3 z−2

]
=

[
z(z−4)

(z−1)(z−5)
z

(z−1)(z−5)
3z

(z−1)(z−5)
z(z−2)

(z−1)(z−5)

]
.

The partial fraction expansion of the coefficients of F is

F(z) =

[
(3/4)z
z−1 + (1/4)z

z−5
(−1/4)z

z−1 + (1/4)z
z−5

(−3/4)z
z−1 + (3/4)z

z−5
(1/4)z
z−1 + (3/4)z

z−5

]
.

Using table 13.1 we find the inverse Z transform of every coefficient of F(z): for all
n∈ Integers,

Anu(n) =
[ 3

4u(n)+ 1
45nu(n) −1

4u(n)+ 1
4 5nu(n)

− 3
4u(n)+ 3

45nu(n) 1
4u(n)+ 3

45nu(n)

]
.

This is more revealingly expressed as

An =
[

3/4 −1/4
−3/4 1/4

]
+ 5n

[
1/4 1/4
3/4 3/4

]
, n≥ 0,

because it shows that the variation in n of An is determined by the two poles, at z= 1
and z= 5, in the coefficients of F(z). Moreover, these two poles are the zeros of

det[zI−A] = (z−1)(z−5).

This determinant is called the characterstic polynomial of the matrix A and its zeros
are called the eigenvalues of A. The domain of convergence is RoC= {z∈Complex| |z|>
5}.
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We return to the general case in (13.39). Denote the matrix inverse of [zI−A] as

[zI−A]−1 =
1

det[zI−A]
G(z),

in which G(z) is the N×N matrix of co-factors of [zI−A]. It follows that each coefficient fi j (z) of
F(z) = z[zI−A]−1 is a rational polynomial whose denominator is the characteristic polynomial of
A, det[zI−A]. Therefore, if there are no pole-zero cancellations, all coefficients of F(z) have the
same poles, which are the zeros of det[zI−A]. These zeros are called the eigenvalues of A. The
polynomial det[zI−A] is of order N, and so A has N eigenvalues.

Because Anu(n),n ∈ Integers, is a causal sequence, the region of convergence is RoC= {z ∈
Complex| |z| > |p|}, in which p is the pole of F (or eigenvalue of A) with the largest magnitude.
For the system (13.34), (13.35) to be stable, the poles of F must have magnitudes strictly smaller
than 1.

Suppose A has N distinct eigenvalues p1, · · · , pN,

det[zI−A] = (z− p1) · · · (z− pN).

Then the partial fraction expansion of F(z) has the form

F(z) =
z

z− p1
R1 + · · ·+ z

z− pN
RN,

in which Ri is the matrix of residues of the coefficients of F at the pole pi . Ri is a constant matrix,
possibly with complex coefficients if pi is complex. Recalling that z

z−pi
is the inverse Z transform

of pn
i u(n), we can take the inverse Z transform of F(z) to conclude that

An = pn
1R1 + · · · pn

NRN, n≥ 0. (13.40)

Thus An is a linear combination of pn
1, · · · , pn

N.

We can decompose the response (13.37) into the zero-input and zero-state responses, expressing the
latter as a convolution sum,

y(n) = cTAns(0)+
n

∑
m=0

h(n−m)x(m), n≥ 0,

where the (zero-state) impulse response is

h(n) =




0, n < 0
d, n = 0
cTAn−1b, n≥ 1

.

Let X̂,Ŷ, Ĥ,Ŷzi be the Z transforms:

X̂(z) =
∞

∑
n=0

x(n)z−n, Ŷ(z) =
∞

∑
n=0

y(n)z−n, Ĥ(z) =
∞

∑
n=0

h(n)z−n, Ŷzi(z) =
∞

∑
n=0

cTz−nAns(0).



13.8. STATE-SPACE MODELS 467

Then
Ŷ = ĤX̂ +Ŷzi.

Because ∑∞
n=0 z−nAn = z[zI−A]−1, we obtain

Ĥ(z) = cT [zI−A]−1b+d,

and
Ŷzi(z) = zcT [zI−A]−1s(0).

Example 13.25: Suppose A is as in example 13.24, bT = [1 1],cT = [2 0],d = 3, and
(s(0))T = [0 4]. Then the transfer function is

Ĥ(z) = [2 0]

[ (z−4)
(z−1)(z−5)

1
(z−1)(z−5)

3
(z−1)(z−5)

(z−2)
(z−1)(z−5)

][
1
1

]
+ 3 =

2(z−4)+ 2
(z−1)(z−5)

+ 3,

and the Z transform of the zero-input response is

Ŷzi(z) = [2 0]

[
z(z−4)

(z−1)(z−5)
z

(z−1)(z−5)
3z

(z−1)(z−5)
z(z−2)

(z−1)(z−5)

][
0
4

]
=

8z
(z−1)(z−5)

.

The transfer function

Ĥ(z) =
2(z−4)+ 2
(z−1)(z−5)

+ 3 =
3z2−16z+ 9
z2−6z+ 5

=
3−16z−1 + 9z−2

1−6z−1 + 5z−2 .

From (13.26) we recognize that Ĥ is also the transfer function of the difference equation

y(n)−6y(n−1)+ 5y(n−2) = 3x(n)−16x(n−1)+ 9x(n−2).

This difference equation describes the same input-output relation as the state-space
model of this example.

13.8.1 Continuous-time state-space models

The continuous-time SISO state-space model introduced in section 5.4 has the [A,b,c,d] represen-
tation

v̇(t) = Av(t)+bx(t), (13.41)

y(t) = cTv(t)+dx(t), (13.42)

in which v(t) ∈ RealsN is the state, x(t) ∈ Realsis the input, and y(t) ∈ Realsis the output at time
t ∈ Reals. A is an N×N matrix, and b,c are N-dimensional column vectors, and d is a scalar. (We
use v instead of s to denote the state, because s is reserved for the Laplace transform variable.)
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Given the initial state v(0) and the input signal x(t), t ≥ 0, we will show that the state response and
the output response obey the formulas

v(t) = etAv(0)+
∫ t

0
e(t−τ)Abx(τ)dτ, (13.43)

y(t) = cTetAv(0)+ [
∫ t

0
cTe(t−τ)Abx(τ)dτ]+dx(t). (13.44)

In these formulas, etA or exp(tA) is the name of the N×N matrix

etA =
∞

∑
k=0

(tA)k

k!
= I + tA+

(tA)2

2!
+

(tA)3

3!
+ · · · , (13.45)

where (tA)k is the matrix tA multiplied by itself k times, and (tA)0 = I , the N×N identity matrix.
Definition (13.45) of the matrix exponential is the natural generalization of the exponential of a
real or complex number. (The series in (13.45) is absolutely summable because of the factor k! in
the denominator.)

Unlike in the discrete-time case, there is no recursive procedure to compute the responses (13.43),
(13.44). This is because time is continuous, and the difficulty has to do with the integrals in these
formulas. For numerical calculation, one resorts to a finite sum approximation of the integrals, as
we indicated in section 5.4. The Laplace transform provides an alternative approach that is exact.

The key to showing (13.43) is the fact that etA, t ≥ 0, is the solution to the differential equation

d
dt

etA = AetA, t ≥ 0, (13.46)

with initial condition e0A = I . Note that (13.44) follows immediately from (13.43) and (13.42).

To verify (13.46) we substitute for etA from (13.45) and differentiate the sum term by term,

d
dt

etA =
∞

∑
k=0

d
dt

(tA)k

k!
=

∞

∑
k=1

kA
k!

(tA)k−1 = A
∞

∑
k=1

(tA)k−1

(k−1)!
= AetA.

We can now check that (13.43) is indeed the solution of (13.41) by taking derivatives of both sides
and using (13.46):

v̇(t) = AetAv(0)+e0Abx(t)+
∫ t

0
Ae(t−τ)Abx(τ)dτ

= A[etAv(0)+
∫ t

0
Ae(t−τ)Abx(τ)dτ]+bx(t)

= Av(t)+bx(t).

We turn to the main difficulty in calculating the terms on the right in the responses (13.43), (13.44),
namely the calculation of the N×N matrix etA, t ≥ 0. We determine the Laplace transform of
etAu(t), t ∈ Reals, denoting it by

G(s) =
∫ ∞

0
etAe−stdt.
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This means that gi j (s) is the Laplace transform of ai j (t), t ≥ 0, denoting by ai j (t) and gi j (s) the
coefficients of the N×N matrices etA and G(s), respectively. The region of convergence of G, RoC,
is determined later.

Using the derivative formula (13.29) in (13.46) we see that

sG(s)− I = AG(s),

which gives G(s) = [sI−A]−1, so that the Laplace transform of etAu(t) is

G(s) =
∫ ∞

0 etAe−stdt = [sI−A]−1. (13.47)

Example 13.26: Let

A =
[

1 2
−2 1

]
,

then

[sI−A]−1 =
[

s−1 −2
2 s−1

]−1

=
1

det[sI−A]

[
s−1 2
−2 s−1

]
.

The determinant is

det[sI−A] = (s−1)2 + 4 = (s−1+ 2i)(s−1−2i),

so that

[sI−A]−1 =

[
s−1

(s−1+2i)(s−1−2i)
2

(s−1+2i)(s−1−2i)
−2

(s−1+2i)(s−1−2i)
s−1

(s−1+2i)(s−1−2i)

]

=

[
1/2

s−1+2i +
1/2

s−1−2i
i/2

s−1+2i +
−i/2

s−1−2i−i/2
s−1+2i +

i/2
s−1−2i

1/2
s−1+2i +

1/2
s−1−2i

]
.

The region of convergence RoC= {s∈ Complex| Re{s} > 1}. We find the inverse
Laplace transform using table 13.3 and express it in two ways: for all t ≥ 0,

etA = e(1−2i)t
[

1/2 i/2
−i/2 1/2

]
+e(1+2i)t

[
1/2 −i/2
i/2 1/2

]

= et
[

cos2t sin2t
−sin2t cos 2t

]
.

The first expression shows etA as a linear combination of the exponentials e(1−2i)t and
e(1+2i)t , in which the exponents, 1− 2i and 1 + 2i, are the two eigenvalues of A—that
is, the zeros of its characteristic polynomial, det[sI−A]. The second expression shows
that etA is sinusoidal with frequency 2 radians/sec equal to the imaginary part of the
eigenvalues whose amplitude grows exponentially corresponding to the real part of the
eigenvalues.
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Returning to the general case (13.47), denote the matrix inverse of [sI−A] as

G(s) = [sI−A]−1 =
1

det[sI−A]
K(s),

in which K(s) is the N×N matrix of co-factors of [sI−A]. Each coefficient gi j (s) of G(s) is
a rational polynomial of A whose denominator is the characterstic polynomial of A, det[sI−A].
Therefore, if there are no pole-zero cancellations, all coefficients of G(s) have the same poles—the
eigenvalues of A. Because etAu(t), t ∈ Reals, is a causal signal, the region of convergence of its
Laplace transform G(s) is {s∈ Complex| Re{s} > Re{p}}, in which p is the pole of G with the
largest real part.

Because det[sI−A] is a polynomial of order N, G has N poles. For the system (13.41), (13.42) to
be stable, the poles of G(s) must have strictly negative real parts. The system of example (13.26) is
unstable, because the real part of the eigenvalues is +1.

Suppose the characteristic polynomial has N distinct zeros p1, · · · , pN,

det[sI−A] = (s− p1) · · · (s− pN).

Then the partial fraction expansion of G(s) has the form

G(s) = [sI−A]−1 =
1

s− p1
R1 + · · ·+ 1

s− pN
RN,

in which Ri is the matrix of residues at the pole pi of the coefficients of G(s). Ri is a constant matrix,
possibly with complex coefficients, if pi is complex. Because the inverse Laplace transform of 1

s−pi

is epitu(t), the inverse Laplace transform of [sI−A]−1 is

etAu(t) = [ep1tR1 + · · ·+epNtRN]u(t). (13.48)

Thus the matrix etA as a function of t is a linear combination of ep1t , · · · ,epNt , where the pi are the
eigenvalues of A—that is the zeros of det[sI−A].

We decompose the response (13.44) into the sum of the zero-input and zero-state responses, ex-
pressing the latter as a convolution integral,

y(t) = cTetAv(0)+
∫ t

0
h(t− τ)x(τ)dτ, t ≥ 0,

in which the (zero-state) impulse response is: for all t ∈ Reals,

h(t) = cTetAbu(t)+dδ(t).

(Here δ is the Dirac delta function.) Let X̂,Ŷ, Ĥ,Ŷzi be the Laplace transforms

X̂(s) =
∫ ∞

0
x(t)e−stdt, Ŷ(s) =

∫ ∞

0
y(t)e−stdt, Ĥ(s) =

∫ ∞

−∞
h(t)e−stdt, Ŷzi(s) =

∫ ∞

0
cTetAv(0)e−stdt.

Then
Ŷ = ĤX̂ +Ŷzi,
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in which
Ĥ(s) = cT [sI−A]−1b+d,

and
Ŷzi(s) = cT [sI−A]−1v(0).

We continue with example 13.26.

Example 13.27: Suppose A is as in example 13.26, bT = [1 1]T ,cT = [2 0]T ,d = 3,
and v(0)T = [0 4]T . Then the transfer function is

Ĥ(s) = [2 0]

[
s−1

(s−1)2−4
−2

(s−1)2−4
2

(s−1)2−4
s−1

(s−1)2−4

][
1
1

]
+ 3 =

2s−6
(s−1)2−4

+ 3,

and the Laplace transform of the zero-input response is

Ŷzi(s) = [2 0]

[
s−1

(s−1)2−4
−2

(s−1)2−4
2

(s−1)2−4
s−1

(s−1)2−4

][
0
4

]
=

−16
(s−1)2−4

.

The transfer function

Ĥ(s) =
2s−6

(s−1)−4
+ 3 =

3s2−4s−15
s2−2s−3

.

From (13.33) we know that Ĥ is also the transfer function of the differential equation

d2y
dt2

(t)−2
dy
dt

(t)−3y(t) = 3
d2x
dt2

(t)−4
dx
dt

(t)−15x(t).

Thus this differential equation describes the same system as the state-space model of
example 13.24.

This example illustrates a general way of obtaining a differential equation description of a continuous-
time state-space model by means of its transfer function.

It is easier to obtain a state-space model with a specified proper transfer function,

Ĥ(s) =
bN−1sN−1 + · · ·+b1s+b0

sN + · · ·+a1s+a0
+bN.

(The first term in Ĥ is strictly proper. Some of the coefficients bi ,aj may be zero.) Then the N-
dimensional [A,b,c,d] representation

A =




0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · ·
0 0 0 · · · 1
−a0 −a1 −a2 · · · −aN−1


 , b =




0
0
· · ·
0
1


 , cT = [b0b1 · · ·bN−1], d = bN.

(13.49)
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has the same transfer function as Ĥ, that is

cT [sI−A]−1b+d = Ĥ(s). (13.50)

Exercise 30 at the end of this chapter asks you to verify (13.50).

Simply by interchanging the variables s and z we see that the proper rational polynomial

Ĥ(z) =
bN−1zN−1 + · · ·+b1z+b0

zN + · · ·+a1z+a0
+bN = d+cT [zI−A]−1b

is the transfer function of the discrete-time [A,b,c,d] representation.

Thus we can use any of three equivalent representations of LTI systems:

• difference or differential equations, used to describe many physical systems,

• transfer functions used for frequency-domain analysis, and in feedback design considered in
the next chapter,

• state-space models, used in modern control theory.

13.9 Summary

The Z transform and Laplace transform have many of the same properties as the Fourier trans-
forms. They are linear, which greatly facilitates computation of the transforms and their inverses.
Moreover, the Z transform (Laplace transform) of the output of an LTI system is the product of
the Z transforms (Laplace transforms) of the input and the transfer function. Thus, the Z trans-
form (Laplace transform) plays the same role as the frequency response, describing the relationship
between the input and the output as a product rather than a convolution.

Linear difference and differential equations, and state-space models of LTI systems were introduced
in chapter 5 and chapter 8. However, we lacked a method to calculate the response of these models
for non-zero initial conditions. The Z transform and the Laplace transform provide such a method.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire a plan of attack, those labeled C usually have more than one defensible answer.

1. E Consider the signal x given by

∀n, x(n) = sin(ω0n)u(n).
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(a) Show that the Z transform is

∀ z∈ RoC(x), X̂(z) =
zsin(ω0)

z2−2zcos(ω0)+ 1
,

where
RoC(x) = {z∈ Complex| |z|> 1}.

(b) Where are the poles and zeros?

(c) Is x absolutely summable?

2. T Consider the signal x given by

∀ n∈ Integers, x(n) = a|n|,

where a∈Complex.

(a) Find the Z transform of x. Be sure to give the region of convergence.

(b) Where are the poles?

(c) Under what conditions is x absolutely summable?

3. E Consider a discrete-time LTI system with transfer function given by

∀ z∈ {z | |z|> 0.9}, Ĥ(z) =
z

z−0.9
.

Suppose that the input x is given by

∀ n∈ Integers, x(n) = δ(n)−0.9δ(n−1).

Find the Z transform of the output y, including its region of convergence.

4. E Consider the exponentially modulated sinusoid y given by

∀ n∈ Integers, y(n) = a−n cos(ω0n)u(n),

where a is a real number, ω0 is a real number, and u is the unit step signal.

(a) Find the Z transform. Be sure to give the region of convergence. Hint: Use example
13.3 and section 13.1.6.

(b) Where are the poles?

(c) For what values of a is this signal absolutely summable?

5. T Suppose x∈ DiscSignalssatisfies

∞

∑
n=−∞

|x(n)r−n|< ∞, 0 < r1 < r < r2,

for some real numbers r1 and r2 such that r1 < r2. Show that
∞

∑
n=−∞

|nx(n)r−n|< ∞, 0 < r1 < r < r2.

Hint: Use the fact that for any ε > 0 there exists N < ∞ such that n(1+ε)−n < 1 for all n> N.
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6. T Consider a causal discrete-time LTI system where the input x and output y are related by
the difference equation

∀ n∈ Integers, y(n)+b1y(n−1)+b2y(n−2) = a0x(n)+a1x(n−1)+a2x(n−2),

where b1, b2, a0, a1, and a2 are real-valued constants.

(a) Find the transfer function.

(b) Say as much as you can about the region of convergence.

(c) Under what conditions is the system stable?

7. E This exercise verifies the time delay property of the Laplace transform. Show that if x is a
continuous-time signal, τ is a real constant, and y is given by

∀ t ∈ Reals, y(t) = x(t− τ),

then its Laplace transform is

∀ s∈ RoC(y), Ŷ(s) = e−sτX̂(s),

with region of convergence
RoC(y) = RoC(x).

8. E This exercise verifies the convolution property of the Laplace transform. Suppose x and h
have Laplace transforms X̂ and Ĥ. Let y be given by

∀ t ∈Reals, y(t) = (x∗h)(t) =
∞∫
−∞

x(τ)h(t− τ)dτ.

Then show that the Laplace transform is

∀s∈ RoC(y), Ŷ(s) = X̂(s)Ĥ(s),

with
RoC(y)⊃ RoC(x)∩RoC(h).

9. T This exercise verifies the conjugation property of the Laplace transform, and then uses
this property to demonstrate that for real-valued signals, poles and zeros come in complex-
conjugate pairs.

(a) Let x be a complex-valued continuous-time signal and y be given by

∀ t ∈ Reals, y(t) = [x(t)]∗.

Show that
∀ s∈ RoC(y), Ŷ(s) = [X̂(s∗)]∗,

where
RoC(y) = RoC(x).
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(b) Use this property to show that if x is real, then complex poles and zeros occur in complex
conjugate pairs. That is, if there is a zero at s= q, then there must be a zero at s= q∗,
and if there is a pole at s= p, then there must also be a pole at s= p∗.

10. T This exercise verifies the time scaling property of the Laplace transform. Let y be defined
by

∀ t ∈ Reals, y(t) = x(ct),

for some real number c. Show that

∀ s∈ RoC(y), Ŷ(s) = X̂(s/c)/|c|,
where

RoC(y) = {s | s/c∈RoC(x)}.
11. E This exercise verifies the exponential scaling property of the Laplace transform. Let y be

defined by
∀ t ∈Reals, y(t) = eatx(t),

for some complex number a. Show that

∀ s∈ RoC(y), Ŷ(s) = X̂(s−a),

where
RoC(y) = {s | s−a∈RoC(x)}.

12. T Consider a discrete-time LTI system with impulse response

∀n, h(n) = an cos(ω0n)u(n),

for some ω0 ∈Reals. Show that if the input is

∀ n∈ Integers, x(n) = eiω0nu(n),

then the output y is unbounded.

13. E Find and plot the inverse Z transform of

X̂(z) =
1

(z−3)3

with

(a) Roc(x) = {z∈ Complex| |z|> 3}
(b) Roc(x) = {z∈ Complex| |z|< 3}.

14. E Obtain the partial fraction expansions of the following rational polynomials. First divide
through if necessary to get a strictly proper rational polynomial.

(a)

z+ 2
(z+ 1)(z+ 3)
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(b)

(z+ 2)2

(z+ 1)(z+ 3)

(c)

z+ 2
z2 + 4

.

15. E Find the inverse Z transform x for each of the three possible regions of convergence asso-
ciated with

X̂(z) =
(z+ 2)2

(z+ 1)(z+ 3)
.

For which region of convergence is x causal? For which is x strictly anti-causal? For which is
x two-sided?

16. E Find the inverse Z transform x for each of the two possible regions of convergence associ-
ated with

X̂(z) =
z+ 2
z2 + 4

.

17. E Consider a stable system with impulse response

h(n) = (0.5)nx(n).

Find the steady-state response to a unit step input.

18. E Let h(n) = 2nu(−n), all n, and g(n) = 0.5nu(n), for all n. Find h∗u and g∗u, where u is
the unit step.

19. This exercise shows how we can determine the transfer function and frequency response of an
LTI system from its step response. Suppose a causal system with step input x = u, produces
the output

∀ n∈ Integers, y(n) = (1−0.5n)u(n).

(a) Find the transfer function (including its region of convergence).

(b) If the system is stable, find its frequency response.

(c) Find the impulse response of the system.

20. Consider an LTI system with impulse response h given by

∀ n∈ Integers, h(n) = 2nu(n).

(a) Find the transfer function, including its region of convergence.

(b) Use the transfer function to find the Z transform of the step response.

(c) Find the inverse transform of the result of part (b) to obtain the step response in the time
domain.
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21. E Determine the zero-input and zero-state responses, and the transfer function for the follow-
ing. In both cases take y(−1) = y(−2) = 0 and x(n) = u(n).

(a) y(n)+y(n−2) = x(n),n≥ 0.

(b) y(n)+ 2y(n−1)+y(n−2) = x(n),n≥ 0.

22. E Determine the zero-input and the zero-state responses for the following.

(a) 5ẏ+ 10y = 2x,y(0) = 2,x(t) = u(t).

(b) ÿ+ 5ẏ+ 6y =−4x−3ẋ,y(0) =−1, ẏ(0) = 5,x(t) = e−tu(t).

(c) ÿ+ 4y = 8x,y(0) = 1, ẏ(0) = 2,x(t) = u(t).

(d) ÿ+ 2ẏ+ 5y = ẋ,y(0) = 2, ẏ(0) = 0,x(t) = e−tu(t).

23. E Show that the [A,b,c,d] representation in example 13.23 is correct. Then show that the
transfer function of the state-space model is the same as that of the difference equation.

24. T Consider the circuit of figure 13.5. The input is the voltage x, the output is the capacitor
voltage v. The inductor current is called i.

+

-
x(t)

R

L

v(t)
i(t)

r

C

+

-

Figure 13.5: Circuit of problem 24

(a) Derive the [A,b,c,d] representation for this system using s(t) = [i(t),v(t)]T as the state.

(b) Obtain an [F,g,h,k] representation for a discrete-time model of the same circuit by sam-
pling at times kT,k = 0,1, · · · and using the approximation ṡ(kT) = 1/T(s((k+ 1)T)−
s(kT)). (This is called a forward-Euler approximation.)

25. E For the matrix A in example 13.24, determine etA, t ≥ 0.

26. E For the matrix A in example 13.26, determine An,n≥ 0.

27. T A continuous-time SISO system has [A,b,c,d] representation with

A =
[

a b
−b a

]
,

in which a,b are real constants.

(a) Find the eigenvalues of A.

(b) For what values of a,b is the SISO system stable?
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(c) Calculate etA, t ≥ 0.

(d) Suppose b = c = [1 0]T , and d = 0. Find the transfer function.

28. T Let A be an N×N matrix. Let p be an eigenvalue of A. An N-dimensional (column) vector
e, possibly complex-valued, is said to be an eigenvector of A corresponding to p if e �= 0 and
Ae= pe. Note that an eigenvector always exists since det[pI−A] = 0. Find eigenvectors for
each of the two eigenvalues of the matrices in examples13.24 and 13.26.

29. E Let A be a square matrix with eigenvalue p and corresponding eigenvector e. Determine
the response of the following.

(a) s(k+ 1) = As(k),k≥ 0; s(0) = e.

(b) ṡ(t) = As(t), t ≥ 0; s(0) = e.

Hint. Show that Ane= pne and etAe= epte.

30. T Verify (13.50). Hint. First show that

[sI−A]−1b =
1

sN +aN−1sN−1 + · · ·+a0




1
s
· · ·

sN−1


 ,

by multiplying both sides by [sI−A]. Then check (13.50).



Chapter 14

Composition and Feedback Control

A major theme of this book is that interesting systems are often compositions of simpler systems.
Systems are functions, so their composition is function composition, as discussed in section2.1.5.
However, systems are often not directly described as functions, so function composition is not the
easiest tool to use to understand the composition. We have seen systems described as state machines,
frequency responses, and transfer functions. In chapter4 we obtained the state machine of the com-
posite system from its component state machines. In section8.5 we obtained the frequency response
of the composite system from the frequency response of its component linear time-invariant (LTI)
systems. We extend the latter study in this chapter to the composition of LTI systems described
by their transfer functions. This important extension allows us to consider unstable systems whose
impulse response has a Z or Laplace transform, but not a Fourier transform.

As before, feedback systems prove challenging. A particularly interesting issue is how to maintain
stability, and how to construct stable systems out of unstable ones. We will find that some feedback
compositions of stable systems result in unstable systems, and conversely, some compositions of
unstable systems result in stable systems. For example, we can stabilize the helicopter in example
12.2 using feedback, in fact we can precisely control its orientation, despite the intrinsic instability.
The family of techniques for doing this is known as feedback control. This chapter serves as an
introduction to that topic. Feedback control can also be used to drive stable systems, in which
case it serves to improve their response. For example, feedback can result in faster or more precise
responses, and can also prevent overshoot, where a system overreacts to a command.

We will consider three styles of composition, cascade composition, parallel composition, and
feedback composition. In each case, two LTI systems with transfer functions Ĥ1 and Ĥ2 are com-
bined to get a new system. The transfer functions Ĥ1 and Ĥ2 are the (Z or Laplace) transforms of
the respective impulse responses, h1 and h2. Much of our discussion applies equally well whether
the system is a continuous-time system or a discrete-time system, so in many cases we leave this
unspecified.

479
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H1

x w
H2

y

H = H1 H2

Figure 14.1: Cascade composition of two LTI systems with transfer func-
tions H1 and H2.

14.1 Cascade composition

Consider the cascade composition shown in figure 14.1. The composition is the grey box, and it
has transfer function

Ĥ = Ĥ1Ĥ2.

Notice that because of this simple form, if we know the pole and zero locations of the component
systems, then it is easy to determine the pole and zero locations of the composition. Unless a pole
of one is cancelled by a zero of the other, the poles and zeros of the composition are simply the
aggregate of the poles and zeros of the components. Moreover, any pole of Ĥ must be a pole of
either Ĥ1 or Ĥ2, so if Ĥ1 and Ĥ2 are both stable, then so is Ĥ.

14.1.1 Stabilization

The possibility for pole-zero cancellation suggests that cascade composition might be used to stabi-
lize an unstable system.

Example 14.1: Consider a discrete-time system with transfer function

∀ z∈ {z | |z|> |1.1|}, Ĥ1(z) =
z

z−1.1
.

This is a proper rational polynomial with a region of convergence of the form for a
causal signal, so it must be a causal system. However, it is not stable, because the
region of convergence does not include the unit circle.

To stabilize this system, we might consider putting it in cascade with

∀ z∈Complex, Ĥ2(z) =
z−1.1

z
.

This is a causal and stable system. The transfer function of the cascade composition is

Ĥ(z) =
z

z−1.1
z−1.1

z
= 1 .

The pole at z= 1.1 has been cancelled, and the resulting region of convergence is the
entire complex plane. Thus, the cascade composition is a causal and stable system, and
we can recognize from table 13.1 that the impulse response is h(n) = δ(n).
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Stabilizing systems by cancelling their poles in a cascade composition, however, is almost never a
good idea. If the pole is not precisely cancelled, then no matter how small the error, the resulting
system is still unstable.

Example 14.2: Suppose that in the previous example the pole location is not known
precisely, and turns out to be at z= 1.1001 instead of z= 1.1. Then the cascade com-
position has transfer function

Ĥ(z) =
z

z−1.1001
z−1.1

z
=

z−1.1
z−1.1001

,

which is unstable.

14.1.2 Equalization

While cascade compositions do not usually work well for stabilization, they do often work well for
equalization. An equalizer is a compensator that reverses distortion. The source of the distortion,
which is often called a channel, must be an LTI system, and the equalizer is composed in cascade
with it. At first sight this is easy to do. If the channel has transfer function Ĥ1, then the equalizer
could have transfer function

Ĥ2 = Ĥ−1
1 ,

in which case the cascade composition will have transfer function

Ĥ = Ĥ1Ĥ2 = 1,

which is certainly distortion-free.

Example 14.3: Some acoustic environments for audio have resonances, where certain
frequencies are enhanced as the sound propagates through the environment (see labC.8
for an example). This will typically occur if the physics of the acoustic environment
results in a transfer function with poles near the unit circle (for a discrete-time model)
or near the imaginary axis (for a continuous-time model). Suppose for example that
the acoustic environment is well modeled by a discrete-time LTI system with transfer
function

∀ z∈ {z | |z|> 0.95}, Ĥ1(z) =
z2

(z−a)(z−a∗)
,

where a = 0.95eiω1 for some frequency ω1. Using the methods of section 13.2, we can
infer that the magnitude response will have a strong peak at frequencies ω1 and −ω1,
because the positions on the unit circle eiω1 and e−iω1 are very close to the poles. This
will result in distortion of the audio signal, where frequencies near ω1 will be amplified.

An equalizer that will compensate for this distortion has transfer function

Ĥ2(z) = [Ĥ1(z)]−1 =
(z−a)(z−a∗)

z2 =
z2−2Re{a}z+ |a|2

z2 .



482 CHAPTER 14. COMPOSITION AND FEEDBACK CONTROL

As in example 13.2, we can recognize this as the Z transform of an FIR filter with
impulse response

∀ n∈ Integers, h2(n) = δ(n)−2Re{a}δ(n−1)+ |a|2δ(n−2).

This filter is causal and stable, and hence can serve as an effective equalizer.

There are a number of potential problems with this approach, however. First, the transfer function
of the channel is probably not known, or at least not known precisely. Second, the channel may not
have a stable and causal inverse.

Let us first examine the first difficulty, that the channel may not be known (precisely). If the channel
model Ĥ1 and its inverse Ĥ2 are both stable, then the cascade composition is at least assured of being
stable, even if the channel has been misconstrued. Moreover, if the equalizer is close to the inverse
of the true channel, then often the distortion is significantly reduced despite the errors (see exercise
1).

This difficulty can sometimes be dealt with by adaptively varying the equalizer based on measure-
ments of the distortion. One way to measure the distortion is to send through the channel a known
sequence called a training sequence and observe the output of the channel. Suppose that the train-
ing sequence is a signal x with Z transform X̂, and that the channel Ĥ1 is unknown. If we can observe
the output y of the channel, and calculate its Z transform Ŷ, then the channel transfer function is
simply

∀ z∈RoC(h1), Ĥ1(z) =
Ŷ(z)
X̂(z)

,

where RoC(h1) is determined by identifying the poles and zeros of the rational polynomialŶ(z)/X̂(z)
and finding the one ring-shaped region that includes the unit circle and is bordered by poles. This
results in a stable channel model.

Training sequences are commonly used in digital communication systems, where, for example, a
radio channel introduces distortion. However, it is also common for such channels to change over
time. Radio channels, for example, change if either the transmitter or receiver moves, or if the
weather changes, or if obstacles appear or disappear. Repeatedly transmitting training sequences is
an expensive waste of radio bandwidth, and fortunately, is not usually necessary, as illustrated in the
following example.

Example 14.4: Consider a digital communication system where the channel is mod-
eled as a discrete-time LTI system with transfer function Ĥ1, representing for example
a radio transmission subsystem. Suppose that this digital communication system trans-
mits a bit sequence represented as a discrete-time signal x of form

x: Integers→{0,1}.
Suppose further that we use a training sequence to obtain an initial estimate Ĥ2 of
the inverse of the channel. But over time, the channel drifts, so that Ĥ2 is no longer
the inverse of Ĥ1. Assuming the drift is relatively slow, then after a short time, Ĥ2 is
still close to the inverse of Ĥ1, in that the cascade Ĥ1Ĥ2 yields only mild distortion.
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That is, if x(n) = 0 for some n, then y(n) ≈ 0. Similarly, if x(n) = 1 for some n, then
y(n) ≈ 1. Thus, we can quantize y, getting an accurate estimate x without it having to
be a known training sequence. That is, when y(n) ≈ 0, we assume that x(n) = 0, and
when y(n) ≈ 1, we assume that x(n) = 1. These assumptions are called decisions, and
in fact, such decisions must be made anyway for digital communication to occur. We
have to decide whether a 1 or a 0 was transmitted, and closeness to 1 or 0 seems like an
eminently reasonable basis on which to make such a decision.

Assuming there are no errors in these decisions, we can infer that

Ĥ1Ĥ2X̂d = Ŷ,

where X̂d is the Z transform of the decision sequence. So, without using another training
sequence, we can revise our estimate of the channel transfer function as follows,

Ĥ1 =
Ŷ

Ĥ2X̂d
.

We replace our equalizer Ĥ2 with

Ĥ ′2 = [Ĥ1]−1 =
Ĥ2X̂d

Ŷ
.

Of course, we now start using Ĥ ′2, which will come closer to correcting the channel
distortion, which will make our decisions more reliable for the next update.

Example 14.4 outlines a widely used technique called decision-directed adaptive equalization.
It is so widely used, in fact, that it may be found in every digital cellular telephone and almost
every modem, including voiceband data modems, radio modems, cable modems, DSL modems,
etc. The algorithms used in practice to update the transfer function of the equalizer are not exactly
as shown in the example, and their details are beyond the scope of this text, but they follow the
general principle in the example.

Let us now turn our attention to the second difficulty with equalization, that the channel may not
have a stable and causal inverse. We begin with an example.

Example 14.5: Suppose that, similar to example 14.3, a channel has transfer function

∀ z in{z | |z|> 0.95}, Ĥ1(z) =
z

(z−a)(z−a∗)
,

where a = 0.95eiω1 for some frequency ω1. The inverse is

[Ĥ1(z)]−1 =
(z−a)(z−a∗)

z
=

z2−2Re{a}z+ |a|2)
z

,

which is not a proper rational polynomial. Thus, this cannot be the Z transform of a
causal signal. Implementing a non-causal equalizer will usually be impossible, since
it will require knowing future inputs. However, suppose we simply force the equalizer
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have a proper rational polynomial transfer function by dividing by a high enough power
M of z to make [Ĥ1(z)]−1/zM proper. In this example, M = 1 is sufficient, so we define
the equalizer to be

Ĥ2(z) =
[Ĥ1(z)]−1

z
=

z2−2Re{a}z+ |a|2)
z2 ,

which we again recognize as the Z transform of an FIR filter with impulse response

∀ n∈ Integers, h2(n) = δ(n)−2Re{a}δ(n−1)+ |a|2δ(n−2).

This filter is causal and stable, but does it serve as an effective equalizer? Consider now
the cascade,

Ĥ(z) = Ĥ1(z)Ĥ2(z) =
1
z
.

From section 13.1.2 we recognize this as the transfer function of the unit delay system.
That is, the equalizer completely compensates for the distortion, but at the expense of
introducing a one sample delay. This is usually a perfectly acceptable cost.

Example 14.5 demonstrates that when the channel inverse is not a proper rational polynomial, then
introducing a delay may enable construction of a stable and causal equalizer. Not all equalization
stories have such a happy ending, however. Consider the following example.

Example 14.6: Consider a channel with the following transfer function,

∀ z∈ {z∈ Complex| z �= 0}, Ĥ1(z) =
z−2

z
.

This is a stable and causal channel. Its inverse is

[Ĥ1(z)]−1 =
z

z−2
.

This has a pole at z = 2, so in order to be stable, it would have to be anti-causal (so
that the region of convergence can include the unit circle). Implementing an anti-causal
equalizer is usually not possible.

Example 14.6 shows that not all channels can be inverted by an equalizer. All is not lost, however.
Given a channel Ĥ1(z) that has a rational Z transform, we can usually find a transfer functionĤ2(z)
that compensates for the magnitude response part of the distortion. That is, we can find a transfer
function Ĥ2(z) that is stable and causal such that the magnitude response of the composite satisfies

|H1(ω)H2(ω)| = |Ĥ1(eiω)Ĥ2(eiω)|= 1.

For some applications, this is sufficient. In audio equalization, for example, this is almost always
sufficient, because the human ear is not very sensitive to the phase of audio signals. It hears only
the magnitude of the frequency components.
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Example 14.7: Continuing example 14.6, let Ĥ2 be given by

Ĥ2 =
z

1−2z
=
−0.5z
z−0.5

.

This has a pole at z= 0.5, and is a proper rational polynomial, so it can be the transfer
function of a causal and stable filter. Consider the cascade composition,

Ĥ(z) = Ĥ1(z)Ĥ2(z) =
z−2

z
· −0.5z
z−0.5

=
1−0.5z
z−0.5

.

This hardly looks like what we want, but if we rewrite it slightly, it is easy to show that
the magnitude frequency response has value one for all ω,

Ĥ(z) =
1−0.5z
z−0.5

= z
z−1−0.5
z−0.5

.

The magnitude frequency response is

|H(ω)|= |Ĥ(eiω)|= |eiω| · |e
−iω−0.5|
|eiω−0.5| = 1 .

This magnitude is equal to 1 because the numerator, e−iω−0.5, is the complex conju-
gate of the denominator, eiω−0.5, so they have the same magnitude.

The method in example 14.7 can be generalized so that for most channels it is possible to cancel
any magnitude distortion. The key is that if the channel transfer function has a zero outside the unit
circle, say at z= a, then its inverse has a pole at the same location, z= a. A pole outside the unit
circle makes it impossible to have a stable and causal filter. So the trick is to place a pole instead at
z= 1/a∗. This pole will cancel the effect on the magnitude (but not the phase) of the zero at z= a.

There are still channels for which this method will not work.

Example 14.8: Consider a channel given by

∀ z∈ {z∈ Complex| z �= 0}, Ĥ1(z) =
z−1

z
.

This has a pole at z = 0 and a zero at z = 1. Its inverse cannot be stable because it
will have a pole at z= 1. In fact, no equalization is possible. This is intuitive because
the frequency response is zero at ω = 0, and no stable equalizer in cascade with this
channel can reconstruct the original component at ω= 0. It would have to have infinite
gain at ω= 0, which would make it unstable.

14.2 Parallel composition

Consider the parallel composition shown in figure 14.2. The transfer function of the composition
system is

Ĥ = Ĥ1 + Ĥ2.
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H = H1+ H2

w2

Figure 14.2: Parallel composition of two LTI systems with transfer functions
H1 and H2.

This is valid whether these are Laplace transforms or Z transforms. Once again, notice that a pole
of Ĥ must be a pole of either Ĥ1 or Ĥ2, so if Ĥ1 and Ĥ2 are stable, then so is Ĥ. At the poles of Ĥ1,
Ĥ1(z) is infinite, so very likely a pole of Ĥ1 will also be a pole of Ĥ. However, just as in the cascade
composition, this pole may be cancelled by a zero.

Determining the location of the zeros of the composition, however, is slightly more complicated than
for cascade composition. The sum has to be put into rational polynomial form, and the polynomials
then need to be factored.

14.2.1 Stabilization

Just as with cascade composition, stabilizing systems by cancelling their poles in a parallel compo-
sition is possible, but is almost never a good idea.

Example 14.9: Consider a discrete-time system with transfer function

∀ z∈ {z | |z|> |1.1|}, Ĥ1(z) =
z

z−1.1
.

This describes a causal but unstable system. Suppose we combine this in parallel with
a system with transfer function

∀ z∈ {z | |z|> |1.1|}, Ĥ2(z) =
−1.1

z−1.1
.

This is again causal and unstable. The transfer function of the parallel composition is

Ĥ(z) =
z

z−1.1
+
−1.1

z−1.1
=

z−1.1
z−1.1

= 1 .

The pole at z= 1.1 has been cancelled, and the resulting region of convergence is the
entire complex plane. Thus, the parallel composition is a causal and stable system with
impulse response h(n) = δ(n).
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Figure 14.3: Structure of a noise canceller.

However, if the pole is not precisely cancelled, then no matter how small the error, the resulting
system is still unstable.

Example 14.10: Suppose that in the previous example the pole location is not known
precisely, and turns out to be at z= 1.1001 instead of z= 1.1. Then the parallel com-
position has transfer function

Ĥ(z) =
z

z−1.1001
+
−1.1

z−1.1
=

z2−2.2z+ 1.21001
(z−1.1001)(z−1.1)

,

which is unstable.

14.2.2 Noise cancellation

While parallel compositions do not usually work well for stabilization, with a small modification
they do often work well for noise cancellation. A noise canceller is a compensator that removes
an unwanted component from a signal. The unwanted component is called noise.

The pattern of a noise cancellation problem is shown in figure14.3. The signal x is a noise source.
This signal is filtered by Ĥ1 and added to the desired signal w. The result is a noisy signal. To
cancel the noise, the signal from the noise source is filtered by a noise cancelling filterĤ2 and the
result is added to the noisy signal. If x has (Laplace or Z) transform X̂, w has transform Ŵ, and y
has transform Ŷ, then

Ŷ = Ŵ +(Ĥ1 + Ĥ2)X̂.

From this it is evident that if we choose

Ĥ2 =−Ĥ1,

then y will be a clean (noise-free) signal, equal to w. The following examples describe real-world
applications of this pattern.
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x = signal from A
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Figure 14.4: A telephone central office converts the two-wire connection
with a customer telephone into a four-wire connection with the telephone
network using a device called a hybrid. An imperfect hybrid leaks, causing
echo. An echo canceller removes the leaked signal.

Example 14.11: A connection to the telephone network uses two wires (called a
twisted pair, consisting of tip and ring) to connect a telephone to a central office. The
central office may be, perhaps, 4 kilometers away. The two wires carry voice signals to
and from the customer premises, representing the voice signals as a voltage difference
across the two wires. Since two wires can only have one voltage difference across them,
the incoming voice signal and the outgoing voice signal share the same twisted pair.

The central office needs to separate the voice signal from the local customer premises
(called the near-end signal) from the voice signal that comes from the other end of the
connection (called the far-end signal). The near end signal is typically digitized (sam-
pled and quantized), and a discrete-time representation of the voice signal is transmitted
over the network to the far end. The network itself consists of circuits that can carry
voice signals in one direction at a time. Thus, in the network, four wires (or equivalent)
are required for a telephone connection, one wire pair for each direction.

As indicated in figure 14.4, the conversion from a two-wire to a four-wire connection is
done by a device called a hybrid.1 A connection between subscribers A and B involves

1A hybrid is a Wheatstone bridge, a circuit that can separate two signals based on the electrical impedance looking
into the local twisted pair and the electrical impedance looking into the network. The design of this circuit is a suitable
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two hybrids, one in each subscriber’s central office. The hybrid in B’s central office
ideally will pass all of the incoming signal x to B’s two-wire circuit, and none back into
the network. However, the hybrid is not perfect, and some of the incoming signal x
leaks through the hybrid into the return path back to A. The signal y in the figure is the
sum of the signal from B and the leaked signal from A. A hears the leaked signal as an
echo, since it is A’s own signal, delayed by propagation through the telephone network.

If the telephone connection includes a satellite link, then the delay from one end of the
connection to the other is about 300ms. This is the time it takes for a radio signal to
propagate to a geosynchronous satellite and back. The echo traverses this link twice:
once going from A to B, and the second time coming back. Thus, the echo is A’s
own signal delayed by about 600ms. For voice signals, 600ms of delay is enough to
create a very annoying echo that can make it difficult to speak. Humans have difficulty
speaking when they hear their own voices 600ms later. Consequently, the designers of
the telephone network have put echo cancellers in to prevent the echo from occuring.

Let Ĥ1 be the transfer function of the hybrid leakage path. The echo canceller is the
filter Ĥ2 placed in parallel composition with the hybrid, as shown in the figure. The
output w2 of this filter is added to the output w1 + w of the hybrid, so the signal that
actually goes back is y = w2 +w1 +w. If

Ĥ2 =−Ĥ1,

then y = w and the echo is cancelled perfectly. Moreover, note that as long as Ĥ1 is
stable and causal, so will be the echo canceller Ĥ2.

However, Ĥ1 is not usually known in advance, and also it changes over time. So either
a fixed Ĥ2 is designed to match a ‘typical’ Ĥ1, or an adaptive echo canceller is designed
that estimates the characteristics of the echo path (Ĥ1) and changes Ĥ2 accordingly.
Adaptive echo cancellers are common in the telephone network today.

The following example combines cascade and parallel composition to achieve noise cancellation.

Example 14.12: Consider a microphone in a noisy environment. For example, a
traffic helicopter might be used to deliver live traffic reports over the radio, but the
(considerable) background noise of the helicopter would be highly undesirable on the
radio. Fortunately, the background noise can be cancelled. Referring to figure14.5,
suppose that w is the announcer’s voice, x is the engine noise, and Ĥ1 represents the
acoustic path from the engine noise to the microphone. The microphone picks up both
the engine noise and the announcer’s voice, producing the noisy signal w4. We can
place a second microphone somewhere far enough from the announcer so as to not pick
up much of his or her voice. Since this microphone is in a different place, say on the
back of the announcer’s helmet, the acoustic path is different, so we model that path
with another transfer function Ĥ2. To cancel the noise, we design a filter Ĥ3. This filter
needs to equalize (invert) Ĥ2 and cancel Ĥ1. That is, its ideal value is

Ĥ3 =−Ĥ1/Ĥ2.

topic for a text on electrical circuits.
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Figure 14.5: Traffic helicopter noise cancellation/equalization problem.
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Figure 14.6: Negative feedback composition of two LTI systems with trans-
fer functions H1 and H2.

Of course, as with the equalization scenario, we have to ensure that this filter remains
stable. Once again, in practice, it is necessary to make the filter adaptive.

14.3 Feedback composition

Consider the feedback composition in figure 14.6. It is a composition of two systems with transfer
functions Ĥ1 and Ĥ2. We assume that these systems are causal and thatĤ1 and Ĥ2 are proper rational
polynomials in z or s. The regions of convergence of these two transfer functions are those suitable
for causal systems (the region outside the largest circle passing through a pole, for discrete time,
and the region to the right of the pole with the largest real part, for continuous-time).

In terms of Laplace or Z transforms, the signals in the figure are related by

Ŷ = Ĥ2Ĥ1Ê,

and
Ê = X̂−Ŷ.
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Notice that, by convention, the feedback term is subtracted, as indicated by the minus sign adjacent
to the adder (for this reason, this composition is called negative feedback). Combining these two
equations to elimintate Ê, we get

Ŷ = Ĥ1Ĥ2(X̂−Ŷ),

which we can solve for the transfer function of the composition,

Ĥ =
Ŷ

X̂
=

Ĥ1Ĥ2

1+ Ĥ1Ĥ2
. (14.1)

This is often called the closed-loop transfer function, to contrast it with the open-loop transfer
function, which is simply Ĥ1Ĥ2. We will assume that this resulting system is causal, and that the re-
gion of convergence of this transfer function is therefore determined by the roots of the denominator
polynomial, 1+ Ĥ1Ĥ2.

The closed-loop transfer function is valid as long as the denominator 1 +Ĥ1Ĥ2 is not identically
zero (that is, it is not zero for all s or z in Complex– it may be zero some sor z in Complex). This
is sufficient for the feedback loop to be well-formed, although in general, this fact is not trivial to
demonstrate (exercise 8 considers the easier case where Ĥ1Ĥ2 is causal and strictly proper, in which
case the system Ĥ1Ĥ2 has state-determined output). We will assume henceforth, without comment,
that the denominator is not identically zero.

Feedback composition is useful for stabilizing unstable systems. In the case of cascade and parallel
composition, a pole of the composite must be a pole of one of the components. The only way to
remove or alter a pole of the components is to cancel it with a zero. For this reason, cascade and par-
allel composition are not effective for stabilizing unstable systems. Any error in the specification of
the unstable pole location results in a failed cancellation, which results in an unstable composition.

In contrast, the poles of the feedback composition are the roots of the denominator 1+Ĥ1Ĥ2, which
are generally quite different from the poles of Ĥ1 and Ĥ2. This leads to the following important
conclusion:

The poles of a feedback composition can be different from the poles of its com-
ponent subsystems. Consequently, unstable system can be effectively and robustly
stabilized by feedback.

The stabilization is robust in that small changes in the pole or zero locations do not result in the
composition going unstable. We will be able to quantify this robustness.

14.3.1 Proportional controllers

In control applications, one of the two systems being composed, sayĤ2, is called the plant. This is a
physical system that is given to us to control. Its transfer function is determined by its physics. The
second system being composed, say Ĥ1, is the controller. We design this system to get the plant
to do what we want. The following example illustrates a simple strategy called a proportional
controller or P controller.
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Figure 14.7: A negative feedback proportional controller with gain K.

Example 14.13: For this example we take as the plant the simplified continuous-time
helicopter model of example 12.2,

ẏ(t) =
1
M

w(t).

Here y(t) is the angular velocity at time t and w(t) is the torque. M is the moment of
inertia.

We have renamed the input w (instead of x) because we wish to control the helicopter,
and the control input signal will not be the torque. Instead, let’s define the input x to
be the desired angular velocity. So, to get the helicopter to not rotate, we provide input
x(t) = 0.

Let us call the impulse response of the plant h2, to conform with the notation in figure
14.6; it is given by

∀ t ∈ Reals, h2(t) = u(t)/M,

where u is the unit step. The transfer function is Ĥ2(s) = 1/(Ms), with RoC(h) = {s∈
Complex| Re(s) > 0}. Ĥ2 has a pole at s= 0, so this is an unstable system.

As a compensator we can simply place a gain K in a negative feedback composition,
as shown in figure 14.7. The intuition is as follows. Suppose we wish to keep the he-
licopter from rotating. That is, we would like the output angular velocity to be zero,
y(t) = 0. Then we should apply an input of zero, x(t) = 0. However, the plant is un-
stable, so even with a zero input, the output diverges (even the smallest non-zero initial
condition or the smallest input disturbance will cause it to diverge). With the feedback
arrangement in figure 14.7, if the output angular velocity rises above zero, then the in-
put is modified downwards (the feedback is negative), which will result in a negative
torque being applied to the plant, which will counter the rising velocity. If the output
angular velocity drops below zero, then the torque will be modified upwards, which
again will tend to counter the dropping velocity. The output velocity will stabilize at
zero.

To get the helicopter to rotate, for example to execute a turn, we simply apply a non-
zero input. The feedback system will again compensate so that the helicopter will rotate
at the angular velocity specified by the input.
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Figure 14.8: Root locus of the helicopter P controller.

The signal e is the difference between the input x, which is the desired angular velocity,
and the output y, which is the actual angular velocity. It is called the error signal.
Intuitively, this signal is zero when everything is as desired, when the output angular
velocity matches the input.

A compensator like that in example 14.13 and figure 14.7 is called a proportional controller or
P controller. The input w to the plant is proportional to the error e. The objective of the control
system is to have the output y of the plant track the input x as closely as possible. I.e., the error e
needs to be small. We can use (14.1) to find the transfer function of the closed-loop system.

Example 14.14: Continuing with the helicopter of example 14.13, the closed loop
system transfer function is

Ĝ(s) =
KĤ(s)

1+KĤ(s)
=

K/M
s+K/M

. (14.2)

which has a pole at s=−K/M. If K > 0, the closed loop system is stable, and if K < 0,
it is unstable. Thus, we have considerable freedom to choose K. How should we choose
its value?

As K increases from 0 to ∞, the pole at at s = −K/M moves left from 0 to −∞. As
K decreases from 0 to −∞, the pole moves to the right from 0 to ∞. The locus of the
pole as K varies is called the root locus, since the pole is a root of the denominator
polynomial.

Figure 14.8 shows the root locus as a thick gray line, on which are marked the locations
of the pole for K = 0,±2,±∞. Since there is only one pole, the root locus comprises
only one ‘branch’. In general the root locus has as many branches as the number of
poles, with each branch showing by the movement of one pole as K varies.

Note that in principle, the same transfer function as the closed-loop transfer function can be achieved
by a cascade composition. But as in example14.1, the resulting system is not robust, in that even the
smallest change in the pole location of the plant can cause the system to go unstable (see problem
6). The feedback system, however, is robust, as shown in the following example
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Example 14.15: Continuing with the P controller for the helicopter, suppose that our
model of the plant is not perfect, and its actual transfer function is

Ĥ2(s) =
1

M(s− ε)
,

for some small value of ε > 0. In that case, the closed loop transfer function is

Ĥ(s) =
K/M

s− ε+K/M
,

which has a pole at s= ε−K/M. So the feedback system remains stable so long as

ε < K/M.

In practice, when designing feedback controllers, we first quantify our uncertainty about the plant,
and then determine the controller parameters so that under all possible plant transfer functions, the
closed-loop system is stable.

Example 14.16: Continuing the helicopter example, we might say that ε < 0.5. In that
case, if we choose K so that K/M > 0.5, we would guarantee stability for all values of
ε < 0.5. We then say that the proportional feedback controller is robust for all plants
with ε < 0.5.

We still have a large number of choices for K. How do we select one? To understand the implications
of different choices of K we need to study the behavior of the output y (or the error signal e) for
different choices of K. In the following examples we use the closed-loop transfer function to analyze
the response of a proportional controller system to various inputs. The first example studies the
response to a step function input.

Example 14.17: Continuing the helicopter example, suppose that the input is a step
function, ∀t,x(t) = au(t) where a is a constant and u is the unit step. This input declares
that at time t = 0, we wish for the helicopter to begin rotating with angular velocity a.
The closed-loop transfer function is given by (14.2), and the Laplace transform of x is
X̂(s) = a/s, from table 13.3, so the Laplace transform of the output is

Ŷ(s) = Ĝ(s)X̂(s) =
K/M

s+K/M
· a

s

Carrying out the partial fraction expansion, this becomes

Ŷ(s) =
−a

s+K/M
+

a
s

.

We can use this to find the inverse Laplace transform,

∀t, y(t) =−ae−Kt/Mu(t)+au(t).

The second term is the steady-state response yss, which in this case equals the input.
So the first term is the tracking error ytr , which goes to zero faster for larger K. Hence
for step inputs, the larger the gain K, the smaller the tracking error.
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In the previous example, we find that the error goes to zero when the input is a step function.
Moreover, the error goes to zero faster if the gain K is larger than if it is smaller. In the following
example, we find that if the input is sinusoidal, then larger gain K results in an ability to track higher
frequency inputs.

Example 14.18: Suppose the input to the P controller helicopter system is a sinusoid
of amplitude A and frequency ω0,

∀ t ∈ Reals, x(t) = A(cosω0t)u(t).

We know that the response can be decomposed as y = ytr +yss. The transient response
ytr is due to the pole at s=−K/M, and so it is of the form

∀ t ∈ Reals, ytr(t) = Re−Kt/M,

for some constant R. The steady-state response is determined by the frequency response
at ω0. The frequency response is

∀ ω∈ Reals, H(ω) = Ĥ(iω) =
K/M

iω+K/M
,

with magnitude and phase given by

|H(ω)|= K/M

[ω2 +(K/M)2]1/2
, � H(ω) =− tan−1 ωM

K
.

So the steady-state response is

∀t, yss(t) = |H(ω0)|Acos(ω0t + � H(ω0)).

Thus the steady-state output is a sinusoid of the same frequency as the input but with a
smaller amplitude (unless ω0 = 0). The larger ω0 is, the smaller the output amplitude.
Hence, the ability of the closed-loop system to track a sinusoidal input decreases as the
frequency of the sinusoidal input increases. However, increasing K reduces this effect.
Thus, larger gain in the feedback loop improves its ability to track higher frequency
sinusoidal inputs.

In addition to the reduction in amplitude, the output has a phase difference. Again,
if ω0 = 0, there is no phase error, because tan−1(0) = 0. As ω0 increases, the phase
lag increases (the phase angle decreases). Once again, however, increasing the gain K
reduces the effect.

The previous two examples suggest that large gain in the feedback loop is always better. For a step
function input, it causes the transient error to die out faster. For a sinusoidal input, it improves the
ability to track higher frequency inputs, and it reduces the phase error in the tracking. A large gain
is not always a good idea, however, as seen in the next example, a DC motor.
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Example 14.19: The angular position y of a DC motor is determined by the input
voltage w according to the differential equation

Mÿ(t)+Dẏ(t) = Lw(t),

where M is the moment of inertia of the rotor and attached load, Dẏ is the damping
force, and the torqe Lw is proportional to the voltage. The transfer function is

Ĥ2(s) =
L

Ms2 +Ds
=

L/M
s(s+D/M)

.

which has one pole at s = 0 and one pole at s = −D/M. By itself the DC motor is
unstable because of the pole at s= 0. The transfer function of the feedback composition
with proportional gain K is

Ĥ(s) =
KĤ2(s)

1+KĤ2(s)
=

KL
Ms2 +Ds+KL

.

There are two closed loop poles—the roots of Ms2 +Ds+KL—located at

s=− D
2M
±

√
D2

4M2 −
KL
M

.

The closed loop system is stable if both poles have negative real parts, which is the case
if K > 0. If K < D2/(4ML) both poles are real. But if K > D2/(4ML), the two poles
form a complex conjugate pair located at

s=− D
2M
± i

√
KL
M
− D2

4M2 .

The real part is fixed at D/2M, but the imaginary part increases with K. We investigate
performance for the parameter values L/M = 10,D/M = 0.1. The transfer function is

Ĥ(s) =
10K

s2 + 0.1s+ 10K
.

Because there are two poles, the root locus has two branches, as shown in figure14.9.
For K = 0, the two poles are located at 0 and -0.1, as illustrated by crosses in the
figure. As K increases the two poles move towards each other, coinciding at -0.05
when K = 0.00025. For larger values of K, the two branches split into a pair of complex
conjugate poles.

To appreciate what values of K > 0 to select for good tracking, we consider the response
to a step input x = u(t) for two different values of K. For K = 0.00025, the Laplace
transform of the output y is

Ŷ(s) =
10K

s2 + 0.1s+ 10K
1
s

=
0.0025

(s+ 0.05)2

1
s

=− 1
s+ 0.05

− 0.05
(s+ 0.05)2 +

1
s

.

So the time domain response is

∀t, y(t) = {−e−0.05t −0.05te−0.05t}u(t)+u(t). (14.3)
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Figure 14.9: The root locus and step response for two values of K of a DC
motor with proportional feedback.

For K = 0.0025, the Laplace transform of the output y is

Ŷ(s) =
0.025

s2 + 0.1s+ 0.025
1
s
≈ −0.5+ i0.17

s+ 0.05− i0.15
+
−0.5−0.17i

s+ 0.05+ i0.15
+

1
s
.

So

∀t, y(t) = e−0.5t [0.527ei(0.15t+2.82) + 0.527e−i(0.15t+2.82)]u(t)+u(t)
= 0.527e−0.5t ×2cos(0.15t + 2.82)u(t)+u(t). (14.4)

The right-hand panel in figure 14.9 shows plots of the responses (14.3) and (14.4) that
illustrate the design tradeoffs. In both cases, the output approaches the input as t→ ∞,
so the asymptotic tracking error is zero. The response for the higher gain is faster but it
overshoots the asymptotic value. The response for the lower gain is slower but there is
no overshoot. In this example, K must be selected to balance speed of response versus
the magnitude of the overshoot. In some applications, overshoot may be completely
unacceptable.

We can now investigate the proportional feedback control in a general setting. Suppose the plant
transfer function is a proper rational polynomial

Ĥ2(s) =
Â(s)
B̂(s)

,

where Â has degree M, B̂ has degree N, and M≤N (Ĥ2 is proper). The closed loop transfer function
is

Ĥ(s) =
KĤ2(s)

1+KĤ2(s)
=

KÂ(s)
B̂(s)+KÂ(s)

. (14.5)
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The closed loop poles are the N roots of the equation B̂(s)+KÂ(s) = 0. These roots will depend on
K, so we denote them p1(K), · · · , pn(K). As K varies, these roots will trace out the N branches of
the root locus. At K = 0, the poles are the roots of B̂(s) = 0, which are the poles of the plant transfer
function Â(s)/B̂(s). The stability of the closed loop plant requires that K must be such that

Re{p1(K)}< 0, · · · ,Re{pn(K)}< 0. (14.6)

Within those values of K that satisfy (14.6) we must select K to get a good response.

The following example shows that a proportional compensator may be unable to guarantee closed
loop stability.

Example 14.20: Consider a plant transfer function given by

Ĥ2(s) =
Â(s)
B̂(s)

=
s+ 1

(s−1)(s2 + 0.5s+ 1.25)
.

There is one zero at s=−1, one pole at s= 1 and a pair of complex conjugate poles at
s= −0.5± i1.09. The plant is unstable because of the pole at s= 1. The closed loop
poles are the roots of the polynomial

P(K,s) = KÂ(s)+ B̂(s) = K(s+ 1)+ (s−1)((s+ 0.25)2 + 1.188).

Figure 14.10 shows the three branches of the root locus plot for K > 0. As K increases,
the unstable pole moves towards the zero, while the complex conjugate poles move into
the right-half plane. We need to find the values of K that satisfy the stability condition
(14.6). The value of K for which the pole at s= 1 moves to s= 0 is obtained from the
condition P(K,0) = 0, which gives K− (0.52 + 1) = 0 or K = 1.25. So one condition
for stability is K > 1.25. The complex conjugate poles cross the imaginary axis at
s = ±i1.15 for K = 0.6. So the second condition for stability is K < 0.6. The two
conditions K > 1.25 and K < 0.6 are inconsistent, so no proportional compensator can
stabilize this system.

We return to the general discussion. Suppose the stability condition (14.6) can be met. Among the
values of K that achieve stability, we select that value for which the output y closely tracks a step
input, x = u. In this case, the Laplace transform of the input is 1/s, so the Laplace transform of y is,
from (14.5),

Ŷ(s) = Ĥ(s)
1
s

=
KÂ(s)

B̂(s)+KÂ(s)
1
s

. (14.7)

Assuming for simplicity that all the poles p1(K), · · · , pn(K) have multiplicity 1, Ŷ has the partial
fraction expansion

Ŷ(s) =
n

∑
i=1

Ri

s− pi(K)
+

R0

s
,

and hence the time-domain behavior of

∀t, y(t) =

[
n

∑
i=1

Rie
pi (K)t

]
u(t)+R0u(t).
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Figure 14.10: Root locus for example 14.20. Stability requires K > 1.25 and
K < 0.6. Therefore, there is no stabilizing proportional compensator.

The first term is the transient response, ytr , and the second term is the steady-state response yss =
R0u. The transient response goes to zero, since from (14.6), Re{pi(K)} < 0 for all i. The input is
the unit step, x = u. So the steady-state tracking error is |R0−1|, which depends on R0. It is easy to
find the residue R0. We simply multiply both sides of (14.7) by s and evaluate both sides at s= 0,
to get

R0 = Ĝ(0) =
KĤ2(0)

1+KĤ2(0)
.

To have zero steady-state error, we want R0 = 1, which can only happen if Ĥ2(0) = ∞. But this
means s= 0 must be a pole of the plant transfer function Ĥ2. (This is the case in the examples of
the helicopter and the DC motor.) If the plant does not have a pole at s= 0, the steady-state error
will be ∣∣∣∣1− KĤ2(0)

1+KĤ2(0)

∣∣∣∣ .

This error is smaller the larger the gain K. So to minimize the steady-state error we should choose
as large a gain as possible, subject to the stability requirement (14.6).

However, a large value of K may lead to poor transient behavior by causing overshoots, as happened
in the DC motor example in figure 14.9 for the larger gain K = 0.0025. To decide the appropriate K
is a matter of trial and error. One studies the transient response for different (stabilizing) values of
K (as we did for the DC motor) and selects K that gives a satisfactory transient behavior.
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Figure 14.11: A mass-spring-damper system.

14.4 PID controllers

The P controller discussed in the previous section achieves zero steady-state error if the plant has
a pole at s= 0. This means that the plant includes an integrator, since the transfer function of an
integrator is 1/s, which has a pole at s= 0. If the plant does not have a pole at s= 0, however, a
non-zero error results. While this error can be reduced by choosing a large gain K in the controller,
this results in poor transient behavior.

In this section, we develop the well-known PID controller, which includes an integrator in the
controller. It can achieve zero steady-state error even if the plant does not have a pole at s= 0, and
still achieve reasonable transient behavior. The PID controller is a generalization of the P controller,
in that with certain choices of parameters, it becomes a P controller.

We begin with an example that has rich enough dynamics to demonstrate the strengths of the PID
controller. This example describes a mechanical system, but just about any physical system that is
modeled by a linear second-order differential equation is subject to similar analysis. This includes,
for example, electrical circuits having resistors, capcitors, and inductors.

Example 14.21: A basic mass-spring-damper system is illustrated in figure 14.11.
This system has a mass M that slides on a frictionless surface, a spring that attaches
the mass to a fixed physical object, and a damper, which absorbes mechanical energy.
A damper might be, for example, a dashpot, which is a cylinder filled with oil plus
a piston. A familiar example of such a damper is a shock absorber in the suspension
system of a car.

Suppose that an external force w is applied to the mass, where w is a continuous-time
signal. The differential equation governing the system is obtained by setting the sum
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of all forces to zero,
Mÿ(t)+Dẏ(t)+Cy(t) = w(t).

The output y(t) is the position of the mass at time t, Mÿ(t) is the inertial force, Dẏ(t)
is the damping force due to the damper, Cy(t) is the restoring force of the spring, and
w(t) is the externally applied force. We assume that y(t) = 0 when the spring is in its
equilibrium position (neither extended nor compressed). M, D, and C are constants.
Taking the Laplace transform, using the differentiation property from table13.4, gives

s2Ŷ(s)+DsŶ(s)+CY(s) = W(s),

so the plant or open loop transfer function is

Ĥ2(s) =
Ŷ(s)
Ŵ(s)

=
1

Ms2 +Ds+C
.

Suppose for example that the constants have values M = 1, D = 1,and C = 1.25. Then

Ĥ2(s) =
1

s2 +s+ 1.25
. (14.8)

In this case, the transfer function has a pair of complex poles at s = −0.5± i. Since
their real part is strictly negative, the system is stable.

Suppose we wish to drive the system to move the mass to the right one unit of distance
at time t = 0. We can apply an input force that is a unit step, scaled so that the steady-
state response places the mass at position y(t) = 1. The final steady-state output is
determined by the DC gain, which is Ĥ2(0) = 1/1.25 = 0.8, so we can apply an input
given by

∀ t, ,w(t) =
1

0.8
u(t) = 1.25u(t),

where u is the unit step signal. The resulting response yo has Laplace transform

Ŷo(s) =
1

s2 +s+ 1.25
· 1.25

s
=
−0.5+ 0.25i

s+ 0.5− i
+
−0.5−0.25i

s+ 0.5+ i
+

1
s

.

We call this the open-loop step response, because there is no control loop (yet).

Taking the inverse transform gives the open-loop step response

∀ t, yo(t) = e−0.5t [(−0.5+ 0.25i)eit +(−0.5−0.25i)e−it ]u(t)+u(t).

By combining the complex conjugate terms, this can be expressed as

∀t, yo(t) = Re−0.5t cos(t +θ)u(t)+u(t),

where R = 1.12 and θ = 2.68. Figure 14.12 displays a plot of this open-loop step
response yo. Notice that the mass settles to position y(t) = 1 for large t.
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Figure 14.12: The open loop step response yo of the mass-spring-damper
system.
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Figure 14.13: The mass-spring-damper system composed with a PID con-
troller in a feedback composition.

This system in the previous example is stable, and therefore does not need a feedback control loop to
stabilize it. However, there are two difficulties with its open-loop response, shown in figure14.12,
that can be corrected using a controller. First, it takes approximately 10 units of time for the transient
to disappear, which may be too slow for some applications. Moreover, there is an overshoot of 20
percent beyond the final steady-state value, which may be too much.

We can correct for the slow response and the large overshoot, using a PID controller. The term
‘PID’ stands for proportional plus integral plus derivative. A PID controller generalizes the P con-
troller of the previous section by adding an integral and derivative term.

The general form of the transfer function of a PID controller is

Ĥ1(s) = K1 +
K2

s
+K3s=

K3s2 +K1s+K2

s
. (14.9)

We will compose this with the plant in a feedback loop, as shown in figure14.13. Here K1,K2,K3 are
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constants to be selected by the designer. If K2 = K3 = 0, then we have a P controller. If K1 = K3 = 0,
Ĥ1(s) = K2/s, we have an integral contoller, so called because 1/s is the transfer function of an
integrator. That is, if the input to the integral controller is e, and the output is w, then

∀ t, w(t) = K2

∫ t

−∞
e(τ)dτ.

If K1 = K2 = 0, Ĥ2(s) = K3s, then we have a derivative controller, so called because s is the transfer
function of a differentiator. That is, if the input to the derivative controller is e, and the output is w,
then

∀ t, w(t) = K3ė(t).

The following table offers guidelines for selecting the parameters of a PID controller. Of course,
these are guidelines only—the actual performance of the closed loop system depends on the plant
transfer function and must be checked in detail.

Parameter Response speed Overshoot Steady-state error
K1 Faster Larger Decreases
K2 Faster Larger Zero
K3 Minor change Smaller Minor change

Example 14.22: We now evaluate a PID controller for the mass-spring-damper system
of figure 14.11, using the feedback composition of figure14.6. We assume the parame-
ters values M = 1, D = 1, and C = 1.25, as in example 14.21. The closed-loop transfer
function with the PID controller is

Ĥ(s) =
Ĥ1(s)Ĥ2(s)

1+ Ĥ1(s)Ĥ2(s)
=

K3s2 +K1s+K2

s3 +(1+K3)s2 +(1.25+K1)s+K2
.

Suppose we provide as input a unit step. This means that we wish to move the mass to
the right one unit of distance, starting at time t = 0. The controller will attempt to track
this input. The response to a unit step input has Laplace transform

Ŷpid(s) = Ĥ(s) · 1
s

=
K3s2 +K1s+K2

s3 +(1+K3)s2 +(1.25+K1)s+K2
· 1

s
. (14.10)

We now need to select the values for the parameters of the PID controller, K1, K2, and
K3. We first try proportional control with K1 = 10, and K2 = K3 = 0. In this case, the
step response has the Laplace transform

Ŷp(s) =
10

s2 +s+ 11.25
· 1

s
.

The inverse Laplace transform gives the time response yp, which is plotted in figure
14.14. The steady-state value is determined by the DC gain of the closed loop transfer
function,

10
s2 +s+ 11.25

∣∣∣∣
s=0

=
10

11.25
≈ 0.89.
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Figure 14.14: The step response for open loop, yo, with P-control, yp, PD-
control, ypd, and PID-control, ypid .
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This yields an error of 11 percent, and the overshoot of 50 percent is much worse than
that of the open-loop response yo, also shown in the figure. Thus, a P controller with
gain K = 10 is useless for this application.

Following the guidelines in the table above, we add derivative control to reduce the
overshoot. The result is a so-called PD controller, because it adds a proportional and
a derivative term. For the PD controller we choose K1 = 10 and K3 = 10. Substitution
in (14.10) gives the Laplace transform of the step response,

Ŷpd(s) =
10s+ 10

s2 + 11s+ 11.25
· 1

s
.

The steady-state value is given by the DC gain of the closed loop transfer function,

10s+ 10
s2 + 11s+ 11.25

∣∣∣∣
s=0
≈ 0.89,

which is the same as the steady-state value for the P controller. The inverse Laplace
transform gives the time response ypd, which is plotted in figure 14.14. The overshoot
is reduced to 10 percent—a large improvement. Also, the response is quicker—the
transient disappears in about 4 time units.

Finally, to eliminate the steady-state error we add integral control. For the PID con-
troller we choose K1 = 10,K2 = 5,K3 = 10. Substitution in (14.10) gives the Laplace
transform of the step response

Ŷpid(s) =
10s2 + 10s+ 5

s3 + 11s2 + 11.25s+ 5
· 1

s
.

The steady-state value is again given by the DC gain of the closed loop transfer func-
tion,

10s2 + 10s+ 5
s3 + 11s2 + 11.25s+ 5

∣∣∣∣
s=0

= 1.

So the steady-state error is eliminated, as expected. The time response ypid is plotted
in figure 14.14. It shows significant improvement over the other responses. There is
no overshoot, and the transient disappears in about 4 time units. Further tuning of the
parameters K1,K2,K3 could yield small improvements.

14.5 Summary

This chapter considers cascade, parallel, and feedback compositions of LTI systems described by
Z or Laplace transforms. Cascade composition is applied to equalization, parallel composition is
applied to noise cancellation, and feedback composition is applied to control.

Because we are using Z and Laplace transforms rather than Fourier transforms, we are able to con-
sider unstable systems. In particular, we find that while, in principle, cascade and parallel composi-
tions can be used to stabilize unstable systems, the result is not robust. Small changes in parameter
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values can result in the system being once again unstable. Feedback composition, on the other hand,
can be used to robustly stabilize unstable systems. We illustrate this first with a simple helicopter
example. The second example, a DC motor, benefits from more sophisticated controllers. The
third example, a mass-spring-damper system, motivates the development of the well-known PID
controller structure. PID controllers can be used to stabilize unstable systems and to improve the
response time, precision, and overshoot of stable systems.

Exercises

Each problem is annotated with the letter E, T, C which stands for exercise, requires some thought,
requires some conceptualization. Problems labeled E are usually mechanical, those labeled T re-
quire a plan of attack, those labeled C usually have more than one defensible answer.

1. E This exercise studies equalization when the channel is only known approximately. Consider
the cascade composition of figure 14.1, where Ĥ1 is the channel to be equalized, and Ĥ2 is the
equalizer. If the equalizer is working perfectly, then x = y. For example, if

Ĥ1(z) =
z

z−0.5
and Ĥ2(z) =

z−0.5
z

,

then x = y because Ĥ1(z)Ĥ2(z) = 1.

(a) Suppose that Ĥ2(z) is as given above, but the plant is a bit different,

Ĥ1(z) =
z

z−0.5− ε
.

Suppose that x = δ, the Kronecker delta function. Plot y−x for ε = 0.1 and ε =−0.1.

(b) Now suppose that the equalizer is

Ĥ2(z) =
z−2

z
,

and the channel is
Ĥ1(z) =

z
z−2− ε

.

Again suppose that x = δ, the Kronecker delta function. Plot y−x for ε = 0.1,−0.1.

(c) For part (b), show that equalization error y− x grows without bound whenever ε �= 0,
|ε|< 1.

2. E This exercise studies equalization for continuous-time channels. Consider the cascade com-
position of figure 14.1, where Ĥ1 is the channel to be equalized, and Ĥ2 is the equalizer. Both
are causal. If

Ĥ1(s) =
s+ 1
s+ 2

and Ĥ2(s) =
s+ 2
s+ 1

,

then x = y because Ĥ1(s)Ĥ2(s) = 1.



14.5. SUMMARY 507

x v y w
y

w

0.50

1H1(z) H2(z)

Channel Equalizer Decision

transmitted
binay signal

equalizer
output

reconstructed
binary signal

channel
output

Figure 14.15: Arrangement of decision-directed equalization of exercise3.

(a) Suppose Ĥ2 is as above but

Ĥ1(s) =
s+ 1

s+ 2+ ε
.

Suppose x = u, the unit step. Plot y− x for ε = 0.1 and ε = −0.1, and calculate the
steady state error.

(b) Now suppose the equalizer is

Ĥ2(s) =
s−1
s+ 2

,

and the channel is

Ĥ1(s) =
s+ 2

s−1− ε
.

Again suppose that x = u. Plot y−x for ε = 0.1,−0.1.

(c) For part (b) show that the error y−x grows without bound for any ε �= 0, |ε|< 1.

3. T This exercise explores decision-directed equalization. The arrangement is shown in figure
14.15. The transmitted signal is a binary sequence x : Integers→ {0,1}. The causal channel
transfer function is Ĥ1 and the equalizer transfer function is Ĥ2. The channel output is the
real-valued signal v : Integers→ Reals. The equalizer output is the real-valued signal y :
Integers→Reals. This signal is fed to a decision unit whose binary output at time n, w(n) = 0
if y(n) < 0.5 and w(n) = 1 if y(n) ≥ 0.5. Thus the decision unit is a (nonlinear) memoryless
system,

Decision: [Integers→ Reals]→ [Integers→ {0,1}],
defined by a threshold rule

∀n, (Decision(y))(n) =
{

0, y(n) < 0.5,
1, y(n) ≥ 0.5

At each point in time, the receiver has an estimate Ĥe
1 of the true channel transfer function,

Ĥ1. The equalizer is set at

Ĥ2(z) = [Ĥe
1(z)]−1. (14.11)

(a) Suppose that initially Ĥ1(z) = z
z−0.2 , and the estimate is perfect, Ĥe

1 = Ĥ1. (This perfect
estimate is achieved using a known training sequence for x.) Determine the respective
impulse responses h1 and h2.
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Now suppose the signal x is

∀n, x(n) =




0, n < 0
1, n≥ 0,n even
0, n≥ 0,n odd

(14.12)

Calculate the channel output v(n) = (h1 ∗ x)(n),n ≤ 3. Then calculate the equalizer
output y(n) = (h2 ∗ v)(n),n ≤ 3, and check that y(n) = x(n),n ≤ 3. Also check that
w(n) = x(n),n≤ 3.

(b) Now suppose the channel transfer function has changed to

Ĥ1(z) =
z

z−0.3
,

but the receiver’s estimate hasn’t changed, i.e.

Ĥe
1(z) =

z
z−0.2

,

so the equalizer (14.11) hasn’t change either. For the same input signal again calculate
the channel and equalizer outputs v(n),y(n),n≤ 3. Check that y(n) �= x(n),n > 0. But
show that the decision w(n) = x(n),n≤ 3. So the equalizer correctly determines x.

(c) Since the receiver’s decision w = x, it can make a new estimate of the channel using the
fact that Ŷ = Ĥ1Ĥ2X̂ = Ĥ1Ĥ2Ŵ. The new estimate is

Ĥe
1 =

Ŷ

Ĥ2Ŵ
. (14.13)

Suppose time is 3, and the receiver has observed y(n),w(n),n≤ 3. Since the Z trans-
forms Ŷ and Ŵ also depend on values of y(n),w(n) for n> 3, these Z transforms can not
be calculated at time n = 3, and so the estimator (14.13) cannot be used. The following
approach will work, however.

Suppose the receiver knows that the unknown channel transfer function is of the form

Ĥ1(z) =
z

z−a
,

so that only the parameter a has to be estimated. Using this information, we have

Ŷ(z) =
z

z−a
z−0.2

z
Ŵ(z) =

z−0.2
z−a

W(z).

Now take the inverse Z transform and express the time-domain relation between y and
w. Show that you can estimate a knowing y(0),y(1),w(0),w(1).

4. E This continues exercise 3. It shows that if the channel estimate Ĥe
1 is not sufficiently close

to the true channel Ĥ1, the decision may become incorrect. Suppose the true channel is
Ĥ1(z) = z

z−a, the estimate is Ĥe
1(z) = z

z−0.2 , the equalizer is Ĥ2(z) = [Ĥe
1(z)]−1 = z−0.2

z , and
the decision is as in figure 14.15. Assume the input signal x to be the same as in (14.12) Show
that if a = 0.6 then w(0) = x(0),w(1) = x(1),w(2) = x(2), but w(3) �= x(3).
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5. E This exercise continues the discussion in examples 14.5, 14.6 for the continuous-time,
causal and stable channel with impulse response h1 and transfer function

∀s∈ RoC(h1) = {s | Re{s} >−1}, Ĥ1(s) =
s−2
s+ 1

.

(a) Calculate h1 and sketch it. (Observe how the zero in the right-half plane at s= 2 accounts
for the negative values.)

(b) The inverse of Ĥ1,

Ĥ2(s) =
s+ 1
s−2

,

has a pole at s= 2. So as a causal system, the inverse is unstable. But as a non-causal
system, it is stable with RoC= {s | Re{s} < 2} which includes the imaginary axis.
Evaluate the impulse response h2 of Ĥ2 as an anti-causal system, and give a sketch.

(c) The impulse response h2 calculated in (a) is non-zero for t ≤ 0. Consider the finite-
duration, anti-causal impulse response h3 obtained by truncating h2 before time -5,

∀t ∈ Reals, h3(t) =
{

h2(t), t ≥−5
0, t <−5

and sketch h3. Calculate the transfer function Ĥ3, including its RoC, by using the defi-
nition of the Laplace transform.

(d) Obtain the causal impulse response h4 by delaying h3 by time T, i.e.

∀t ∈ Reals, h4(t) = h3(t +T).

Sketch h4 and find its transfer function, Ĥ4. Then Ĥ4 is an approximate inverse of Ĥ1

with a delay of 5 time units. (Note: h3 has a delta function at 0.)

6. T The proportional controller of figure 14.7 stabilizes the plant for K > 1. In this exercise,
we try to achieve the same effect by the cascade compensator of figure14.1.

(a) Assume that the plant Ĥ2 is as given in figure 14.7. Design Ĥ1 for the cascade composi-
tion of figure 14.1 so that Ĥ2Ĥ1 is the same as the closed-loop transfer function achieved
in figure 14.7.

(b) Now suppose that the model of the plant is not perfect, and the plant’s real transfer
function is

Ĥ2(s) =
1

M(s− ε)
,

for some small value of ε > 0. Using the same Ĥ1 that you designed in part (a), what is
the transfer function of the cascade composition? Is it stable?

7. T Consider a discrete-time causal plant with transfer function

Ĥ2(z) =
z

z−2
.

(a) Where are the poles and zeros? Is the plant stable?
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(b) Find the impulse response of the plant. Is it bounded?

(c) Give the closed-loop transfer function for the P controller for this plant.

(d) Sketch the root locus for the P controller for this plant.

(e) For what values of K is the closed-loop system stable?

(f) Find the step response of the closed-loop system. Identify the transient and steady-state
responses. For K = 10, what is the steady-state tracking error?

(g) Suppose that the plant is instead given by

Ĥ2 =
z

z−2− ε
,

for some real ε ≥ 0. For what values of K is the P controller robust for plants with
|ε|< 0.5?

8. T Consider the feedback composition in figure14.6. Suppose that Ĥ1Ĥ2 is causal and strictly
proper, meaning that the order of the numerator is greater than the order of the denominator.

(a) Show that if Ĥ1Ĥ2 is causal and strictly proper, then so is Ĥ, the transfer function of the
feedback composition given by (14.1).

(b) For the discrete-time case, show that we can write

Ĥ1(z)Ĥ2(z) = z−1Ĝ(z), (14.14)

where G(z) is proper, and is the transfer function of a causal system. Intuitively, this
means that there must be a net unit delay in the feedback loop, because z−1 is the transfer
function of a unit delay.

(c) Use the result of part (a) to argue that the system Ĥ1Ĥ2 has state-determined output.

(d) For the continuous-time case, show that we can write

Ĥ1(s)Ĥ2(s) = s−1Ĝ(s), (14.15)

where G(s) is proper, and is the transfer function of a causal system. Intuitively, this
means that there must be an integration in the feedback loop, because s−1 is the transfer
function of an integrator.

(e) Use the result of part (c) to argue that the system Ĥ1Ĥ2 has state-determined output,
assuming that the input is bounded and piecewise continuous.

9. E Consider the mth order polynomial sN + am−1sm−1 + · · ·+ a1s+ a0. Suppose all its roots
have negative real parts. Show that all coefficients of the polynomial must be positive, i.e.,
am−1 > 0, · · · ,a0 > 0. Hint. Express the polynomial as (s− p1) · · · (s− pm) with Re{pi} > 0.
Note that complex roots must occur in complex conjugate pairs. (The positiveness of all
coefficients is a necessary condition. A sufficient condition is given by the Routh-Hurwitz
criterion, described in control theory texts.)

10. T Consider the feedback composition in figure 14.6. The plant’s transfer function is Ĥ2(s) =
1/s2.
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(a) Show that no PI controller in the form Ĥ1(s) = K1 +K2/s can stabilize the closed loop
system for any values of K1,K2. Hint. Use the result of problem 9.

(b) Show that by the proper choice of the coefficients K1,K2 of a PD controller in the form
Ĥ1(s) = K1 + K2s, you can place the closed-loop poles at any locations p1, p2 (these
must be complex conjugate if they are complex).

11. T Consider the feedback composition in figure 14.6. The plant’s transfer function is Ĥ2(s) =
1/(s2 + 2s+ 1). The PI controller is Ĥ1(s) = K1 +K2/s.

(a) Take K2 = 0, and plot the root locus as K1 varies. For what values of K1 is the closed
loop system stable? What is the steady state error to a step input as a function of K1?

(b) Select K1,K2 such that the closed loop system is stable and has zero-steady state error.
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