Home Automation System

Jacob Minyoung Huh, Jene Li, Michelle Nguyen

December 19, 2014

Introduction

In the past, predictions of technology included vi-
sions of the future home as a fully-automated, inter-
active "smart home”. With the rising popularity of
the Internet of Things phenomenon, many attempts
have been made in the field of home automation.
From thermostats that can predict your desired tem-
perature, to systems that can monitor and control the
lights throughout your home, that vision of the future
has been realized. However, despite such widespread
pursuits in home automation, the majority of today?s
modern homes do not utilize these home automation
systems. Our goal is to create a home automation
framework that remedies the problems of these cur-
rent home automation systems. This includes creat-
ing a framework that remains connected and inter-
active despite losing internet connectivity. We also
focus on the expandability and flexibility of our plat-
form for easy use of both custom sensors and existing
sensors already in the market. Furthermore, we de-
sign our system so that it provides a simple, intuitive
interface that is easy to build any application upon,
allowing us to serve as a strong platform on which to
run any household’s desired application.

Overview

For our system, we decided to focus on three core
components: the sensors, the server, and the integra-
tion of the former. These are implemented over two
physical modules: the sensor module and the server
module. The sensor module consists of libraries that
help us make our platform flexible, expandable, and
easy to use. The server module employs two servers,
one that is run locally, and one that is deployed on
the cloud. These two modules form a concurrent sys-
tem that ensures that our sensor data is always be-
ing recorded regardless of internet connectivity. The
sensor data can then be accessed either locally or
through the cloud via simple APIs that help sim-
plify the application development process. The gen-
eral system model of our modules can be seen in the

following, where each module can further be repre-
sented as a finite state machine:

Sensor
Libraries.

Integration

Backend

Sensors

Sensors

|

v -
Microcontroller

" Mobile
Devices

Figure 1: General system model

Sensors

The lowest level of infrastructure in the project
comprises of sensors, which provide the valuable real-
time data used in home automation. Manipulation
and use of the real-time data are used in applications
that are to be determined by the users and develop-
ers. Instead, we focus on creating solid libraries as a
state machine, which allows the developers and users
to employ the libraries in a reliable and effective way.
By creating these libraries, we are abstracting away
the details of the hardware and communication pro-
tocol so that it does not have to be handled by the
backend users.

The sensors we have incorporated use two ways of
communication. One subset of sensors uses pure ana-
log reads, where the microcontroller reads the out-
put pin value. The other uses the I12C protocol, in
which communication between the sensor and the
controllers is made through acknowledgement. 12C
appealed to us because of the amount of freedom it
gives to the users and the developers. Due to the fact
that it does not depend on the number of pins, 12C
has no limitation in the amount of sensors we can use
and users are guaranteed a full range of use with just



a single processor. By maximizing the capacity of a
single processor, we see great potential in using these
sensors for home automation.

Analog Read

So how are the libraries actually modeled? We can
view 12C libraries as an improvement upon the ana-
log read libraries, or the analog read libraries as a
subspace of the I12C libraries. The analog libraries
are composed of methods which can be easily seen as
a rough state flow graph. Every time a reader request

(O anzc sensors

In some I2C sensors

p

Read Request

Compute

Connection
and validity

Data value
conversion

Push data

s on the availabilty of the ibrary

Figure 2: State flow graph for analog read libraries

is made, the library calls read data and checks if it is
valid. If the data read is not valid (e.g saturated or
unuseful) we will acknowledge that it is not useful and
notify the user that an error has occured. This step
can be checked during the application. After it has
ensured that it is valid, depending on the sensor, we
will compute gain depending on the noise and push
out the scaled, meaningful data.

12C

Similarly to the pure analog libraries, the 12C pro-
tocols have been defined. The 12C protocol consists
of acknowledgement between the master (processor)
and the slave (sensors). We first check if the sensor
connection has been made and additionally check if
the revision number of the sensor matches the one we
have seen in the data sheet. After all initialization has
been done, then we can start requesting data. The
unique slave address gives us the freedom to connect
to multiple 12C devices.

We can see that this is very similar to the pure
analog read, except that we check if the initializa-
tion and connection has gone through correctly, in

(@ natzc sensors

In some 12C sensors.

\ ﬁ Read request

Retrieve data
Measure
noise/ambient
Check
validity
Read scaled
data

Connection
and validity

Check sensor
product
revision
number

Initialization

~

Check sensor

address)

Data value
conversion

Push data

on the availabilty of the fibrary.

Figure 3: State flow graph for IC2 libraries

order to avoid reading corrupted data. Though ex-
tracting data is much more complicated than pure
analog, it will not be discussed in this report. Fur-
thermore, we can represent our I12C libraries as a state
machine, which also encompasses the state machine
for the analog read libraries.

Igain* Data_Calculation(Data)

ev A (SAV IS.AY
Initialization

rev = falso V S.A = Falso/

Dependent
Rev

sA

1 Data_Calculation(Data)

Figure 4: State machine for IC2 and analog read li-
braries

The state machine starts with initialization. It
transitions to wait if and only if initialization has fin-
ished correctly. The state machine will then stay at
the wait state until an input read_request evaluates
to true. When this guard is evaluated to true, it will
read data, check the validity of the read data, and
transition to read. If the value that has been read is
not valid for any reason, it will transition to the error
state. Otherwise, it will transition according to the
sensor type it is computing and push the scaled data.
Finally, it will return to the wait state, where it will
wait until the next request is present.

The types of sensors we have written libraries for in
the project have been chosen in respect to the impor-
tance of how the real-time data impacts one’s daily



life. The following image includes the types of sensors
and the sensor libraries we have developed.

1. Carbon Monoxide sensor -MQ-7

2. Combustible gas sensor -MQ-2

3. Humidity and Temperature Sensor Breakout
- HIH6130

4. Infrared Proximity Breakout - VCNL4000

5. Luminosity Sensor Breakout - TSL2561

6. Triple-Axis Digital-Output Gyro Breakout -
1T6-3000

7. SparkFun Barometric Pressure Sensor
Breakout- BMP180

8. Ultrasonic Range Detector -
LV-MaxSonar-E23

9. SparkFun Sound Detector - LMV324

Figure 5: Sensors with written libraries

Integration

In order to integrate our sensor modules with our
server module, we decided to use a lightweight TCP
protocol over WiFi. This allows our server modules to
be connected across the home wherever WiFi reaches.
With the addition of a uninterrupted power source on
the router, the TCP connection will always be run-
ning regardless of power loss or internet connectivity
problems.

Figure 6: Demo board for integration module

For our demo, we created a small application to
demonstrate our system. This application uses three
sensors: a humidity, barometer, and temperature
sensor which constitutes as our sensor module. Using
an mbed RedBearLab nRF51822 paired with an
Adafruit CC3000 WiFi breakout board, our board
acts as a TCP client and interfaces with the local

server by sending sensor readings.

ttep/ socket.open() [read_request

lwifi/ reconnect

Wwifi/

data/send_data

\wifi/

Our demo application can be modeled by the above
chart in addition to the sensor FSM running concur-
rently. When in the READ state, the FSM outputs
a read_request signal that is fed into the application
FSM. When data is received, it then sends it over to
the server over the TCP connection. If the server
connection is disconnected, it will halt reading and
attempt to reconnect. This leads to the following
feedback model of our concurrent system.

Sensor J

data

L cati read_request

send_data
Server

Figure 7: Integration concurrent model

Backend

The backend consists of two servers—one that is run
locally on a mbed board, and another which is de-
ployed to the cloud. Both servers aggregate and store
the collected sensor data, which the user can access
through simple, intuitive interfaces.

Local Server

Figure 8: mbed board for the local server

The local server is running on a mbed FRDM-
KL25Z with an Adafruit CC3000 WiFi breakout
board for internet connectivity. It is also connected
to a SparkFun MicroSD breakout board so that the
sensor data can safely be stored, mitigating the loss
of data during any possible power outages. The local
server acts as a TCP server, which polls and waits
for requests from clients. These requests may add
new sensor data to the server, or may get existing



sensor data from the server. This is done using sim-
ple payload formats that bear a slight resemblance
to those of a RESTful API, allowing it to be intu-
itive to use. To send data to the server, the payload
format is "POST sensorname value”, which will save
the value for the sensor with that sensor name, and
return the id of the entry that has just been stored.
Similarly, if a user wants to access data on the local
server, the payload format is ”GET sensorname id”,
where the id of the entry they want is the same as
the one given when the data is POSTed. The server
is flexible and allows for any sensor name, and thus
any type or number of sensors, to be stored.

When connected to the internet, the local server
also relays data to the cloud server as it receives
the data. However, during periods of no internet ac-
cess, the server notes which data entries have not yet
been pushed to the cloud. A timed interrupt which is
scheduled for every five minutes, checks whether there
is internet connectivity, and if so, will push these up-
dates to the cloud. Similarly, another timed inter-
rupt scheduled for every ten minutes will attempt to
reconnect the server to the internet if there is cur-
rently no internet access. We see that our home au-
tomation system differs from several other platforms
which take a ”Cloud-First” approach, which renders
the platform unusable during network outages.

Initialization i :
(WiFi, TCP server, Wait for Client
SD card)

Update cloud
with any
unsent data

Receive client
data,
update data
locally

Son,
s,

Update data in
cloud

Figure 9: State machine for the local server

The state chart for the local server is above. We
see that after initializing, the server begins to wait
for clients. From here, it can either receive a client,
or execute an attempt to reconnect to the internet or
send updates to the cloud server. After each action,
it will return to its polling state.

Cloud Server

The cloud server is deployed via Heroku, at
eel49has.herokuapp.com, and uses a web.py frame-

work for the Python server. This server aggregates all
of the data sent by the local server and safely stores
that information in the cloud. This allows users to
access all of the available information and monitor
their home regardless of where they are. Accessing or
sending data is done through a RESTful API. This
familiar protocol style allows users to easily query for
the data they need, making it simple to build applica-
tions upon our architecture. Users can either choose
to receive a single sensor value by providing an id, or,
if no id is provided, they can receive all of the sensor
data via a JSON format.

Conclusion

We have created an architecture that is easily us-
able and extendable through the design of core sensor
libraries. By integrating our sensor module with our
local server module, we are able to provide a working
service regardless of internet connectivity. We then
further improve the robustness of our system by uti-
lizing a cloud server, also allowing users and their
applications access to data beyond the home. Fur-
thermore, we offer simple, intuitive APIs that users
can easily employ to build applications without any
limits.

Future Work

Now that we have an architecturally robust at-
tempt at a home automation system, our next step
would be to create a rugged enclosure for our mod-
ules so that they will be physically robust and easier
on the eyes. Since our boards also support Bluetooth
Low Energy, we would like to look into an identity
detection feature by scanning the Bluetooth IDs of
passing phones. This will add another element to our
system that goes beyond what sensors can capture.
It will allow us to provide users with the ability to
monitor people in their home, such as who has en-
tered a room at what time. We also want to improve
our local backend server so that it attempts to re-
connect to the internet in a smarter fashion. Instead
of using a timed interrupt, attempting to reconnect
when first detecting the WiF1i has disconnected, then
increasing the time between each attempt with expo-
nential backoff, would increase the time that the local
server is connected to the internet while also reducing
the number of wasteful attempts.



