
Final Project Report - EE 249

Introduction to Embedded Systems

By –

Phillip Azar

Peadar Keegan

Antonio de Lima Fernandes

Adarsh Mani

EE	 C249A	 Final	 Project	 	 12/19/2014	

1	
	

Modular LED Matrices: A proof of scalable,
robust, and model-based design practices in low

volume embedded systems projects.

Phillip Azar, Peadar Keegan, Adarsh Mani,
Antonio De Lima Fernandes

1. Introduction

As we stated in our Project Charter, the
goal of our project was to “create a configurable,
modular, scalable and model based framework
for the RGB LED Matrix Display using the
WS2812 protocol”. The aim of the project was to
use model-based design to create something
that can be scaled to an (almost) arbitrary size.
We decided that a fundamental problem with
many embedded systems projects is that they
are often made to fit the original scale of the
solution, and do not perform well if you try to
make them larger or smaller. We propose a
prototype that demonstrates a low-volume
solution which incorporates model-based design
principles for scalability and modularity.

2. Feasibility & Processing GUI

The major interactive portion of the
project was the graphic user interface that was
developed using the Java Processing tool.
Processing is a multi-platform development suite
that allows for the rapid usage and integration of
a variety of graphical user interface and
mathematical utility libraries. To effectively
demonstrate the model-based design aspect of
the project, an intuitive and easy to use GUI that
incorporated a feasibility analyzer was a must. A
diagram of this GUI is shown in Figure 2.1
below, illustrating its connection to various
components of the system.

Figure 2.1 – High level system diagram of GUI.

While the user is drawing or uploading

images to his or her LED workspace, the
feasibility analyzer checks each pixel set and
each image chosen to determine if it can be
displayed or represented by the given
workspace. Then, one of two things could occur:
the analyzer returns an “all clear” signal to the
GUI, and the user would continue drawing
uninterrupted, or the analyzer would return a
“failed requirements” signal. Upon receiving the
“failed requirements signal,” we pondered what
we would have the GUI do to handle the
situation. From a UI/UX perspective, we knew
that the best possible experience would come
from the uninterrupted and seamless use of the
software. However, from a design perspective,
leaving the user in the dark of potential design
flaws in an area such as their electrical setup
could be a costly mistake. We needed to strike a
rich balance between helpful and informative,
and so we decided that it would be best that all
the insights provided by the simulator would be
non-blocking until there was a critical flaw
detected. Critical flaws included inadequate
power supply for a board (under 500 mA in the
case of a KL25Z), or unrealistic workspace
setups (i.e. infinitely many columns of modules).
In the event of a critical flaw, the program would
not continue until the user changed his or her
setup.

The feasibility analyzer essentially
demonstrates how physical dynamics (or in this
case, electrical dynamics) play a key role in
maintaining the integrity of our system. Since the
user is dealing with modules that collectively can
source a large amount of current, micro-
controllers can be very easily damaged or
destroyed by inadequate setups. Our feasibility
analyzer seeks to prevent this from occurring by
calculating the electrical parameters such as
current draw per LED depending on brightness.

3. Scalability & Modularity

To incorporate modularity and
scalability, we wanted to allow a user to simply
plug-and-play with modules with their setup.
This meant allowing the user to connect any
combination of blocks horizontally or vertically
without changing any code. To facilitate this we
needed hardware and software that could scale
correctly. For horizontal connections, this was a
straightforward problem to solve. The WS2811

EE	 C249A	 Final	 Project	 	 12/19/2014	

2	
	

library we used could send data to any number
of LED’s on a single strip, so there were no real
software challenges involved in adding more
blocks horizontally. The only problem lay in
making hardware that could plug in to the
existing blocks, which was simply a case of
soldering female headers on to the end of our
blocks to connect with the male headers of the
next blocks.

Vertical connections, on the other hand,

posed a significant technical challenge. We
ultimately came up with two solutions for this:
using demultiplexers (demux) to power many
strips from the same Data Pin, and using SPI to
communicate between two KL25z boards, each
of which powered different blocks of LEDs.

The idea behind demultiplexers was to
remove the reliance on a separate digital IO pin
for each strip. We defined one basic block to be
an 8x8 square of LEDs, so the goal was to light
a block from a single pin. Figure 3.1 below
shows the setup for the demultiplexer array.

Figure 3.1 – Demultiplexer setup using KL25Z

Demultiplexing significantly reduces the

number of IO pins needed, allowing many more
blocks to be connected from a single
microcontroller. Another advantage was that the
output of the demux chips was proportional to
their supply voltage, so this also solved the
problem of providing a 5V input to the LED’s
from a 3.3V Digital Out on the KL25Z.

The software running on the KL25Z
board listens on the serial port for data from the
Processing GUI. Processing sends a standard
packet with the RGB colors of the square
(representing the LEDs in the workspace) the
user clicked, along with the X and Y co-
ordinates. It uses the co-ordinates to store the
RGB bytes in the correct place in the board’s
memory, then uses the information about the Y

co-ordinate to set the address pins of the
multiplexers. The board then refreshes each
data pin with the RGB sequence appropriate for
the row being driven, which lights up the new
LED and refreshes the blocks where nothing
was changed.
 The reason that the board refreshes
every data pin, and not just the block to which a
change was made, is twofold. First, it prevents
any uncertainty as to what the output at the
other data pins is. We encountered problems
with unpredictable behavior before we
implemented where certain pins would light up
at random locations, with no real reason as to
why this occurred. Second, it provides an upper
limit on the amount of time each row goes
without being refreshed. This is useful, for
example, when you are uploading a full image
and you want the image to appear
instantaneously on the LED’s.

 There are three main challenges with
our demultiplexing algorithm. First, it is not
arbitrarily scalable. The KL25z must know how
many and which data pins to initialize, which in
turn means the programmer must hard code an
upper limit into the software. If a larger number
of vertical blocks is required the user must use a
second microcontroller. Secondly, the demux
must be given time to settle, especially when the
address pins change. We tackled this quirk by
changing the address pins at the earliest
opportunity, but not starting the DMA until all
other computations had finished. This introduced
enough delay to ensure reliability. Thirdly, the
software on the computer and the board kept
separate copies of what the matrix should look
like. This lead to the possibility of ‘stale’ data,
with the GUI not reflecting what was being
shown on the LEDs. This was done to minimize
the amount of time on the serial port, while at
the same time allowing the board to refresh the
LEDs when it needed to. Perhaps with faster
serial communication it would be feasible to
keep a single data copy on the computer and
send the relevant data every time an update was
needed.
	

4. SPI communication

The second way of solving the
scalability problem is to use multiple
microcontrollers and establish communication
between them. One microcontroller will act as

EE	 C249A	 Final	 Project	 	 12/19/2014	

3	
	

the master and initiate all communication with
the other slave microcontrollers. It is also the
responsibility of the master to communicate with
the computer to get the user input with regards
to which image he/she would like displayed on
the LED matrix.

The arrangement of the different
microcontrollers and the computer is set up as
shown in figure 4.1 below. It follows the daisy
chain arrangement where one slave is
connected to the next, and the data flows
serially from one slave to the next.

Fig 4.1 - Master Slave Arrangement

The KL25Z is severely constrained by
the amount of memory in SRAM it has. Given
that each LED required 3 bytes of information to
light up properly, driving a large number of LEDs
can result in a large memory footprint. The data
for the entire image cannot, hence, be loaded
into the master microcontroller in one cycle. To
overcome this problem, the data for the image
should be split into separate parts - where each
part is a portion of the image to be driven by
each microcontroller. This is done by the
software on the computer. The software also
tags each part with the address of the slave that
has to drive that part of the image. Thus a
packet consisting of the start byte, an address
and the data is created. The packet is then sent
from the computer over UART to the master.
The master then sends the data through SPI to
the slave. After receiving the packet, each slave
examines the address part of the packet, and
determines if the payload is for itself. If it isn’t, it
passes the same packet on to the next slave.
This packet structure is shown below in figure
4.2.

Fig 4.2 - Communication Protocol

SPI inherently does not require an
acknowledgement signal between the
communicating parties. However, this can be the
problem if the transmitter is sending out data,
and the receiver is not listening. In order to
overcome this problem, we needed to set up our
own handshaking protocol over SPI. The
protocol we have developed is shown above in
figure 4.3.

The master sends the packet it receives

from the computer to the slave. It then waits for
the slave to send back an acknowledgement. If it
does not receive this information in a certain
amount of time, it will retransmit the packet.
Once it receives acknowledgement from the
slave, it will indicate the same to the computer,
which will send the next packet of data. This
process goes on till all the slaves have received
their information, and then the master receives
data corresponding to the LEDs it has to drive.
Once it does, it will send a message to the
slaves to start DMA transfer (which corresponds
to start of driving of the LEDs).

	

Fig 4.3 Communication Protocol State Machine

5. Simulator

Another common problem in embedded
systems projects is that the test cycle is slow.
This is because in order to be tested, firmware
(FW) changes need to be deployed on crucial
hardware. In our case, this was cumbersome,
and many times not practical due to the
following reasons:

1. Limited testable hardware: We had

limited 16x16 LED modules, and only 1
30A power supply

2. Hardware Setup Cost: Wiring up the
LEDs takes time, and is error prone

EE	 C249A	 Final	 Project	 	 12/19/2014	

4	
	

3. Hardware-related errors: Many times,
the code seemed to not work, but in
reality, the problem was a loose
connection to the LEDs

So in order to speed up our test cycle, and
follow good model-based design practice, we
decided to build a LED matrix simulator that
could give the developer feedback without the
constraints of faulty hardware. The basic idea
was to build a system that could monitor the
lines going from the LED driver to the LED
matrix to visualize the WS2812B protocol as an
array of pixels on the computer. The basic
process flow without the simulator is shown in
figure 5.1 below:

Figure 5.1 – Process flow for LED Matrices

With the simulator, instead of the lines going to
the LED matrix, they will go to an external
device where they are monitored by a Saleae
logic analyzer. Figure 5.2 below shows this
edited process flow.

The logic analyzer gives us the waveform
corresponding to the image to be displayed on
the actual LED matrix hardware in WS2812B
protocol format. The last step in the process is to
export this waveform data into CSV, and
visualize this protocol using Processing. This
workflow can be seen below in figure 5.3.

For our initial studies, we worked with the MS
logo. The simulator does not work quite perfectly
yet, but seems to be structurally similar to the
MS logo it represents. With a little more time,
this simulator should work well enough to
replace hardware during tests. We spent a
sizeable amount of time investigating using the

KL25Z as a logic analyzer. With help of this
open source FW and this open source logic
sniffer we successfully turned a single KL25Z
into an 8-probe, 2 MHz sample rate, 14 kB
sample logic analyzer. Unfortunately, since the
WS2812B protocol runs strictly at 800 kHz and
has low pulse times at greater than 2 MHz, this
approach did not work. It was, however, an
interesting avenue to explore.

Figure 5.2 – New process flow using Saleae
logic analyzer.

Figure 5.3 – Saleae protocol analyzer workflow.

6. Conclusion

 Through this project, we laid the
groundwork for the development a robust,
scalable, and modular design to control LED
matrices via a simple user interface. Our
prototype demonstrates this by enabling the
user to quickly setup and draw any image they
choose on a plethora of setups, while the
software tool keeps track of their setup to ensure
that the user does not damage hardware. In

EE	 C249A	 Final	 Project	 	 12/19/2014	

5	
	

effect, we show that it is possible to apply good
design principles to a low volume project, and to
use these principles to create an abstract
framework that can be applied in various other
scenarios.

 Future work continuing this project most
notably include the development of a working
simulator that can directly tie into the feasibility
analyzer. This would allow for not only user
validation of an image displayed on their
workspace, but also for the rapid determination
of whether or not displaying an image is feasible
given the current setup.

