
Chapter 2

Sensors

This chapter, yet to be written, gives an overview of sensor technology with emphasis on how to
model sensors.

2.1 Signal Conditioning

Sensors convert physical measurements into data. Invariably, they are far from perfect, in that the
data they yield gives information about the physical phenomenon that we wish to observe and other
phenomena that we do not wish to observe. Removing or attenuating the effects of the phenomena
we do not wish to observe is called signal conditioning.

Suppose that a sensor yields a continuous-time signal x. We model it as a sum of a desired part xd
and an undesired part xn,

x(t) = xd(t)+ xn(t). (2.1)

The undesired part is called noise. To condition this signal, we would like to remove or reduce
xn without affecting xd . In order to do this, of course, there has to be some meaningful difference
between xn and xd . Often, the two parts differ considerably in their frequency content.

Example 2.1: Consider using an accelerometer to measure the orientation of a slowly
moving object. The accelerometer reacts to changes in orientation because they change
the direction of the gravitational field with respect to its axis. But it will also report
acceleration due to vibration. Let xd be the signal due to orientation and xn be the
signal due to vibration. We will assume that xn has higher frequency content than xd .
Thus, by frequency-selective filtering, we can reduce the effects of vibration.

Analysis of the degree to which frequency selective filtering helps requires having a model of both
the desired signal xd and the noise xn. Reasonable models are usually statistical, and analysis of
the signals requires using the techniques of random processes. Although such analysis is beyond
the scope of this text, we can gain insight that is useful in many practical circumstances through a
purely deterministic analysis.
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Our approach will be to condition the signal x = xd + xn by filtering it with an LTI system S called
a conditioning filter. Let the output of the conditioning filter be given by

y = S(x) = S(xd + xn) = S(xd)+S(xn),

where we have used the linearity assumption on S. Let the error signal be defined to be

r = y− xd .

This signal tells us how far off the filtered output is from the desired signal. The energy in the signal
r is defined to be

||r||2 =
∞Z

−∞

r2(t)dt.

We define the signal to noise ratio (SNR) to be

SNR =
||xd ||2

||r||2
.

Combining the above definitions, we can write this as

SNR =
||xd ||2

||S(xd)− xd +S(xn)||2
. (2.2)

It is customary to give SNR in decibels, written dB, defined as follows,

SNRdB = 10log10(SNR).

Note that for typical signals in the real world, the energy is effectively infinite if the signal goes
on forever. A statistical model, therefore, would use the power, defined as the expected energy per
unit time. But since we are avoiding using statistical methods here, we will stick to energy as the
criterion.

A reasonable design objective for a conditioning filter is to maximize the SNR. Of course, it will
not be adequate to use a filter that maximizes the SNR only for particular signals xd and xn. We
cannot know when we design the filter what these signals are, so the SNR needs to be maximized
in expectation. That is, over the ensemble of signals we might see when operating the system,
weighted by their likelihood, the expected SNR should be maximized.

Although determination of this filter requires statistical methods beyond the scope of this text, we
can draw some intuitively appealing conclusions by examining (2.2). The numerator is not affected
by S, so we can ignore it and minimize the denominator. It is easy to show that the denominator is
bounded as follows,

||r||2 ≤ ||S(xd)− xd ||2 + ||S(xn)||2 (2.3)

which suggests that we may be able to minimize the denominator by making S(xd) close to xd (i.e.
make ||S(xd)− xd ||2 small) while making ||S(xn)||2 small. That is, the filter S should do minimal
damage to the desired signal xd while filtering out as much as much as possible of the noise. This,
of course, is obvious.
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As illustrated in Example 2.1, xd and xn often differ in frequency content. We can get further insight
using Parseval’s theorem, which relates the energy to the Fourier transform,

||r||2 =
∞Z

−∞

(r(t))2dt =
1

2π

∞Z

−∞

|R(ω)|2dω =
1

2π
||R||2

where R is the Fourier transform of r.

The filter S is an LTI system. It is defined equally well by the function S:(R→ R)→ (R→ R), by
its impulse response h:R→R, a continuous-time signal, or by its transfer function H:R→C, the
Fourier transform of the impulse response. Using the transfer function and Parseval’s theorem, we
can write

SNR =
||Xd ||2

||HXd −Xd +HXn||2
, (2.4)

where Xd is the Fourier transform of xd and Xn is the Fourier transform of xn. In Problem 1, we
explore a very simple strategy that chooses the transfer function so that H(ω) = 1 in the frequency
range where xd is present, and H(ω)= 0 otherwise. This strategy is not exactly realizable in practice,
but an approximation of it will work well for the problem described in Example 2.1.

Note that it is easy to adapt the above analysis to discrete-time signals. If r:Z→R is a discrete-time
signal, its energy is

||r||2 =
∞

∑
n=−∞

(r(n))2.

If its discrete-time Fourier transform is R, then Parseval’s relation becomes

||r||2 =
∞

∑
n=−∞

(r(n))2 =
1

2π

πZ

−π

|R(ω)|2dω.

Note that the limits on the integral are different, covering one cycle of the periodic DTFT. All other
observations above carry over unchanged.

2.2 Sampling

Almost every embedded system will sample and digitize sensor data. In this section, we review
the phenomenon of aliasing. We use a mathematical model for sampling by using the Dirac delta
function δ. Define a pulse stream by

∀ t ∈ R, p(t) =
∞

∑
k=−∞

δ(t− kT ).

Consider a continuous-time signal x that we wish to sample with sampling period T . That is, we
define a discrete-time signal y:Z→ R by y(n) = x(nT ). Construct first an intermediate continuous-
time signal w(t) = x(t)p(t). We can show that the Fourier transform of w is equal to the DTFT of y.
This gives us a way to relate the Fourier transform of x to the DTFT of its samples y.
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Recall that multiplication in the time domain results in convolution in the frequency domain, so

W (ω) =
1

2π
X(ω)∗P(ω) =

1
2π

∞Z

−∞

X(Ω)P(ω−Ω)dΩ.

It can be shown (see box on page 19) that the Fourier transform of p(t) is

P(ω) =
2π

T

∞

∑
k=−∞

δ(ω− k
2π

T
),

so

W (ω) =
1

2π

∞Z

−∞

X(Ω)
2π

T

∞

∑
k=−∞

δ(ω−Ω− k
2π

T
)dΩ

=
1
T

∞

∑
k=−∞

∞Z

−∞

X(Ω)δ(ω−Ω− k
2π

T
)dΩ

=
1
T

∞

∑
k=−∞

X(ω− k
2π

T
)

where the last equality follows from the sifting property of Dirac delta functions. The next step is
to show that

Y (ω) = W (ω/T ),

which follows easily from the definition of the DTFT Y and the Fourier transform W . From this, the
basic Nyquist-Shannon result follows,

Y (ω) =
1
T

∞

∑
k=−∞

X
(

ω−2πk
T

)
.

This relates the Fourier transform X of the signal being sampled x to the DTFT Y of the discrete-time
result y.

This important relation says that the DTFT Y of y is the sum of the Fourier transform X with copies
of it shifted by multiples of 2π/T . Also, the frequency axis is normalized by dividing ω by T . There
are two cases to consider, depending on whether the shifted copies overlap.

First, if X(ω) = 0 outside the range −π/T < ω < π/T , then the copies will not overlap, and in the
range −π < ω < π,

Y (ω) =
1
T

X
(

ω

T

)
. (2.5)

In this range of frequencies, Y has the same shape as X , scaled by 1/T . This relationship between
X and Y is illustrated in figure 2.1, where X is drawn with a triangular shape.

In the second case, illustrated in figure 2.2, X does have non-zero frequency components higher
than π/T . Notice that in the sampled signal, the frequencies in the vicinity of π are distorted by the
overlapping of frequency components above and below π/T in the original signal. This distortion
is called aliasing distortion.

From these figures, we get the guideline that we should sample continuous time signals at rates at
least twice as high as the largest frequency component. This avoids aliasing distortion.
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Probing further: Impulse Trains

Consider a signal p consisting of periodically repeated Dirac delta functions with
period T ,

∀ t ∈ R, p(t) =
∞

∑
k=−∞

δ(t− kT ).

This signal has the Fourier series expansion

∀ t ∈ R, p(t) =
∞

∑
m=−∞

1
T

eiω0mt ,

where the fundamental frequency is ω0 = 2π/T . The Fourier series coefficients can
be given by

∀ m ∈ Z, Pm =
1
T

T/2Z

−T/2

[
∞

∑
k=−∞

δ(t− kT )

]
eiω0mtdt.

The integral is over a range that includes only one of the delta functions. The kernel
of the integral is zero except when t = 0, so by the sifting rule of the Dirac delta
function, the integral evaluates to 1. Thus, all Fourier series coefficients are Pm =
1/T . Using the relationship between the Fourier series and the Fourier Transform
of a periodic signal, we can write the continuous-time Fourier transform of p as

∀ ω ∈ R, P(ω) =
2π

T

∞

∑
k=−∞

δ

(
ω− 2π

T
k
)

.
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Figure 2.1: Relationship between the Fourier transform of a continuous-
time signal and the DTFT of its discrete-time samples. The DTFT is the
sum of the Fourier transform and its copies shifted by multiples of 2π/T ,
the sampling frequency in radians per second. The frequency axis is also
normalized.
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Figure 2.2: Relationship between the Fourier transform of a continuous-time
signal and the DTFT of its discrete-time samples when the continuous-time
signal has a broad enough bandwidth to introduce aliasing distortion.
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Exercises

1. Consider the accelerometer problem described in Example 2.1. Suppose that the change in
orientation xd is a low frequency signal with Fourier transform given by

Xd(ω) =
{

2 for |ω|< π

0 otherwise

This is an ideally bandlimited signal with no frequency content higher than π radians/second,
or 0.5 Hertz. Suppose further that the vibration xn has higher frequency components, having
Fourier transform given by

Xd(ω) =
{

1 for |ω|< 10π

0 otherwise

This is again an ideally bandlimited signal with frequency content up to 5 Hertz.

(a) Assume there is no frequency conditioning at all, or equivalently, the conditioning filter
has transfer function

∀ ω ∈ R, H(ω) = 1.

Find the SNR in decibels.

(b) Assume the conditioning filter is an ideal lowpass filter with transfer function

H(ω) =
{

1 for |ω|< π

0 otherwise

Find the SNR in decibels. Is this better or worse than the result in part (a)? By how
much?

(c) Find a conditioning filter that makes the error signal identically zero (or equivalently
makes the SNR infinite). Clearly, this conditioning filter is optimal for these signals.
Explain why this isn’t necessarily the optimal filter in general.

(d) Suppose that as in part (a), there is no signal conditioning. Sample the signal x at 1 Hz
and find the SNR of the resulting discrete-time signal.

(e) Describe a strategy that minimizes the amount of signal conditioning that is done in
continuous time in favor of doing signal conditioning in discrete time. The motivation
for doing this is analog circuitry can be much more expensive than digital filters.
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