EECS149/249 FINAL REPORT

Networking Swarm

Suesin Chong, Sarah Hung, James Lam, Zhilong Liu

Abstract—The project aims to coordinate a swarm of moving
robots to explore and send exploration data using RSSI while
navigating into an unknown territory.

Index Terms—Swarm, networking, RSSI, XBee, collaboration,
communication.

I. INTRODUCTION

HE objective of this project is to coordinate a swarm of

moving robot via low-powered radio - Xbee and Received
Signal Strength Indicator (RSSI). The goal of the swarm
movement is to maximize the area of signal coverage of the
low-powered radio on the robots.

We envision the swarm behavior to be the following. Robots
will travel into an unknown territory one at a time. Each robot
will attempt to follow the trace of pioneer robots by sensing
their signal strengths. Once they reach the end of the trace,
they will travel further into the unknown territory until they
can maintain minimal connection to the rest of the group,
before turning into one of the pioneers itself.

Once chained, every bots will follow the signal trace to
reach the last bot until all the robots in the chain will
accumulate near the farthest bot from the point of origin.
Finally, the robots will spread out to maximize signal coverage.

II. ARCHITECTURE

This section discusses the hardware architecture of Zumy,
software stack and our calibration efforts.

A. Hardware Architecture

Zumy robots are prototype bots of Biomimetic Millisystems
Laboratory of UC Berkeley. We have assembled four new
Zumy’s for stability and urability. Figure 2 shows the hardware
architecture of a Zumy. Listed below are the components:

o Board: Hardkernel ODROID-U3 with 1.7GHz Quad-
Core processor, running XUbuntu 13.10

o Micro-controller: mbed LPC1768 & Pololu DRV8833
Dual Motor Driver Carrier

o Communication: 2.4GHz XBee Series 1 Radio & Wifi

module

o Power: 2-cell lithum-polymer battery

o Frame: Zumo Robot Kit [1]

o Others: Pololu Voltage Regulator (D15V70F5S3)

To setup XBee Series 1 module, we flashed a firmware
which adopts XBEE 802.15.4 protocol with the official tool
- X-CTU. We turned on the API mode and set the baudrate
57600, which top speed for stable two-way communication.
The board communicates with the Xbee via a serial port -
/dev/ttyUSBO with the baudrate is set to 57600, consistent with
the XBee firmware.

Power Module

XBee Module

transmit receive

Fig. 2. Hardware Architecture

B. Software Implementation

Software architecture consists of 3 independent modules, all
in Python. Detailed diagram of software architecture can be
found in appendix.

1) XBee Library: We utilized the open source XBee library
- python-xbee, available on [2]. The core library provides
basic transmit, receive and packet decoding functionailities
for Xbee radio. On top of which, we wrote a wrapper library
to add threading and RSSI specific functionalities for Xbee
communication.

The Xbee source address(MY) is used to identify individual
bots, whereas the channel(CH) and PAN-ID(ID) are consistent
across the entire network. RSSI specific post-processing
functions includes obtaining a list of 30 consecutive readings
from a particular sender and maximum, minimum, mean and

EECS149/249 FINAL REPORT

median of arbitary list of RSSL

2) Motor Library: This library is a modification of a
default library [3], which uses Lightweight Communications
and Marshalling (LCM) framework [4] to communicate with
the hardware motors. Using this library, we developed a set
of functions that order the bots to drive forward or backward
and turn in 90 degree. Also, driving distances are varied by
drive time instead of voltage change under this framework.

C. Motor Calibration

Hardware differences and environmental factor like texture
of floor often affect motors in unexpected ways. Hence, we
have to find the optimal speed and drive time parameters for
each movement of the Zumies, so that they are able to perform
precise movements, such as turn 90 degree and drive specific
distance as intended in the algorithm.

1) Hardware Difference: The motor strength varies across
different robots, hence we need to calibrate each Zumy in-
dependently for every movement. In particular, difference in
Zumy bots right and left motors were problematic since the
bot will turn when expected to drive straight.

2) Battery Strength: It was observed that a single Zumy
bot could exhibit varying motor strength based on the battery
level. Zumy running on low battery would run slower even
with same parameter. Hence we always ensure the moving
bot is high on battery.

We compromise by observing the bot on the run, and decide
whether the movements are within an acceptable range with
the understanding that achieving perfect turn and drive is
almost impossible in non-ideal environments.

III. SIGNAL INDICATOR

To achieve our objective, it is necessary to have an adequate
signal indicator that could correlate with distance between
bots. The Received Signal Strength Indication (RSSI) is an
indication of the RF energy at the antenna port in dBm
(Decibel-milliwatts) which should correlates with distance
from transmitter in ideal conditions.

However, RSSI is generally considered too noisy and sel-
dom used as a strict indicator of distance by itself. Hence,
we have to first investigate whether RSSI is a good indicator
of relative distance. To this end , we performed numerous
experiments to investigate relationship between RSSI and bot
distance under various conditions.

A. Experimental Setup

Our experimental setup involves 1 transmitter and 1 receiver
communicating continuously. RSSI value was recorded for
each packet received while incrementing or decrementing the
distance between the transmiter and the receiver by an fix
amount each time. Experiments took place in two locations:
Davis Hall 605 and Cory Hall 309, which are drastically dif-
ferent environments. Performing experiments in the different
environments with different signal interferences proves that
the observations were reliable and applicable in non-ideal
environments.

B. Observations & Findings

1) Moving vs Stationary: RSSI values fluctuate greatly
when the bots were in motion. Hence, we decide to only
process RSSI values obtained when bots were stationary since
the amplitude of fluctuation is much smaller under this situa-
tion. We were also adviced to collect multiple RSSI samples
and compare among their maximum, minimum, median, and
average to further reduce the effect of fluctuation on our
algorithms.

2) Constructive & Destructive Node: Although the stan-
dard deviation was large when one of the Zumies entered
constructive or destructive nodes, it was observed that using
maximum instead of average RSSI readings at each distance
provided approximately a linear correlation with the distance
within the range of 1.5 meters. This observation has been
verified in non-ideal environment.

3) Orientation: 3D Orientation of the Xbee devices have
drastic impact on RSSI values. There was no observable trend
when the orientations of Xbee devices are not controlled. In
particular, RSSI readings are most strongly correlated with
relative distance when the two Xbees are oriented in parallel to
each other at the same height. Any movement and reorientation
of Xbee devices in the perpendicular axis only introduce
random and undesirable fluctuation. Thus, we standardize the
orientation of Xbee devices by taping them onto the Zumies.

C. Plots on RSSI versus Distance

Figure 3 shows one of the best results. Distance was decre-
mented by 0.2 meters each time. From the figure, we observe
that the RSSI value is approximately linear with distance,
hence using maximum RSSI as an indicator of distance within
this ranfe is feasible. This observation is consistent across both
ideal and non-ideal environments.

D. Nearest Neighbor on Signal Trends

We analyzed the features of overall signal trend of a
approaching or leaving bot. We characterize data set at each
fixed location with meta data like maximum, minimum, mean,
median, mode, and standard deviation. Feature of entire signal
trend include meta-data at each stop and differentials between
stops. For a sufficiently long signal trend, we were able to
classify the path as towards, away or noise by calculating sum
squared differences and covariance of the new path with the
data set.

IV. ALGORITHM

The path tracing and spreading of the robots as discussed
in Introduction is achieved by gradient ascend and gradient
descend algorithm. To find the closest pioneer robot, each
Zumy will perform gradient ascend on the pioneer robot’s
RSSI. Similarly, to distance itself from all the neighbor robots,
each Zumy will perform gradient descend on the RSSI of its
neighbors collectively. This section gives an overview of the
two algorithms.

EECS149/249 FINAL REPORT

Receiver Approaching Transmitter

RSS! (dBm)

Position

Fig. 3. RSSI signals as a function of distance

Input: RSS! signal
Output: output_signal

Better RSSI/

REVERSE &
TURN 80
Worse RSSI/
COLLECT &
COREC H H COMPARE

Hits RSSI threshald/ Hits RSSI threshold/
ARRIVAL ARRIVAL
\ ARRIVAL /

Fig. 4. State machine of the gradient ascend algorithm.

DRIVE
FORWARD

A. Gradient Ascend Algorithm

In the gradient ascend algorithm, the robot undergoes a
routine of RSSI comparison between two different locations.
The Zumy robot will first calculate the maximum RSSI based
on 30 samples collected on its original location. It will then
travels for a carefully calculated distance in the direction that
it is currently facing, in order to collect another thirty samples
of RSSI values. Comparing the two maximums, if the signal
strength of the new location was better than that of the original
location, the robot will repeat the routine. If contrary, the robot
will return to its original location and turn for 90 degrees then
repeat the routine. The algorithm terminates when the observed
RSSI was above a certain threshold.

1) RSSI-related Drive Distance: The distance traveled
is calculated based on the observed RSSI. If a high RSSI
value is observed, this indicates that the robot is near the
signal transmitter. Therefore, the robot will be given a smaller
traveling distance. Likewise, a greater travel distance will be
given to the robot if the observed RSSI was small. This
design decision reduces the execution time of this algorithm in
general in that it reduce the likelihood for close range errors.

2) Navigation Stage: In case when the robot cannot de-
termine a better location after it has investigate in all four
directions, it will enter the next navigation stage in the same
location. Navigation distance is increased by 10cm for every
subsequent navigation stage. The robot in navigation stage n
will travel n*10cm in each direction.

presents

Walker Bot Sentries

present/

Input: sentry_instruction
Output: walker_state
start ascend/

)

TARRIVAL
destination/

Input: walker_state
Output: sentry_instruction

\

Bot 2 Sleeps J

/START_ASCEND
bot_arrival |
[Ea\s Transmn]—{ Bot 3 Sleeps]

/START_ASCEND

Bot 4 Transmit
bot_arival &

all_bots_arrived /

DESCEND

bot_arrival /
Bot 2 Transmit

start_descend /]

bot_arrival DESTINATION

-

Fig. 5. State machine of the overall algorithm.

The bot has navigation distances of 10cm multiples because
10cm is the wavelength of the Xbee signal. This will ensure
we are comparing signal strengths between peaks, troughs or
signal strength in the same phase.

3) Right Turn Refinement: Since the Zumy robot will
often travel in all four directions in a navigation routine, it
is beneficial for the robot to keep track of the RSSI values
from all locations of four different directions. Spefically, if the
RSSI values were both less than that of the original location
and that of the location by the previous turn, the Zumy robot
will turn rightwards instead of leftwards (which is the default
setting). This design choice was based on the speculation that
an inaccurate RSSI measurement has occured. Adopting this
design helped reduce the execution time of the algorithm.

B. Gradient Descend Algorithm

It is similar to Gradient ascend algorithm, except it seraches
for a smaller RSSI value instead a greater RSSI value. The
ending RSSI threshold is -50dB.

1) Multiple RSSI measurement: The main difference be-
tween Gradient descend algorithm and Gradient ascend al-
gorithm is that the descending robot has to listen to multiple
transimitter bots, and navigate to a loaction far away from all
transimitters. Currently, the walker bot measures RSSI values
from all transimitter robots to obtain the average RSSI value,
and compares this value with the end RSSI threshold value.

C. Swarm Algorithm

The swarm algorithm is a combination of Gradient ascend
algorithm and Gradient descend algorithm. We initialize a bot
chain, where all bots except Zumy1 is in sentry mode, Zumy1
is in gradient ascend mode. Zumy1 executes Gradient ascend
algorithm to navigate to Zumy2 and Zumy3, until it reaches
the end of the chain, and it switches into Sentry mode. After
that, the bot at the beginning of the chain, Zumy?2, exits Sentry
mode, and navigates to the end of the chain also via Gradient
ascend algorithm. Eventually, when all bots reach the end of
the chain, they execute Gradient descend algorithm one by
one to expand the network coverage area.

EECS149/249 FINAL REPORT

Received
Message
History

Algorithm

Input: signal, buffer
output: transmit_state

Command
Buffer

input: transmit_state, receiveMsg
output: receive_state

ack / wait_stop_ack

receive = CMD / ack
AWAITING

ROUTINE [T ls70p_Ack

Teceive = STOP_ACK / recover
signal = I
wait_cmd_ach receive = REG/ reg
AWAITING AWAITING
|ACK_FOR_CMD| RECOVERY

receive = ACK/ send_stop_ack

buffer_pop /

vai e

Fig. 6. Synchronous Reactive model for Communication Thread.

Receiver Thread

D. State Machine Analysis

The hierarchical state machine for overall algorithm is a
asynchronous composition which has history transition, but
not pre-emptive transition. Asynchronous because the walker
and sentry bot are independent actors. The input and output
signals of each machines are command packets traffic between
the walker and sentry bot. Each robot keeps track of its state in
the swarm algorithm with a variable, refined states correspond
to variables in the robot’s memory.

However, the signals are neither instanteneous nor simul-
taneous between the 2 major states. This model captures the
interaction of one walker bot with the entire bot chain, but does
not capture the individual transition from walker to sentry bot.

V. COMMUNICATION PROTOCOL

The coordination among the robots relies heavily upon
network communication. Hence, we need to define a set of
signals to order the robots to enter gradient ascent or descent
at appropriate times in order to achieve the envisioned swarm
movement. Since the control of swarm robots is decentralized
in nature, a concurrent network communication protocol was
implemented and discussed in this section.

A. Concurrency

Each bot always runs both the transmission and receiving
thread, regardless of the state it is in. When the bot is not
transmitting, transmitter thread is still on, but do not write
to Xbee and sleep for a short time when it is executed. The
receiver thread is always running and updates the received
message buffer. Below is a synchronous state machine that
models our thread organization.

The algorithm feeds next commands into the command
buffer, which is popped into the transmitter once the pre-
vious command acknowledgement cycle is completed. Each
command is stopped only when the entire command ac-
knowledgement cycle is completed. In both the transmitter
and receiver state machine, there are 2 entirely independent
cycles, the send-ack and send-command cycle in transmitter
& await-ack-for-command & await-stop-ack cycle in receiver.
Each of the cycle can only be pushed back to routine when
specific received message is read, this pre-empts any bots
from being simultaneously involved in more than 1 command-
acknowledgement cycle. This ensures the atomicity and se-
quence of commands sent is preserved.

1) State Machine Analysis: A Synchronous Reactive
model dictates that all signals are absent at all times except
at global tick of the clock. Input and output of each machine
corresponds to shared variables within the code, hence it is
simultaneously available to both machines.

However, messages and commands popped from buffers
might be stale, thus some inputs might not be instanteneous
at tick of global clock.

This is a synchronous composition of interleaving semantics
type 3 with history transitions. The processor chooses either
the transmitter or receiver will react.

B. Commands

We have defined a series commands for the Zumy bots for
collaboration to achieve our algorithm’s goal. Below are some
of commands Zumy bots recognizes:

1) ASCEND_START - Start gradient ascend

2) DESCEND_START - Start gradient descend

3) TRANSMIT START - Start transmission of bot

4) ARRIVAL - Ascending bot signals arrival to sentry bot

5) ACK - Acknowledges receipt of above commands

6) STOP_ACK - Stops acknowledgement packet
Acknowledgement packets acknowledges specific commands
and will only be processed by an intended recipient.

VI. ANALYSIS

In this section, we analyze the performance of the algo-
rithms and communication protocol. We determine the bot-
tleneck of each algorithm by identifying the critical path in
graphs of tasks of various algorithms.

A. Gradient Ascend Performance

On average, gradient ascend of a distance of 1m takes from
around 3 to 15 minutes.

The greatest obstacle is a large area of constructive inter-
ference that is far from the transmitter, wrongly identified as
a better location. The bot eventually gets out of a constructive
node due to the navigation distance increase, but this usually
causes long delay since the constructive interference might
span a large area. Performance between a walk that fell into
a constructive node versus another which did not is directly
correlated with the area of the constructive interference. De-
structive nodes can usually be identified by high standard
deviation, our algorithm avoids trusting such readings.

Noise in RSSI measurement in distances where RSSI signals
do not relate linearly with relative distance also causes delay.
The random fluctuation in RSSI often lead the walker bot into
random location. Different Xbee transmiter and receiver pairs
also have different correlation between relative distances and
RSSI. Distances that correspond to the same RSSI can vary
from Scm to 10cm from pair to pair.

B. Gradient Descend Performance

Most time is spent on collecting data from specific Xbees
for gradient descend. Especially from a marginally connecting
bot since the receiving thread is often loaded by packets from

EECS149/249 FINAL REPORT

Xbees with better connection. Simultaneous gradient descend
often results in collision, An IR sensor would be able to
prevent collision, but our current hardware architecture lack
the component.

C. Communication delay

To ensure the command-acknowledgement cycle is atomic,
all commands from another bot is ignored until the transmitter
is free from the previous cycle. Our implementation parses
the received message buffer for messages that will allow for
transition out of a state. Time wasted on searching for the
parsing process increases as size of buffer and amount of
irrelevant messages increases.

VII. TRIALS & FUTURE WORK

Here is the list of things we tried but either did not have
time to complete, or did not work.

o Communicating across different channel with different
frequency.
o Multi-stop gradient ascend with expectimax tree

VIII. CONCLUSION

Throughout the project, we have utilized concepts and tech-
niques taught in lectures and lab to design, model and analyze
the task at hand scientifically. We have modelled our system
with hical and Synchronous Reactive state machine, and found
the abstraction to be extremely useful for conceptualization
and debugging. And designed a concurrent communication
model. We now understood the significance and gained experi-
ence dealing with concurrency and multitasking issues covered
in class. Finally, we assessed the performance our system
by analyzing the the observations and trials. The systematic
approach made the design and analysis scalable

The biggest obstacle was to determine the validity in the
RSSI values we collect in our experiments, due to various
concurrency and buffer issues. We re-executed many experi-
ments for multiple times for accurate data sets.

All in all, it has truly been a wonderful learning journey.
We have gained invaluable experience with embedded systems
completing the project.

ACKNOWLEDGMENT

The team would like to thank the Biomimetic Millisystems
Lab for providing the hardware components. We offer our sin-
cere gratitute to Matt Weber for mentoring over the course of
this project and providing many insightful advices. We would
also like to thank Professor Edward Lee for inspiring us to look
into the possibilities of analyzing and using RSSI as distance
indicator. Special thanks also goes to Ben Zhang for guiding
us through as we stumple upon signal collecting. Lastly, we
would also like to thank Austin Buchan for providing the
initial draft of the idea.

(1]
(2]

(3]
(4]

REFERENCES

Zumo robot kit. [Online]. Available: http://www.pololu.com/product/2509
G. R. Paul Malmsten and Brian. (2012) Xbee python library. [Online].
Available: https://github.com/blalor/python-xbee
A. Chen. (2014) Zumy library.
https://github.com/andrewjchen/zumy

A. Huang, E. Olson, and D. Moore, “LCM: Lightweight communications
and marshalling,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), October 2010.

[Online]. Available:

