
DECEMBER 19TH 2014 1

Pew Pew Final Report
Craig Hiller, Kevin Wu, Leo Kam, Christopher Hsu

I. INTRODUCTION

THIS project will create an automated NERF turret that
can detect, track, and fire at a target (human face). The

project will model the detection and aiming of a target as a
state machine governed by the combination of RGBD camera
data and other sensor inputs to correctly rotate the turret and
incline the NERF gun to aim at the target. The goal will be
to accurately detect a target and fire accurately for maximum
effect.

II. PROJECT REQUIREMENTS

The general requirements that can be measured to determine
the success of our turret are as follows:

• The turret platform supports 45◦ rotation.
• The turret platform supports an incline angle between

0◦ and 30◦.
• The turret is able to perform facial recognition.
• The turret can accurately hit a stationary target (human

face) within the range of 3 meters.
• In the case of communication error, turret supports

graceful failure without damaging the turret.

III. SYSTEM COMPONENTS

A diagram illustrating the system components for this
project is shown in Figure 1.

Fig. 1. System components hierarchy

In general, the system is divided into two overarching
components: (1) the NERF Turret and (2) the Microcontroller.
Each component can be subdivided further as shown in the
diagram. In general, the NERF Turret component is responsible
for providing the actuators that control the rotating platform
- a turntable made of bearings, motors, and a winch -, an

electronically triggered NERF gun mounted on the platform,
and the RGBD camera sensor that performs the face recog-
nition. On the other hand, the microcontroller component is
responsible for providing the controller api calls that appro-
priately handle the high and low level control of the system.
The microcontroller is connected to the actuators via wired
connections, and to the sensors using a WiFi connection via
the Adafruit CC3000 chip.

IV. NERF TURRET HARDWARE

The descriptions we have for our hardware in the NERF
turret are described below.

Fig. 2. The actual NERF gun and turret.

A. NERF Gun
The NERF gun and the motors on the turret are the actuators

in our system. We selected the CS-18, which was chosen
since it was not only relatively lightweight, but also entirely
electronically controlled which allowed us to swap out the
switches of the firing mechanism. Figure 3 below shows the
result of disassembling the gun to allow electronic firing.

Currently, we have disassembled the NERF gun and reverse-
engineered it to the point where we can electronically trigger it



DECEMBER 19TH 2014 2

Fig. 3. The CS-18 that has been modified to allow external control.

to fire a NERF dart. In addition, we have obtained two relays
to replace the trigger switches in the gun in order to connect
it to the microcontroller. Relays are used since they are more
easily controlled via a GPIO pin on the microcontroller.

B. Turret Motors

Fig. 4. The turret for the NERF gun along with the two driving motors.

A pair of motors were used to control the turret; one for
vertical motion, and one for horizontal.

Our turret is mounted on a turntable, and spinning this
turntable allows our NERF gun to rotate side to side. To control
the turntable, we went with a stepper motor mounted with a
wheel that lies on the rim of the turntable. By driving this
motor, our wheel pushes our turntable, causing it to spin and
allowing us to move the NERF gun. We decided to use a
stepper motor because we felt that the control it gave us made
it ideal for this role. We did not need a lot of torque since our
turntable spun quite easly, so we could get away with using
the stepper motor. Additionally, the stepper lets us have precise
control of how many degrees it turned each time we sent it a
signal from our microcontroller, which allows us to precisely
aim our NERF gun.

As for up and down motion, we ended up using a DC
motor that through gearing, had a very high torque. Because
we mounted our NERF gun on a pivot, we wanted a motor
strong enough to be able to pull the gun up and down. Since
the NERF gun has a decent weight to it, we needed a pretty

high torque motor in order to be able to move the gun. The
motor has a strong string that it can wind up that is tied to the
back of the gun, allowing us to be able to aim the gun higher
or lower.

C. Electronics

Fig. 5. The electronics mounted on a two by four. These are used mainly to
control the turret firing and rotation.

In order to control our motors and the firing of the NERF
gun, we relied on a series of relays that lets the MBED
mincrocontroller control when to send power to the various
components of the NERF gun. We ended up using eight relays
in total; four relays to control the DC motor, two relays to
control the stepper motor, and two relays that dealt with the
firing of the NERF gun.

We needed to create an H-Bridge in order to give our
microcontroller the ability to switch the direction of the voltage
driving the DC motor, allowing us to wind and unwind the
string that controlled the up down motion of the NERF gun.
An H-Bridge requires using four switches, hence four of
our relays. The stepper motor could be controlled by senting
voltages across the four wires that were attached to it, so we
ended up using two of our relays here.

The final two relays were used to control the firing of the
NERF gun. In order to fire, we had to have two things happen–
the flywheels inside the gun had to be spinning, and the plunger
had to push the NERF bullet into the flywheels. Both of these
events could be done by connecting a pair of wires inside
the gun for each functionality, so we had our two relays each
control one of these functionalities.



DECEMBER 19TH 2014 3

V. CAMERA AND CONTROLLER

A. RGBD Camera, Face Recognition, and Server

Fig. 6. Going counter-clockwise from the top right - Depth Map, RGB Image,
and Face Detection

We have decided to use an Intel RealSense 3D Camera to
handle face recognition. This camera was chosen since it has
a small form factor and provides RGBD information at 30
frames per second. The RGB information is important in order
to perform face recognition, and the depth information will be
useful to allow the NERF gun to properly target the face once
it is detected.

A limitation of this camera is that it must be connected
to a Windows 8 computer via USB3, but it only came with
a short cable. To get around this limitation, we ordered a 2
meter USB3 extension cable.

On the software side, we have C++ code that reads from the
camera and uses OpenCV to detect faces. Figure 6 shows a
demo of this behavior. Once the code figures out where the face
is, it sends a POST request containing the x and y coordinates
of the face on the camera picture, the depth of the face, and
a timestamp. The POST request is send to a node.js server
running on Heroku, which our microcontroller can then pull
these readings from.

B. Controller

Fig. 7. Control flow graph of the turret controller

Finally, we have our MBED, which we are using to drive
the actual aiming and firing of the NERF gun. In order to
determine where to point the gun and when to actually shoot,
we are relying on the measurements that are stored on our
node.js server. To get these, we have decided to use WiFi for
our connection scheme. While WiFi might not be the optimal
choice if we wanted to track and shoot the target as fast as
possible, we found it was the quickest way for us to satisfy
our requirements. We used the Adafruit CC3000 chip in order
to achieve this. Our MBED would send a GET request to the
node.js server, which would return the coordinates of the target,
which we would then use to aim and fire the gun.

Figure 7 shows a high level view of the software ran on
the MBED to drive the turret. In the very beginning of the
controller program, various initialization are performed before
the turret starts operating: web connection is set up for getting
camera data and camera is calibrated to ensure accuracy. Next,
the MBED gets the camera data and checks if the turret is
aiming at the target with some tolerance, if yes, it fires the
NERF gun, if no, it adjusts the turret’s orientation to try to
track the target. Afterward, the MBED gets the camera data
from the node.js server and checks if the turret is aiming at
the target, and the cycle repeats ad infinitum.

VI. REAL TIME NETWORKS AND TIMING

Fig. 8. Networking interactions between the camera, server, and MBED

A large part of getting our system to work involved getting
our modules to communicate with each other in real time. To
do this, we had to design our communication network to be
able to control the NERF gun within a reasonable window of
time to allow it to actually hit people.

Our communication network consists of three main entities
talking to one another–the camera, the central sever, and the
MBED. The interactions between these systems can be seen
in the diagram. Most of the inter system communication was
done using WiFi–we found that it was the easiest solution for
us to implement that still gave us performance good enough
to meet our criteria. We found that the latency of the WiFi
components were roughly 100 milliseconds, which we found
was perfectly reasonable for our system. Also, we made sure
that we made as much of the communication non blocking as
possible, so that our reads and writes would not hang if we
could help it.

We ended up able to get our getting the communication
between the camera and server to be a non blocking write to



DECEMBER 19TH 2014 4

optimize our network, while our MBED pulls from the server
in a non blocking read, which follows the observer design
patter (camera writes, MBED observers, so we don’t get any
conflicts). The only blocking communication we had was the
actual control of the turret with a blocking write to control the
MBED.

VII. REALTIME BEHAVIOR

There were a few techniques that we used in the class to try
to get as best performance out of our system as possible. We
programmed in hysteresis into our system for aiming the NERF
gun, so that we wouldn’t have this wobbling back and forth
cycling effect where our system can’t reach the exact position
that it wants to. We also had a delta for our firing window
in order to give us some cushion about when we could shoot,
which also helped our system achieve it’s target more quickly.

VIII. FUTURE GOALS

While we did manage to meet our requirements with the
robot we presented, there are a few areas of improvements
that we can work on if we were to continuing developing our
project.

On the hardware side of things, we found that our wiring and
packaging of all the components was not done very well–the
components have a very large footprint, with wires spanning all
over the place. We sometimes found that our wiring, because of
the packaging, was limiting how much our turret could rotate.
Additionally, the wiring schematic was not particularly planned
out to minimize the footprint initially, so a smarter packaging
system would improve our system greatly.

Additionally, we want to look at speeding up our target
acquisition and firing so the turret could perhaps track a
moving target. With our current motor and WiFi setup, we can
find and hit a static target pretty easily, but our system does
not move fast enough to track a moving target. Methods to
improve this would be to try a faster network protocol, such as
using wired connection instead of wireless, or optimizing our
code in order to speed up facial recognition or controlling the
movement of the robot. We could also modify our algorithm to
make the turret move fast if our target is further away in order
to lower the number of times we need to poll the camera.


