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Modular LED Matrices: A proof of scalable, 
robust, and model-based design practices in low 

volume embedded systems projects. 

Phillip Azar, Peadar Keegan, Adarsh Mani, 
Antonio De Lima Fernandes 

1. Introduction 
 

As we stated in our Project Charter, the 
goal of our project was to “create a configurable, 
modular, scalable and model based framework 
for the RGB LED Matrix Display using the 
WS2812 protocol”. The aim of the project was to 
use model-based design to create something 
that can be scaled to an (almost) arbitrary size. 
We decided that a fundamental problem with 
many embedded systems projects is that they 
are often made to fit the original scale of the 
solution, and do not perform well if you try to 
make them larger or smaller. We propose a 
prototype that demonstrates a low-volume 
solution which incorporates model-based design 
principles for scalability and modularity. 

 
2. Feasibility & Processing GUI 
 

The major interactive portion of the 
project was the graphic user interface that was 
developed using the Java Processing tool. 
Processing is a multi-platform development suite 
that allows for the rapid usage and integration of 
a variety of graphical user interface and 
mathematical utility libraries. To effectively 
demonstrate the model-based design aspect of 
the project, an intuitive and easy to use GUI that 
incorporated a feasibility analyzer was a must. A 
diagram of this GUI is shown in Figure 2.1 
below, illustrating its connection to various 
components of the system. 
 

 
Figure 2.1 – High level system diagram of GUI. 

 
While the user is drawing or uploading 

images to his or her LED workspace, the 
feasibility analyzer checks each pixel set and 
each image chosen to determine if it can be 
displayed or represented by the given 
workspace. Then, one of two things could occur: 
the analyzer returns an “all clear” signal to the 
GUI, and the user would continue drawing 
uninterrupted, or the analyzer would return a 
“failed requirements” signal. Upon receiving the 
“failed requirements signal,” we pondered what 
we would have the GUI do to handle the 
situation. From a UI/UX perspective, we knew 
that the best possible experience would come 
from the uninterrupted and seamless use of the 
software. However, from a design perspective, 
leaving the user in the dark of potential design 
flaws in an area such as their electrical setup 
could be a costly mistake. We needed to strike a 
rich balance between helpful and informative, 
and so we decided that it would be best that all 
the insights provided by the simulator would be 
non-blocking until there was a critical flaw 
detected. Critical flaws included inadequate 
power supply for a board (under 500 mA in the 
case of a KL25Z), or unrealistic workspace 
setups (i.e. infinitely many columns of modules). 
In the event of a critical flaw, the program would 
not continue until the user changed his or her 
setup. 
 

The feasibility analyzer essentially 
demonstrates how physical dynamics (or in this 
case, electrical dynamics) play a key role in 
maintaining the integrity of our system. Since the 
user is dealing with modules that collectively can 
source a large amount of current, micro-
controllers can be very easily damaged or 
destroyed by inadequate setups. Our feasibility 
analyzer seeks to prevent this from occurring by 
calculating the electrical parameters such as 
current draw per LED depending on brightness. 

 
3. Scalability & Modularity 
 

To incorporate modularity and 
scalability, we wanted to allow a user to simply 
plug-and-play with modules with their setup. 
This meant allowing the user to connect any 
combination of blocks horizontally or vertically 
without changing any code. To facilitate this we 
needed hardware and software that could scale 
correctly. For horizontal connections, this was a 
straightforward problem to solve. The WS2811 
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library we used could send data to any number 
of LED’s on a single strip, so there were no real 
software challenges involved in adding more 
blocks horizontally. The only problem lay in 
making hardware that could plug in to the 
existing blocks, which was simply a case of 
soldering female headers on to the end of our 
blocks to connect with the male headers of the 
next blocks.  

 
Vertical connections, on the other hand, 

posed a significant technical challenge. We 
ultimately came up with two solutions for this: 
using demultiplexers (demux) to power many 
strips from the same Data Pin, and using SPI to 
communicate between two KL25z boards, each 
of which powered different blocks of LEDs. 
 

The idea behind demultiplexers was to 
remove the reliance on a separate digital IO pin 
for each strip. We defined one basic block to be 
an 8x8 square of LEDs, so the goal was to light 
a block from a single pin. Figure 3.1 below 
shows the setup for the demultiplexer array.  
 

 
Figure 3.1 – Demultiplexer setup using KL25Z 

 
Demultiplexing significantly reduces the 

number of IO pins needed, allowing many more 
blocks to be connected from a single 
microcontroller. Another advantage was that the 
output of the demux chips was proportional to 
their supply voltage, so this also solved the 
problem of providing a 5V input to the LED’s 
from a 3.3V Digital Out on the KL25Z. 
 

The software running on the KL25Z 
board listens on the serial port for data from the 
Processing GUI. Processing sends a standard 
packet with the RGB colors of the square  
(representing the LEDs in the workspace) the 
user clicked, along with the X and Y co-
ordinates. It uses the co-ordinates to store the 
RGB bytes in the correct place in the board’s 
memory, then uses the information about the Y 

co-ordinate to set the address pins of the 
multiplexers. The board then refreshes each 
data pin with the RGB sequence appropriate for 
the row being driven, which lights up the new 
LED and refreshes the blocks where nothing 
was changed. 
 The reason that the board refreshes 
every data pin, and not just the block to which a 
change was made, is twofold. First, it prevents 
any uncertainty as to what the output at the 
other data pins is. We encountered problems 
with unpredictable behavior before we 
implemented where certain pins would light up 
at random locations, with no real reason as to 
why this occurred. Second, it provides an upper 
limit on the amount of time each row goes 
without being refreshed. This is useful, for 
example, when you are uploading a full image 
and you want the image to appear 
instantaneously on the LED’s. 
 
 There are three main challenges with 
our demultiplexing algorithm. First, it is not 
arbitrarily scalable. The KL25z must know how 
many and which data pins to initialize, which in 
turn means the programmer must hard code an 
upper limit into the software. If a larger number 
of vertical blocks is required the user must use a 
second microcontroller. Secondly, the demux 
must be given time to settle, especially when the 
address pins change. We tackled this quirk by 
changing the address pins at the earliest 
opportunity, but not starting the DMA until all 
other computations had finished. This introduced 
enough delay to ensure reliability. Thirdly, the 
software on the computer and the board kept 
separate copies of what the matrix should look 
like. This lead to the possibility of ‘stale’ data, 
with the GUI not reflecting what was being 
shown on the LEDs. This was done to minimize 
the amount of time on the serial port, while at 
the same time allowing the board to refresh the 
LEDs when it needed to. Perhaps with faster 
serial communication it would be feasible to 
keep a single data copy on the computer and 
send the relevant data every time an update was 
needed. 
	  

4. SPI communication 
 

The second way of solving the 
scalability problem is to use multiple 
microcontrollers and establish communication 
between them. One microcontroller will act as 
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the master and initiate all communication with 
the other slave microcontrollers. It is also the 
responsibility of the master to communicate with 
the computer to get the user input with regards 
to which image he/she would like displayed on 
the LED matrix.  
 

The arrangement of the different 
microcontrollers and the computer is set up as 
shown in figure 4.1 below. It follows the daisy 
chain arrangement where one slave is 
connected to the next, and the data flows 
serially from one slave to the next. 

 

 
Fig 4.1 - Master Slave Arrangement 
 

The KL25Z is severely constrained by 
the amount of memory in SRAM it has. Given 
that each LED required 3 bytes of information to 
light up properly, driving a large number of LEDs 
can result in a large memory footprint. The data 
for the entire image cannot, hence, be loaded 
into the master microcontroller in one cycle. To 
overcome this problem, the data for the image 
should be split into separate parts - where each 
part is a portion of the image to be driven by 
each microcontroller. This is done by the 
software on the computer. The software also 
tags each part with the address of the slave that 
has to drive that part of the image. Thus a 
packet consisting of the start byte, an address 
and the data is created. The packet is then sent 
from the computer over UART to the master. 
The master then sends the data through SPI to 
the slave. After receiving the packet, each slave 
examines the address part of the packet, and 
determines if the payload is for itself. If it isn’t, it 
passes the same packet on to the next slave. 
This packet structure is shown below in figure 
4.2. 

 

 
Fig 4.2 - Communication Protocol 

 

SPI inherently does not require an 
acknowledgement signal between the 
communicating parties. However, this can be the 
problem if the transmitter is sending out data, 
and the receiver is not listening. In order to 
overcome this problem, we needed to set up our 
own handshaking protocol over SPI. The 
protocol we have developed is shown above in 
figure 4.3. 

 
The master sends the packet it receives 

from the computer to the slave. It then waits for 
the slave to send back an acknowledgement. If it 
does not receive this information in a certain 
amount of time, it will retransmit the packet. 
Once it receives acknowledgement from the 
slave, it will indicate the same to the computer, 
which will send the next packet of data. This 
process goes on till all the slaves have received 
their information, and then the master receives 
data corresponding to the LEDs it has to drive. 
Once it does, it will send a message to the 
slaves to start DMA transfer (which corresponds 
to start of driving of the LEDs). 
 

	  

Fig 4.3 Communication Protocol State Machine 
 
5. Simulator 
 

Another common problem in embedded 
systems projects is that the test cycle is slow. 
This is because in order to be tested, firmware 
(FW) changes need to be deployed on crucial 
hardware. In our case, this was cumbersome, 
and many times not practical due to the 
following reasons: 

 
1. Limited testable hardware: We had 

limited 16x16 LED modules, and only 1 
30A power supply 

2. Hardware Setup Cost: Wiring up the 
LEDs takes time, and is error prone 
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3. Hardware-related errors: Many times, 
the code seemed to not work, but in 
reality, the problem was a loose 
connection to the LEDs 

 
So in order to speed up our test cycle, and 
follow good model-based design practice, we 
decided to build a LED matrix simulator that 
could give the developer feedback without the 
constraints of faulty hardware. The basic idea 
was to build a system that could monitor the 
lines going from the LED driver to the LED 
matrix to visualize the WS2812B protocol as an 
array of pixels on the computer. The basic 
process flow without the simulator is shown in 
figure 5.1 below:  
 

 
Figure 5.1 – Process flow for LED Matrices 
 
With the simulator, instead of the lines going to 
the LED matrix, they will go to an external 
device where they are monitored by a Saleae 
logic analyzer. Figure 5.2 below shows this 
edited process flow. 
 
The logic analyzer gives us the waveform 
corresponding to the image to be displayed on 
the actual LED matrix hardware in WS2812B 
protocol format. The last step in the process is to 
export this waveform data into CSV, and 
visualize this protocol using Processing. This 
workflow can be seen below in figure 5.3. 
 
For our initial studies, we worked with the MS 
logo. The simulator does not work quite perfectly 
yet, but seems to be structurally similar to the 
MS logo it represents. With a little more time, 
this simulator should work well enough to 
replace hardware during tests. We spent a 
sizeable amount of time investigating using the 

KL25Z as a logic analyzer. With help of this 
open source FW and this open source logic 
sniffer we successfully turned a single KL25Z 
into an 8-probe, 2 MHz sample rate, 14 kB 
sample logic analyzer. Unfortunately, since the 
WS2812B protocol runs strictly at 800 kHz and 
has low pulse times at greater than 2 MHz, this 
approach did not work. It was, however, an 
interesting avenue to explore. 
 
 

 
Figure 5.2 – New process flow using Saleae 
logic analyzer. 

 
 

 
Figure 5.3 – Saleae protocol analyzer workflow. 
 
 
6. Conclusion 
 
 Through this project, we laid the 
groundwork for the development a robust, 
scalable, and modular design to control LED 
matrices via a simple user interface. Our 
prototype demonstrates this by enabling the 
user to quickly setup and draw any image they 
choose on a plethora of setups, while the 
software tool keeps track of their setup to ensure 
that the user does not damage hardware. In 
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effect, we show that it is possible to apply good 
design principles to a low volume project, and to 
use these principles to create an abstract 
framework that can be applied in various other 
scenarios. 
 
 Future work continuing this project most 
notably include the development of a working 
simulator that can directly tie into the feasibility 
analyzer. This would allow for not only user 
validation of an image displayed on their 
workspace, but also for the rapid determination 
of whether or not displaying an image is feasible 
given the current setup. 
 


