
Chapter 1

Model-Based Design

Models of cyber-physical systems must include both the physical parts and the computing and
networking parts. The models will typically need to represent both static and dynamic properties.
Static properties are those that do not change during the operation of the system. They include
for example logical structure, physical structure, data types, or data ontologies (interpretations of
the meaning of the data). Dynamic properties are those that do change during the operation of the
system. They include physical dynamics (e.g. the motion of mechanical parts of the system), timing
of actions, mode changes, energy consumption, noise, etc.

1.1 Modeling Physical Dynamics

Physical motion of mechanical parts of cyber-physical system can often be modeled using differen-
tial equations, or equivalently, integral equations. Such models really only work well for “smooth”
motion (a concept that we can make more precise using notions of linearity, time invariance, and
continuity). For motions that are not smooth, such as those modeling collisions of mechanical parts,
we can use modal models that represent distinct modes of operation with abrupt (conceptually in-
stantaneous) transitions between modes. We can often use differential equations to model dynamics
within each mode. The combination of modal models and differential equations is often called
hybrid systems. We begin with simple equations of motion.

1.1.1 Newtonian Mechanics

In this section, we give a brief working review of some principles of classical mechanics. This is
intended to be just enough to be able to construct interesting models, but is by no means compre-
hensive. The interested reader is referred to many excellent texts on classical mechanics, including
[1, 2, 4].

Motion in space of physical objects can be represented with six degrees of freedom, illustrated
in Figure 1.1. Three of these represent position in three dimensional space, and three represent

1

eal
Text Box
Introduction to Embedded SystemsNotes for EECS 124Spring 2008Edward A. Lee, Sanjit A. Seshia, and Claire Tomlineal@eecs.berkeley.edu, sseshia@eecs.berkeley.edu, tomlin@eecs.berkeley.eduElectrical Engineering & Computer SciencesUniversity of California, BerkeleyFebruary 25, 2008



2 CHAPTER 1. MODEL-BASED DESIGN

Yaw

Roll

Pitch

x axis

z axis

y axis

Figure 1.1: Modeling position with six degrees of freedom.

orientation in space. We assume three axes, x, y, and z, where by convention x is drawn increasing
to the right, y is drawn increasing upwards, and z is drawn increasing out of the page. Roll θx

is an angle of rotation around the x axis, where by convention an angle of 0 radians represents
horizontally flat along the z axis (i.e., the angle is given relative to the z axis). Yaw θy is the rotation
around the y axis, where by convention 0 radians represents pointing directly to the right (i.e., the
angle given relative to the x axis). Pitch θz is rotation around the z axis, where by convention 0
radians represents pointing horizontally (i.e. the angle is given relative to the x axis).

The position of an object in space, therefore, is represented by six functions of the form f : R→ R,
where the domain represents time and the codomain represents either distance along an axis or
angle relative to an axis. These are often collected into vector-valued functions x : R → R3 and
θ : R→ R3, where x represents position, and θ represents orientation.

Changes in position or orientation are governed by Newton’s second law, relating force with accel-
eration. Acceleration is the second derivative of position. Our first equation handles the position
information,

F(t) = Mẍ(t), (1.1)

where F is the force vector in three directions, M is the mass of the object, and ẍ is the second
derivative of x with respect to time (i.e. the acceleration). Velocity is the integral of acceleration,
given by

∀ t > 0, ẋ(t) = ẋ(0)+
tZ

0

ẍ(τ)dτ

where ẋ(0) is the initial velocity in three directions. Using (1.1), this becomes

∀ t > 0, ẋ(t) = ẋ(0)+
1
M

tZ

0

F(τ)dτ,



1.1. MODELING PHYSICAL DYNAMICS 3

Position is the integral of velocity,

x(t) = x(0)+
tZ

0

ẋ(τ)dτ

= x(0)+ tẋ(0)+
1
M

tZ

0

τZ

0

F(α)dαdτ,

where x(0) is the initial position. Using these equations, if you know the initial position and initial
velocity of an object and the forces on the object in all three directions as a function of time, you
can determine the acceleration, velocity, and position of the object at any time.

The versions of these motions of equation that affect orientation use torque, the rotational version
of force. It is again a three-element vector as a function of time, representing the net twisting force
on an object. It can be related to angular velocity in a manner similar to (1.1),

T(t) =
d
dt

(
I(t)θ̇(t)

)
, (1.2)

where T is the torque vector in three axes and I(t) is the moment of inertia tensor of the object.
The moment of inertia is a 3×3 matrix that depends on the geometry and orientation of the object.
Intuitively, it represents the reluctance that an object has to spin around any axis as a function of its
orientation along the three axes. If the object is spherical, for example, this reluctance is the same
around all axes, so it reduces to a constant scalar I. The equation then looks much more like (1.1),

T(t) = Iθ̈(t). (1.3)

To be explicit about the three dimensions, we might write (1.2) as Tx(t)
Ty(t)
Tz(t)

 =
d
dt

 Ixx(t) Ixy(t) Ixz(t)
Iyx(t) Iyy(t) Iyz(t)
Izx(t) Izy(t) Izz(t)

 θ̇x(t)
θ̇y(t)
θ̇z(t)

 .

Here, for example, Ty(t) is the net torque around the y axis (which would cause changes in yaw),
Iyx(t) is the inertia that determines how acceleration around the x axis is related to torque around the
y axis.

Rotational velocity is the integral of acceleration,

θ̇(t) = θ̇(0)+
tZ

0

θ̈(τ)dτ,

where θ̇(0) is the initial rotational velocity in three axes. For a spherical object, using (1.3), this
becomes

θ̇(t) = θ̇(0)+
1
I

tZ

0

T(τ)dτ.



4 CHAPTER 1. MODEL-BASED DESIGN

M
body

tail

main rotor shaft

Figure 1.2: Simplified model of a helicopter.

Orientation is the integral of rotational velocity,

θ(t) = θ(0)+
Z t

0
θ̇(τ)dτ

= θ(0)+ tθ̇(0)+
1
I

tZ

0

τZ

0

T(α)dαdτ

where θ(0) is the initial orientation. Using these equations, if you know the initial orientation and
initial rotational velocity of an object and the torques on the object in all three axes as a function
of time, you can determine the rotational acceleration, velocity, and orientation of the object at any
time.

Often, as we have done for a spherical object, we can simplify by reducing the number of dimensions
that are considered. For example, if an object is a moving vehicle on a flat surface, there is little
reason to consider the y axis movement or the pitch or roll of the object.

Example 1.1: Consider a simple control problem that admits such reduction of di-
mensionality. A helicopter has two rotors, one above, which provides lift, and one on
the tail. Without the rotor on the tail, the body of the helicopter would start to spin. The
rotor on the tail counteracts that spin. Specifically, the force produced by the tail rotor
must perfectly counter the friction with the main rotor, or the body will spin. Here we
consider this role of the tail rotor independently from all other motion of the helicopter.

A highly simplified version of the helicopter is shown in figure 1.2. In this version, we
assume that the helicopter position is fixed at the origin, and hence there is no need to
consider the equations governing the dynamics of position. Moreover, we will assume
that the helicopter remains vertical, so pitch and roll are fixed at zero.1

With these assumptions, the moment of inertia reduces to a scalar that resists changes
in yaw. The torque causing changes in yaw will be due to the friction with the main

1Note that these assumptions are not as unrealistic as they may seem since we can define the coordinate system to be
fixed to the helicopter.



1.1. MODELING PHYSICAL DYNAMICS 5

rotor. This will tend to cause the helicopter to rotate in the same direction as the rotor
rotation. The tail rotor has the job of countering that torque to keep the body of the
helicopter from spinning.

We model the simplified helicopter by a system that takes as input a continuous-time
signal Ty, the torque around the y axis (which causes changes in yaw). This torque is
the net difference between that caused by the friction of the main rotor and that caused
by the tail rotor. The output of our system will be the angular velocity θ̇y around the y
axis. The dimensionality-reduced version of (1.2) can be written as

θ̈y(t) = Ty(t)/Iyy.

Integrating both sides, we get the output as a function of the input,

θ̇y(t) = θ̇y(0)+
1

Iyy

tZ

0

Ty(τ)dτ. (1.4)

1.1.2 Actor Models

In the previous section, a model of a physical system is given by a differential or an integral equa-
tion that relates input signals (force or torque) to output signals (position, orientation, velocity, or
rotational velocity). Such a physical system can be viewed as a component in a larger model. In
particular, a continuous-time system may be represented by a box with an input port and an output
port as follows:

where the input signal x and the output signal y are functions of the form

x : R→ R, y : R→ R.

Here the domain represents time and the codomain represents the value of the signal at a particular
time. The system itself is a function of the form

S : X → Y, (1.5)

where X = Y = (R → R), the set of functions of the form of x and y above. The function S may
depend on parameters of the system, in which case the parameters may be optionally shown in the
box, and may be optionally included in the function notation. For example, in the above figure, if
there are parameters p and q, we might write the system function as Sp,q or even S(p,q), keeping in
mind that both of notations represent functions of the form in 1.5.

Example 1.2: The actor model for the helicopter of example 1.1 can be depicted as
follows:



6 CHAPTER 1. MODEL-BASED DESIGN

The input and output are both continuous-time functions. The parameters of the actor
are the initial angular velocity and the moment of inertia. The function of the actor is
defined by (1.4).

Actor models are composable. In particular, given two systems S1 and S2, we can form a cascade
composition as follows:

In the diagram, the “wire” between the output of S1 and the input of S2 means precisely that y = x′,
or more pedantically,

∀ t ∈ R, y(t) = x′(t).

Example 1.3: The actor model for the helicopter can be represented as a cascade
composition of two systems as follows:

The left subsystem represents a simple scaling function parameterized by the constant
a defined by

∀ t ∈ R, y(t) = ax(t). (1.6)

More compactly, we can write y = ax, where it is understood that the product of a scalar
a and a function x is interpreted as in (1.6). The right system represents an integrator
parameterized by the initial value i defined by

∀ t ∈ R, y′(t) = i+
tZ

0

x′(τ)dτ.

If we give the parameter values a = 1/Iyy and i = θ̇y(0), we see that this system repre-
sents (1.4) where the input x = Ty and the output y′ = θ̇y.



1.1. MODELING PHYSICAL DYNAMICS 7

In the above figure, we have customized the icons, which are the boxes representing the subsys-
tems. These particular subsystems (scaler and integrator) are particularly useful building blocks for
building up models of physical dynamics, so assigning them recognizable visual notations is useful.

We can have systems that have multiple input signals and/or multiple output signals. These are
represented similarly, as in the following example which has two input signals and one output
signal:

A particularly useful building block with this form is a signal adder, defined by

∀ t ∈ R, y(t) = x1(t)+ x2(t).

This will often be represented by a custom icon as follows:

Sometimes, one of the inputs will be subtracted rather than added, in which case the icon is further
customized with minus sign near that input, as below:

This (sub)system represents a function S : (R→ R)2 → (R→ R) given by

∀ t ∈ R, ∀ x1,x2 ∈ (R→ R), (S(x1,x2))(t) = y(t) = x1(t)− x2(t).

1.1.3 Linearity and Time Invariance

Systems that are linear and time invariant (LTI) have particularly nice mathematical properties.
Much of the theory of control systems depends on these properties. These properties form the
main body of courses on signals and systems, and are beyond the scope of this text. But we will
occasionally exploit simple versions of the properties, so it is useful to determine when a system is
LTI.

A system S : X → Y , where X and Y are sets of signals, is linear if it satisfies the superposition
property:

∀ x1,x2 ∈ X and ∀ a,b ∈ R, S(ax1 +bx2) = aS(x1)+bS(x2).



8 CHAPTER 1. MODEL-BASED DESIGN

It is easy to see that the helicopter system defined in example 1.1 is linear if and only if the initial
angular velocity θ̇y(0) = 0 (see exercise 1).

More generally, it is easy to see that an integrator as defined in example 1.3 is linear if and only if
the initial value i = 0, that the Scale actor is always linear, and that the cascade of any two linear
actors is linear. We can trivially extend the definition of linearity to actors with more than one input
or output signal and then determine that the adder is also linear.

To define time invariance, we first define a specialized continuous-time system called a delay. Let
Dτ : X → Y , where X and Y are sets of continuous-time signals, be defined by

∀ x ∈ X and ∀ t ∈ R, (Dτ(x))(t) = x(t− τ). (1.7)

Here, τ is a parameter of the system. A system S : X → Y is time invariant if

∀ x ∈ X and ∀ τ ∈ R, S(Dτ(x)) = Dτ(S(x)).

The helicopter system defined in example 1.1 is not time-invariant as defined in (1.4). A minor
variant, however, is:

θ̇y(t) =
1

Iyy

tZ

−∞

Ty(τ)dτ.

This version does not allow for an initial angular rotation.

A linear time-invariant system (LTI) is a system that is both linear and time invariant. A major
objective in modeling physical dynamics is to choose an LTI model whenever possible. It is often
easy to construct models that are more complicated than they need to be (see exercise 2).

1.1.4 Stability

A system is said to be bounded-input bounded-output stable (BIBO stable or just stable) if the
output signal is bounded for all input signals that are bounded.

Consider a continuous-time system with input w and output v. An input is bounded if there is a real
number A < ∞ such that |w(t)| ≤ A for all t ∈ R. An output is bounded if there is a real number
B < ∞ such that |v(t)| ≤ B for all t ∈R. The system is stable if for any input bounded by A, there is
some bound B on the output.

Example 1.4: It is now easy to see that the helicopter system developed in example
1.1 is unstable. Let the input be Ty = u, where u is the unit step, given by

∀ t ∈ R, u(t) =
{

0, t < 0
1, t ≥ 0

. (1.8)

This means that prior to time zero, there is no torque applied to the system, and starting
at time zero, we apply a torque of unit magnitude. This input is clearly bounded. It
never exceeds one in magnitude. However, the output grows without bound.



1.1. MODELING PHYSICAL DYNAMICS 9

e
K

ψ

Figure 1.3: Proportional control system that stabilizes the helicopter.

In practice, a helicopter uses a feedback system to determine how much torque to apply
at the tail rotor to keep the body of the helicopter straight. We study how to do that
next.

1.1.5 Feedback Control

Feedback control is a sophisticated topic, easily occupying multiple texts and complete courses.
Here, we only barely touch on the subject, just enough to motivate the interactions between software
and physical systems. Feedback control systems are often implemented using embedded software,
and the overall physical dynamics is a composition of the software and physical dynamics. More
detail can be found in chapters 12-14 of Lee and Varaiya [3].

Example 1.5: Recall that the helicopter model of example 1.1 is not stable. We can
stabilize with a simple feedback control system, as shown in figure 1.3. The input
ψ to this system is a continuous-time system specifying the desired angular velocity.
The error signal e represents the difference between the actual and the desired angular
velocity. If controller simply scales the error signal by a constant K, providing a control
input to the helicopter. We use (1.4) to write

θ̇y(t) = θ̇y(0)+
1

Iyy

tZ

0

Ty(τ)dτ (1.9)

= θ̇y(0)+
K
Iyy

tZ

0

(ψ(τ)− θ̇y(τ))dτ, (1.10)

where we have used the facts (from the figure),

e(t) = ψ(t)− θ̇y(t)

and
Ty(t) = Ke(t).

Equation (1.10) has θ̇y(t) on both sides, and therefore is not trivial to solve. The easiest
solution technique uses Laplace transforms (see [3] chapter 14). However, for our
purposes here, we can use a more brute-force technique from calculus. To make this
as simple as possible, we assume that ψ(t) = 0 for all t; i.e., we wish to control the



10 CHAPTER 1. MODEL-BASED DESIGN

helicopter simply to keep it from rotating at all. The desired angular velocity is zero.
In this case, (1.10) simplifies to

θ̇y(t) = θ̇y(0)− K
Iyy

tZ

0

θ̇y(τ)dτ. (1.11)

Using the fact from calculus that
tZ

0

aeaτdτ = 1− eatu(t),

where u is given by (1.8), we can infer that the solution to (1.11) is

θ̇y(t) = θ̇y(0)e−Kt/Iyyu(t). (1.12)

(Note that although it is easy to verify that this solution is correct, deriving the solution
is not so easy. For this purpose, Laplace transforms provide a far better mechanism.)

We can see from (1.12) that the angular velocity approaches the desired angular velocity
(zero) as t gets large as long as K is positive. For larger K, it will approach more quickly.
For negative K, the system is unstable, and angular velocity will grow without bound.

In the previous example, we derived the solution to a proportional control feedback loop. It is
called this because the control signal is proportional to the error. We assumed a desired signal of
zero. It is equally easy to assume that the helicopter is initially at rest (the angular velocity is zero)
and then determine the behavior for a particular non-zero desired signal, as we do in the following
example.

Example 1.6: Assume that helicopter is initially at rest,

θ̇(0) = 0,

and that the desired signal is
ψ(t) = au(t)

for some constant a. That is, we wish to control the helicopter to get it to rotate at a
fixed rate.

We use (1.4) to write

θ̇y(t) =
1

Iyy

tZ

0

Ty(τ)dτ

=
K
Iyy

tZ

0

(ψ(τ)− θ̇y(τ))dτ

=
K
Iyy

tZ

0

adτ− K
Iyy

tZ

0

θ̇y(τ)dτ

=
Kat
Iyy

− K
Iyy

tZ

0

θ̇y(τ)dτ.



1.1. MODELING PHYSICAL DYNAMICS 11

Using the same (black magic) technique of inferring and then verifying the solution,
we can see that the solution is

θ̇y(t) = au(t)(1− e−Kt/Iyy). (1.13)

Again, the angular velocity approaches the desired angular velocity as t gets large as
long as K is positive. For larger K, it will approach more quickly. For negative K, the
system is unstable, and angular velocity will grow without bound.

Note that the first term in the above solution is exactly the desired angular velocity. The
second term is an error called the tracking error, that for this example asymptotically
approaches zero.

The above example is somewhat unrealistic because we cannot independently control the net torque
of the helicopter. In particular, the net torque Ty is the sum of the torque Tt due to the friction of the
top rotor and the torque Tr due to the tail rotor,

∀ t ∈ R, Ty(t) = Tt(t)+Tr(t) .

Tt will be determined by the rotation required to maintain or achieve a desired altitude, quite inde-
pendent of the rotation of the helicopter. Thus, we will actually need to design a control system
that controls Tr and stabilizes the helicopter for any Tt (or, more precisely, any Tt within operating
parameters). In the next example, we study how this changes the performance of the control system.

Example 1.7: In Figure 1.4(a), we have modified the helicopter model so that it has
two inputs, Tt and Tr, the torque due to the top rotor and tail rotor respectively. The
feedback control system is now controlling only Tr, and Tt is treated as an external
(uncontrolled) input signal. How well will this control system behave?

Again, a full treatment of the subject is beyond the scope of this text, but we will study
a specific example. Suppose that the torque due to the top rotor is given by

Tt = bu(t)

for some constant b. That is, at time zero, the top rotor starts spinning a constant
velocity, and then holds that velocity. Suppose further that the helicopter is initially at
rest. We can use the results of Example 1.6 to find the behavior of the system.

First, we transform the model into the equivalent model shown in Figure 1.4(b). This
transformation simply relies on the algebraic fact that for any real numbers a1,a2,K,

Ka1 +a2 = K(a1 +a2/K).

We further transform the model to get the equivalent model shown in Figure 1.4(c),
which has used the fact that addition is commutative. In Figure 1.4(c), we see that
the portion of the model enclosed in the box is exactly the same as the control system
analyzed in Example 1.6, shown in Figure 1.3. Thus, the same analysis as in Example
1.6 still applies. Suppose that desired angular rotation is

ψ(t) = 0.



12 CHAPTER 1. MODEL-BASED DESIGN

ψ

ψ

ψ

(a)

(b)

(c)

x

Figure 1.4: (a) Helicopter model with separately controlled torques for the
top and tail rotors. (b) Tranformation to an equivalent model. (c) Further
transformation to an equivalent model that we can use to understand the
behavior of the controller.



1.2. MODELING MODAL BEHAVIOR 13

Then the input to the original control system will be

x(t) = ψ(t)+Tt(t)/K = (b/K)u(t).

From (1.13), we see that the solution is

θ̇y(t) = (b/K)u(t)(1− e−Kt/Iyy). (1.14)

The desired angular rotation is zero, but the control system asymptotically approaches
a non-zero angular rotation of b/K. This tracking error can be made arbitrarily small
by increasing the control system feedback gain K, but with this controller design, it
cannot be made to go to zero. An alternative controller design that yields an asymptotic
tracking error of zero is studied in Exercise 4.

1.2 Modeling Modal Behavior

Models of embedded systems include both discrete and continuous components. The process of
modeling discrete components typically involves specifying a finite set of modes, along with the
switching conditions that cause the system to transition from mode to mode. As discussed earlier
in this chapter, the physical dynamics of the system in each mode are modeled with differential or
integral equations. This approach to modeling systems is termed modal modeling.

In general, the state of a system comprises both the system mode as well as the values of internal
system parameters that determine its dynamics. We will focus, in this section, on purely modal
modeling, where the physical dynamics is hidden. The resulting formalism is called a finite-state
machine. In this setting, the terms state and mode can be used interchangeably.

1.2.1 Finite-State Machines

A state machine maps input signals to output signals based on its current state. The vector of input
signals is assumed to take values from a finite domain Inputs; for output signals, the corresponding
domain is denoted by Outputs. Elements of the sets Inputs and Outputs are termed symbols. For
example, if the system has n input signals and m output signals, each of which maps N to B = {0,1},
then Inputs = Bn and Outputs = Bm.

Before we introduce the formal definition of a finite-state machine, it is useful to further discuss the
forms of input and output symbols relevant to this section.

Symbols and Pure Signals

In this section, we will restrict our attention to so-called pure signals. Informally speaking, a pure
signal models the presence or absence of a corresponding event of interest at a particular time point.
Formally, a pure signal is a function mapping N to the set {present,absent}.



14 CHAPTER 1. MODEL-BASED DESIGN

Suppose the system has more than one pure input signal. An element in Inputs is then a vector
indicating which of the signals have their corresponding events present. For instance, if x1 and
x2 are two pure input signals, the input symbol at any time point can be one of (present,present),
(present,absent), (absent,present), (absent,absent). A similar approach can be used for represent-
ing output symbols for pure output signals.

Often, rather than writing a long tuple with entries present and absent, it is easier to write a set com-
prising the names of only those signals that map the current time step to present. Thus, if x1,x2,x3
are input signals and x1(n) = x3(n) = present, then the input symbol at step n is written as the set
{x1,x3}. Thus, the set of input symbols Inputs can be viewed as 2InputSignals where InputSignals
denotes the set of names of input signals. Similarly, Outputs can be viewed as 2OutputSignals

where OutputSignals denotes the set of names of output signals. 2

It is also convenient to introduce a shorthand to represent groups of symbols. Let x1,x2, . . . ,xn be
pure input signals. Suppose that, for some t ∈ N, we want to represent a set of input symbols that
correspond to xi1(t) = xi2(t) = . . . = xik(t) = present, with all other input signals free to take any
value at time t. We will represent this set by the expression xi1 ∧xi2 ∧ . . .∧xik , where ∧ is the logical
AND operator.

The case when no signal has a corresponding event present is a special one and will be handled later
in this section.

An Example

A finite-state machine (FSM) can be visualized as a directed graph, where nodes correspond to
states and edges correspond to transitions that move the system from state to state. Figure 1.5 gives
an example of a finite-state machine. This FSM models the controller for a traffic light in a mostly-
pedestrian zone, so that the traffic light turns green only when a sensor embedded in the pavement of
the road detects a vehicle at the intersection. The FSM has three states, red, yellow, and green,
corresponding to the three possible colors of the traffic light. There are four pure input signals
to the controller: isCar, which models the presence of a car on the pavement, and timeR, timeG,
and timeY , which model the expiration of timers monitoring time spent in the red, green, and
yellow states respectively. Finally, there are three output signals: sigR, sigG, and sigY indicating
the command to the device lighting the red, green, and yellow lights at the intersection. Notice,
in particular, how we model the set of input symbols causing the transition from red to green.
Notice also the edges marked else, specifying what the FSM does in the default case in each state,
on all other input symbols.

Formal Definition

Formally, a finite-state machine is a five-tuple (States, Inputs,Outputs,update, initialState) where

States is a finite set of states;
2Note that this set notation conflicts with notation used in Chapter 3 of Lee and Varaiya [3], where a similar set

notation is used for grouping transitions on different input symbols.



1.2. MODELING MODAL BEHAVIOR 15

timeR ∧ isCar / sigG

red

yellow

green

else / sigG

else / sigR
else / sigY

timeY / sigR

timeG / sigY

Figure 1.5: Finite-state machine modeling a traffic light controller.

Inputs is a finite set of input symbols;

Outputs is a finite set of output symbols;

update : States× Inputs → States×Outputs is an update function, mapping a state and an
input symbol to a next state and an output symbol;

initialState is the initial state.

Thus, if s(n) ∈ States and x(n) ∈ Inputs are respectively the state and input at step n, then the next
state s(n+1) and output y(n) at step n are given by

(s(n+1),y(n)) = update(s(n),x(n)) (1.15)

The change in state and output according to the update function at a step is called a transition or a
reaction. The term transition function is often used in place of update function.

Example 1.8: The FSM in Figure 1.5 can be formally represented as follows:

States = {red,yellow,green}
Inputs = 2{timeR,timeY ,timeG,isCar}

Outputs = 2{sigR,sigY ,sigG}

initialState = red

Notice how the sets Inputs and Outputs are defined as power sets.



16 CHAPTER 1. MODEL-BASED DESIGN

For the update function, we give only a few representative mappings:

update(red,{timeR, isCar}) = (green,{sigG})
update(red,{timeR}) = (red,{sigR})

The latter update corresponds to the edge labeled with else out of state red.

To reduce clutter while representing an FSM, we often combine transitions from a state that map
different input symbols to the same state and output symbol into a single transition annotated with
a guard. Formally, a guard is a subset of Inputs that specifies all conditions under which a given
state can be entered while generating a given output symbol.

The example state machine presented in this section has two important properties:

Determinacy: A state machine is said to be deterministic if, for each state, there is at most one
transition possible on each input symbol.

Clearly, the definition of a finite-state machine given earlier ensures that it is deterministic,
since update is a function, not a one-to-many mapping.

If we use guards on transitions, the state machine is deterministic if guards leaving each state
are non-overlapping.

Receptiveness: A state machine is said to be receptive if, for each state, there is at least one
transition possible on each input symbol.

In other words, receptiveness ensures that a state machine is always ready to react to any
input, and does not “get stuck” in any state.

It follows that if a state machine is both deterministic and receptive, for every state, there is exactly
one transition possible on each input symbol.

Stuttering

In our definition of an FSM, we introduced the set Inputs as set of abstract values that system inputs
can take. This abstraction is is a powerful modeling tool, since it allows us to model cases where
the system reacts to events in environment rather than specific values of environment parameters.

For example, consider modeling an edge-triggered flip-flop in a digital circuit. Suppose the flip-flop
only reacts to the rising edge of the clock. We can model this behavior by defining an input symbol
clk rise that represents the occurrence of a rising edge of the clock.

However, such modeling raises the question: what is the input to the flip-flop at a time point when
there is a falling edge or no change in the clock level?

In order to model the above scenario, it is useful to include a special symbol absent in the set
Inputs. This technique is also useful to model the absence of an output. The symbol absent is called
a stuttering symbol. We will assume that absent ∈ Inputs and absent ∈ Outputs.



1.2. MODELING MODAL BEHAVIOR 17

For the case where we have only pure signals, the symbol absent at a step indicates that all pure
signals evaluate to absent at that step.

The introduction of the stuttering symbol absent requires us to define how the update function
reacts to absent. If the input is absent, it is reasonable to assume that the system state remains
unchanged. The rule governing change in output, however, depends on what is best for the system
being modeled.

One convention, followed in Chapter 3 of Lee and Varaiya [3], is to require that an absent input
symbol generates an absent output symbol, as given below:

update(s,absent) = (s,absent)

However, if the ouput is a function of the current state alone, it might also be reasonable to allow an
output symbol other than absent. For instance, if the output y = ρ(s), where s is the current state,
then we can define

update(s,absent) = (s,ρ(s))

1.2.2 Non-Determinism

In order to generate compact modal models, it is necessary to hide inessential details. For example,
consider modeling the environment of the traffic light controller given in Figure 1.5 that generates
the input isCar. Rather than model the details of how cars arrive at traffic lights (say according to
some random process), we can simply create a two-state finite-state machine model of the environ-
ment, as given in Figure 1.6.

absent/ isCar

noCar Car

absent/ absent

absent/ absent

absent/ isCar

Figure 1.6: Finite-state machine model of cars at a traffic light.

Notice that for each of the two states, the guards leaving those states overlap completely! In other
words, the FSM in Figure 1.6 is non-deterministic.

Formally, a non-deterministic finite-state machine (NDFSM) is also represented as a five-tuple
(States, Inputs,Outputs,possibleUpdates, initialStates) where

States is a finite set of states;

Inputs is a finite set of input symbols;



18 CHAPTER 1. MODEL-BASED DESIGN

Outputs is a finite set of output symbols;

possibleUpdates : States× Inputs → 2States×Outputs is an update relation, mapping a state
and an input symbol to a set of possible (next state, output symbol) pairs;

initialStates is a set of initial states.

Note that there are two changes from the definition of a deterministic FSM that we encountered
earlier. First, there can be more than one (next state, output) possible from a given state on a
given input. This is reflected in the function possibleUpdates, whose co-domain is the power set of
States×Outputs. We refer to the possibleUpdates function as an update relation, to emphasize this
difference. The term transition relation is also often used in place of update relation. The second
difference is that there can be more than one initial state for the NDFSM. This feature can be used
to model uncertainty or hide unnecessary detail in the initialization of the finite-state system.

Example 1.9: The FSM in Figure 1.6 can be formally represented as follows:

States = {noCar,Car}
Inputs = {absent}

Outputs = 2{isCar}

initialStates = {noCar,Car}

The update relation is given below:

possibleUpdates(noCar,absent) = {(noCar,absent),(Car,{isCar})}
possibleUpdates(Car,absent) = {(noCar,absent),(Car,{isCar})}

Uses of Non-Determinism

While non-determinism is an interesting mathematical concept in itself, it has two major uses in
modeling embedded systems:

Environment Modeling: It is often useful to hide irrelevant detail about how an environment op-
erates, resulting in a non-deterministic FSM model. We have already seen one example of
such environment modeling in Figure 1.6.

Specifications: System specifications typically only impose strict requirements on some system
features, while leaving others unconstrained. Non-determinism is a useful modeling tech-
nique in such settings as well.

For example, consider a specification that the traffic light cycles through red, green, yellow,
in that order, without regard to the timing between the outputs. The non-deterministic FSM in
Figure 1.7 models this specification: The guard true on each transition indicates that the tran-
sition can be taken at any step; technically it means that there are transitions corresponding to
each edge for all elements in Inputs.



1.2. MODELING MODAL BEHAVIOR 19

true / sigG

red

yellow

green

true / sigY
true / sigR

true / sigR

true / sigY

true / sigG

Figure 1.7: Non-deterministic FSM specifying order of lighting signals

1.2.3 Behaviors and Traces

A deterministic finite-state machine defines a function Fd from input sequences to output sequences,
as given below:

Fd : (N→ Inputs)→ (N→ Outputs)

A behavior of a deterministic FSM is a pair (x,y) such that y = Fd(x).

A non-deterministic FSM, on the other hand, can map a single input sequence to many possible
output sequences:

Fn : (N→ Inputs)→ 2(N→Outputs)

In this case, a behavior is a pair (x,y) such that y ∈ Fn(x).

The set of all behaviors of a finite-state machine, deterministic or otherwise, is a subset of (N →
Inputs)× (N→ Outputs).

Software tools for modeling and analyzing embedded systems often also need to represent and rea-
son about system state. For this purpose, it is useful to include the state as part of system “behavior,”
generating a system trace.

Formally, for a deterministic FSM, a trace is a sequence

(x0,s0,y0),(x1,s1,y1),(x2,s2,y2), . . .

such that s0 = initialState and for all i≥ 0, (si+1,yi) = update(si,xi).

For a non-deterministic FSM, the definition remains the same except that s0 ∈ initialStates and for
all i≥ 0, (si+1,yi) ∈ possibleUpdates(si,xi).



20 CHAPTER 1. MODEL-BASED DESIGN

Thus, notice that a non-deterministic FSM can have many possible behaviors and traces for the same
input sequence.

We illustrate the concepts of this section with two examples.

Example 1.10: Consider the deterministic FSM in Figure 1.5. The output sequence
of this FSM on the following input sequence

{timeR},{timeR, isCar},absent,{timeG},{timeY},absent, . . .

is
{sigR},{sigG},{sigG},{sigY},{sigR},{sigR}, . . .

with corresponding trace:

({timeR},red,{sigR}),({timeR, isCar},red,{sigG}),(absent,green,{sigG}),
({timeG},green,{sigY}),({timeY},yellow,{sigR}),(absent,red,{sigR}), . . .

The example below considers a non-deterministic FSM.

Example 1.11: Consider the non-deterministic FSM in Figure 1.7. Consider the same
input sequence as in Example 1.10:

{timeR},{timeR, isCar},absent,{timeG},{timeY},absent, . . .

One possible output sequence is

{sigR},{sigG},{sigG},{sigY},{sigR},{sigR}, . . .

which is the same as the one in Example 1.10. However, the following output sequence
is also possible on the very same input sequence:

{sigR},{sigR},{sigR},{sigG},{sigG},{sigG}, . . .

In general, we can visualize the set of traces of a non-deterministic FSM on a single
input sequence as a computation tree, each of whose paths corresponds to a trace of
the FSM on the input sequence. Figure 1.8 shows the computation tree for the FSM of
Example 1.7 for the first three inputs in the above input sequence. Nodes in the tree are
states and edges are labeled by outputs generated while transiting from state to state.

1.3 Modeling Hybrid Systems

Introductory material on hybrid systems will appear here.



1.3. MODELING HYBRID SYSTEMS 21

sigG

red

green

green

yellow

red

green

red

sigR

sigR

sigG

sigG

sigY

Figure 1.8: A Computation Tree for the FSM in Figure 1.7.

Exercises

1. This exercise studies linearity.

(a) Show that the helicopter system defined in example 1.1 is linear if and only if the initial
angular velocity θ̇y(0) = 0.

(b) Show that the cascade of any two linear actors is linear.

(c) Augment the definition of linearity so that it applies to actors with two input signals and
one output signal. Show that the adder actor is linear.

2. Consider the helicopter of example 1.1, but with a slightly different definition of the input and
output. Suppose that, as in the example, the input is Ty : R → R, as in the example, but the
output is the position of the tail relative to the main rotor shaft. Is this an LTI system? Is this
a BIBO stable system?

3. Consider a rotating robot where you can control the angular velocity around a fixed axis.

(a) Model this as a system where the input is angular velocity θ̇ and the output is angle θ.
Give your model as an equation relating the input and output as functions of time.

(b) Is this system BIBO stable?

(c) Design a proportional controller to set the robot onto a desired angle. That is, assume
that the initial angle is θ(0) = 0, and let the desired angle be ψ(t) = au(t). Find the
actual angle as a function of time and the proportional controller feedback gain K. What
is your output at t = 0? What does it approach as t gets large?



22 CHAPTER 1. MODEL-BASED DESIGN

K1

K2

Figure 1.9: A PI controller for the helicopter.

4. (a) Using your favorite continuous-time modeling software (LabVIEW, Simulink, or Ptolemy
II, for example), construct a model of the helicopter control system shown in Figure 1.4.
Choose some reasonable parameters and plot the actual angular velocity as a function of
time, assuming that the desired angular velocity is zero, ψ(t) = 0, and that the top-rotor
torque is non-zero, Tt(t) = bu(t). Give your plot for several values of K and discuss how
the behavior varies with K.

(b) Modify the model of part (a) to replace the Controller of Figure 1.4 (the simple scale-by-
K actor) with the alternative controller shown in figure 1.9. This alternative controller
is called a proportional-integrator (PI) controller. It has two parameter K1 and K2.
Experiment with the values of these parameters, give some plots of the behavior with
the same inputs as in part (a), and discuss the behavior of this controller in contrast to
the one of part (a).

5. Recall the traffic light controller of Figure 1.5. Consider connecting the outputs of this con-
troller to a pedestrian light controller, whose FSM is given below:

sigG / pedR

green red

sigG / pedR

sigR / pedG

sigR / pedG

Figure 1.10: Finite-state machine modeling a pedestrian light controller.

Construct a LabVIEW Statecharts model for the composition of the above two FSMs along
with a deterministic FSM modeling the environment and generating input symbols timeR,
timeG, timeY , and isCar. (For example, the environment FSM can use an internal counter to



1.3. MODELING HYBRID SYSTEMS 23

decide when to generate these symbols.) Use the LabVIEW “region” feature to construct the
AND-state corresponding to the composition of these three FSMs.

Run the LabVIEW model and plot along the same time axis the signals sigR, sigY , sigG,
pedG, pedR for one cycle of operation. Hand in printouts of your entire Statecharts model
and the plots.

6. Solve Problem 5 at the back of Chapter 6 in Lee & Varaiya [3].

7. Consider Figure 1.11 depicting a system comprising two tanks containing water. Each tank
is leaking at a constant rate. Water is added at a constant rate to the system through a hose,
which at any point in time is filling either one tank or the other. It is assumed that the hose
can switch between the tanks instantaneously. For i ∈ {1,2}, let xi denote the volume of
water in Tank i and vi > 0 denote the constant flow of water out of Tank i. Let w denote the
constant flow of water into the system. The objective is to keep the water volumes above r1
and r2, respectively, assuming that the water volumes are above r1 and r2 initially. This is to
be achieved by a controller that switches the inflow to Tank 1 whenever x1 ≤ r1 and to Tank
2 whenever x2 ≤ r2.

Figure 1.11: Water tank system.

The hybrid automaton representing this two-tank system is given in Figure 1.12.

Answer the following questions:

(a) Construct a model of this hybrid automaton in Ptolemy II using the HyVisual tool. Use
the following parameter values: r1 = r2 = 0, v1 = v2 = 0.5, and w = 0.75. Set the initial
state to be (q1,(0,1)). (That is, initial value of x1 is 0 and that of x2 is 1.)



24 CHAPTER 1. MODEL-BASED DESIGN

Figure 1.12: Hybrid Automaton representing water tank system.

Verify that this hybrid automaton is Zeno. What is the reason for this Zeno behavior?
Simulate your model in Ptolemy II and plot how x1 and x2 vary as a function of time t,
simulating long enough to illustrate the Zeno behavior.

(b) Use regularization to make your model non-Zeno. Again, plot x1 and x2 for the same
length of time as in the first part. State the value of ε that you used.

Include printouts of your plots with your answer.


	Model-Based Design
	Modeling Physical Dynamics
	Newtonian Mechanics
	Actor Models
	Linearity and Time Invariance
	Stability
	Feedback Control

	Modeling Modal Behavior
	Finite-State Machines
	Non-Determinism
	Behaviors and Traces

	Modeling Hybrid Systems

	Sensors
	Signal Conditioning
	Sampling
	Probing further: Impulse Trains


	Concurrency
	Interrupts
	Threads
	Process Networks
	Dataflow
	Synchronous/Reactive Systems
	Discrete-Event Systems

	Index



