iRobot Pursuit:
Hybrid Simulation using Accessors in Ptolemy II

Nikunj Bajaj, Shromona Ghosh, Marten Lohstroh
Final Report EECS 249A Project, Fall 2014

December 19, 2014

1 Introduction

In this project, we aim to design, model and analyze a
cat-and-mouse game'! between robots. The game finds its
application in automated security, context-aware comput-
ing, and the Internet of Things. A key challenge in these
types of applications and their dynamically evolving in-
frastructure is that the distinction between “design time”
and “run time” becomes blurred. Ensuring that different
components and subsystems can be dynamically recom-
bined yet still function properly requires highly advanced
development methodologies, models, and tools [3]. We will
leverage one of these, namely accessors [5], which allow
simulated components to be replaced by their real-world
counterparts in composition with other components that
continue to be simulated.

The result of integrating simulations with deployed
cyber-physical systems is called (real-time) hybrid simu-
lation % [2], a strategy used in structural and civil engi-
neering that allows a critical component—in our case the
iRobot—to be isolated and physically tested while still
capturing the dynamic behavior of its interaction with the
entire system. We expect techniques like these to be be-
come increasingly important in the field of modeling and
simulation of cyber-physical systems at large.

2 Methodology

More than just implementing a game using real robots,
our goal is to study the behavior of its interacting com-
ponents; an intruder and several guards that protect an
asset. For instance, we are interested in whether the in-
truder can reach the asset, or more importantly, reach it
and escape without being caught. Because any assertion
about the possible behaviors in the game is based on a
model, we would like to test the assumptions that gave
rise to that model by observing the physical interactions
between the robots and their environment, and if possi-
ble, refine that model. In this project we started exploring
the latter by building a control system in Ptolemy II that
interacts with iRobots through accessors. Subsequently,
formal verification of the properties of our system could

1A contrived action involving constant pursuit, near captures,
and repeated escapes.

2Not to be confused with the simulation of hybrid systems, in
which continuous behavior is specified by differential equations along
with discontinuous changes specified by discrete event switching
logic.

be done, for example by compiling our Ptolemy II model
into a SpaceEx [1] specification, but this lies outside of the
scope of this project.

Ptolemy Il % SpaceEx
i ion) U

Hybrid
Simulation

iRobot
(Implementation)

Model/Implementation

Figure 1: Hybrid simulation and formal verification.

Accessors mediate interactions with arbitrary subsys-
tems through the exposure of an actor interface. An acces-
sor defines inputs, outputs, and a limited set of methods
that perform some computation and coordinate the ex-
change of data with external resources when the actor is
“fired”. Abstract actor semantics allow actors and acces-
sors to be composed, and under governance of a particular
model of computation a composition acquires its execu-
tion semantics. Because accessors are still in early devel-
opment, only a limited number protocols are supported
by the host, Ptolemy II. Support for RESTful interactions
is currently most mature, so we decided to use HTTP to
interact with to the iRobot.

2.1
2.1.1 Hardware

System Architecture

We used the iRobot Create to which we communicate
over UART using a BeagleBone Black, connected via a
SparkFun BOB-12009 bidirectional logic level converter.
The BeagleBone is powered by the iRobot by means of
a SMAKN DC/DC step-down power converter. Further-
more, through 12C we connected a LSM303 Triple-axis Ac-
celerometer + Magnetometer, and through USB we con-
nected a TP-LINK TL-WN725N WiFi and an Asus BT400
Bluetooth module.

2.1.2 Software

On the BeagleBone we used a regular ARM Linux ker-
nel. We implemented a web server in Python using the



Figure 2: Diagram of the hardware components.

GEvent library and its Webserver Gateway Interface li-
brary. Through a library called Pyrobot, written by Da-
mon Kohler, we actuate the iRobot and read its sensors.
We use polling to retrieve sensor readings.

Gevent H Pyrobot
Python

Linux

resspyiRobot
tumed
u driven
o colided

Beaglebone

iRobot

Figure 3: Software stack.

The interface exposed by the web server is simple;
arguments of an HTTP GET request specify the an-
gular and linear displacement of the requested maneu-
ver. For each request, the robot first turns and then
drives straight. A turn is only taken if the provided an-
gle is not zero and the turn speed is greater than zero.
The robot only drives if a non-zero distance is provided
and the drive speed is greater than zero. Negative an-
gles result in clockwise motion, positive angles make the
robot turn counter-clockwise. Similarly, negative distances
make the robot drive backwards and positive distances re-
sult in forward movement. The server blocks until the
maneuver is completed. An example request looks like
this: http://robot1:8088/7turnSpeed=200&angle=45&
driveSpeed=200&distance=200. Angles are measured in
degrees, distance is measured in millimeters, and speeds
are measured in mm/second.

2.1.3 Model

The system was modeled in Ptolemy II, where a pursuit
game was simulated with two chasers and one intruder in a
virtual environment consisting of a square of size 400 x 400
cm. The scenario is depicted in Figure 4, the Ptolemy
model is shown in Figure 5.

As tested empirically, and reported in section 3, we are
unable to use our range (Bluetooth RSSI) and orientation
(magnetometer) sensors. Hence, we state the following
assumptions:

e Movement of the robots is restricted by predefined
step size (controlled by a parameter).

e If the intruder comes within a threshold distance of
one/more of guards(s) it is deemed to be caught.

e All robots will have known start positions and their

Figure 4: The environment E features some valuable asset
A that is protected by guards G. The objective of intruder
I is to reach and capture the asset and then escape, evad-
ing the guards. The guards will come into action when [
enters critical zone Z, and will chase down the intruder.

position continues to be estimated based on ded-
reckoning.

e distGran: 100 o xlowBox: 1250 o xHighBox: 2750

yHighBox: 2750

‘@ samplePeriod: 1
o distdjust: 30.0

o distThres: 50

o yLowBox: 1250

TimeDelay3

;

Figure 5: Ptolemy Model.

Key components in the model are the “Intruder Con-
troller” and the “Chaser Controller” composite actors.
The intruder controller takes in the angle input given by a
WiiMote controlled by a user and calculates the next po-
sition of the intruder based on the current orientation and
location. The chaser controller takes as input the location
and orientation of the chasers and intruder and estimates
the next best location for the chasers. In doing this, the
controller implements two preliminary strategies:

e It makes the chasers move toward the last reported
coordinate of the intruder.

e It makes the chasers move towards the next predicted
location of the intruder based on its posit on and ori-
entation.

The guards operate in two modes namely idle and chas-
ing. The chasing mode gets activated when the intruder
enters the “critical zone” of the environment.

Because the httpRequest () calls in the iRobot accessor
are blocking, our simulation features a strictly interleaved
operation of the robots. We could potentially make the
Web server on the BeagleBone non-blocking, but then we
would have to allow sufficient time between request, or we
may attempt to actuate the robot while it is still handling a
previous request. Alternatively, we could run a Web server
in Ptolemy II to receive a callback upon completion of a
maneuver. Since an interleaved execution would suffice to
demonstrate a proof-of-concept, and we favor determinism
over responsiveness, no asynchrony is featured.



3 Results

3.1 Actuation of the iRobot
3.1.1 Angle actuation errors

Angle actuation errors occur due to several factors such as
speed of the robot, friction in the wheels and the polling
interval. We orthogonalize these issues and setup experi-
ments to solve each of them separately. We first conduct
an experiment to find the optimum turn speed, and then
perform an experiment to find an error model for the an-
gles.

To find the optimum turn speed we vary the turn speed
and measure the error. We repeat the experiments for turn
speed varying from 50 mm/s to 300 mm/s in increments
of 25 mm/s and different turn angles, namely 30°, 60° and
360°. The following graph summarizes the results. The

Error in angle measurement with varying speed

Figure 6: Error in angle measurement with varying speed.

graph shows four traces. The red trace shows the normal-
ized error for different turn speeds for a turn angle of 30°.
The blue trace is for a turn angle of 60° while the green
trace is for a turn angle of 360°. The yellow trace shows
the average normalized error of the red, yellow and blue
trace.

We consider only those speeds which yield an average nor-
malized error of less than 5%. In the graph, we see the
speeds that satisfy this criterion are 100mm/s, 150mm/s,
175mm/s and 200mm/s. We choose 200mm/s to be the
optimum turn speed as it gives us a good trade off between
responsiveness and error.

We now repeat the experiments by varying the required
turn angle for a turn speed of 200 mm/s. The following
graph summarizes the normalized error for different turn
angles varying from 15° to 360° in increments of 15°.

The normalized error has an inverse relation with the
turn angle. To correct this error, we took two approaches:

1. We experimentally found out the correction required
for every range of turn angles.

2. We tried to fit a curve to our experimental data. We

tried to fit 2 curves, an exponentially decaying and an
hyperbolic curve.

The following graph shows the two fitting with the ac-
tual data. The error from the curve fitting is about 0.2694
for exponential fitting and 0.0878 for hyperbolic fitting.

Error in angle measurment with varying turn angle for 200mm/s

. .
CH L S
*L T w” Yete-tw-o
250 = e
Angle {dsgroes)

Figure 7: Error in angle measurement with varying turn
angle for 200mm/s.

Curve Fitting

Normaiized error percenlage
= 4 A X! 5

150 200 250
Angle {degrees)

Figure 8: Curve Fitting

We compared the results of the curve fitting to the cor-
rections we found experimentally, and saw that the results
were comparable. The hyperbolic fitting has less devia-
tion from the experimental results and is less expensive
to implement compared to the exponential fitting. Hence,
we go for the hyperbolic fitting for correcting our angle

actuation errors. The corrected angle 6 in terms of the
required angle « is :

0=a(l—y) where a==z

(1)

3.1.2 Distance actuation errors

Figure 9: Distance actuation errors.

We varied the distance to be traveled by the robot from

100mm to 1600mm at a speed of 200 mm/s. We found
that the normalized error falls into a range of [0, 0.05]. For
simplicity, due to the closeness of values, we do a linear
fitting. The correction factor is the average of the nor-
malized errors. We see the average is 0.0196. The graph



shows the normalized errors, before and after applying the
correction.

From the graph we notice that the correction improves
errors only for required distances greater than 200mm.
Thus, we perform no correction for required distances less
than 200mm. The correction for distances greater than
200mm is linear model where y = 0.0196 * z.

3.2 Bluetooth received signal strength in-
dication

Figure 10: RSSI Data Plot.

The RSSI values were highly erratic and failed to give
us a proper model for the distance to RSSI relation. This
could have been for a number of reasons such as reflection
and interference. Also RSSI works well for distances over
one meter in heavily controlled environments such as an
anechoic chamber [4], but our environment was anything
but controlled, and we were in fact trying to find a suitable
model for smaller distances with a least count of 100mm.

3.3 Magnetometer

We tried to model the magnetometer. However, due the
presence of iron beams in the floor of our environment,
we were unable to get any meaningful results from the
magnetometer.

3.4 Ded-reckoning

Ded-reckoning is typically not ideal for location estimation
because of the accumulation of actuation error. However,
because of the strategies pointed out in Section 3.1.1 and
the limited size of the environment, we could implement
the pursuit game with reasonable accuracy. We tried to
test the limit of ded-reckoning. We gave a robot 50 in-
structions and checked the final position of the robot. We
repeated this experiment 10 times and recorded the fol-
lowing:

Ezxpected end location : [196.6,328.3]

Range of x:(10.75,204.47)

Range of y:(304.75,319.99)

Average : [174.05,313, 767

Figure 11: Ded-reckoning experiment.

4 Conclusion

In this project we explored the methodologies and chal-
lenges in implementation of a intruder pursuit game. We
first modeled the actuation errors of the iRobots. We fur-
ther investigated different ways to obtain the range mea-
surements and orientation of robots. We concluded RSSI
values do not correlate well with small distances and need
a very controlled environment to not be affected by reflec-
tion and interference. On the contrary, ded-reckoning can
be brought to acceptable accuracy if the actuation error is
taken into account in making control decisions.

Future work could be dedicated to: experimenta-
tion with more sophisticated control strategies; achiev-
ing higher operating speeds, more asynchrony, and tighter
bounds on latency; development of non-blocking accessors
and communication to Websockets to facilitate two-way
communication; use of other sensors to provide better es-
timates of position and orientation. Finally, a video pre-
sentation of our demo is available here: http://youtu.
be/y0ax3vaWyxY.

References

[1] Spaceex. http://spaceex.imag.fr/.

[2] R. Christenson, Y. Lin, A. Emmons, and B. Bass.
Large-scale experimental verification of semiactive con-
trol through real-time hybrid simulation. Journal of
Structural Engineering, 134(4):522-534, 2008.

[3] E. A. L. et al. The terraswarm research center (tsrc) (a
white paper). Technical Report UCB/EECS-2012-207,
EECS Department, University of California, Berkeley,
Nov 2012.

[4] J. Jung, D. Kang, and C. Bae. Distance estimation
of smart device using bluetooth. In ICSNC 2013, The
Eighth International Conference on Systems and Net-
works Communications, pages 13-18, 2013.

[5] E. Latronico, E. A. Lee, M. Lohstroh, C. Shaver,
A. Wasicek, and M. Weber. A vision of swarmlets.

TBD: A Suitable Magazine, Journal, or Conference,
2014.



