QuadQWOPter

Ken Katagiri, Jeffrey Lu, Lawrence Ng
EE 149 — Fall 2014— December 19, 2014

Abstract

The goal of this project was to create a user-
controllable quadcopter that would receive user ref-
erence variables for x, y, and z velocities via radio
and respond by moving in the appropriate direction.
The project incorporated two major concepts intro-
duced in EE149: Modeling of physical dynamics and
simulation strategies. To find reasonable values for
quadcopter motor outputs, a simulation was crucial
— with no simulation, the quadcopter would most
likely fail to perform any kind of aerodynamic feet. In
order to simulate the physical dynamics of the quad-
copter, though, a mathematical model of the physi-
cal dynamics was needed. Once equations describing
the state of the quadcopter over time was obtained,
Matlab tools such as Simulink was applied to obtain
theoretical evolution of the state of the quadcopter.

Physical Dynamics and Model

In this project, we implemented the quadcopter con-
figured to fly in the x-orientation, following the right-
hand rule 3-dimensional coordinate system. Much of
the mathematical derivations and physical assump-
tions used in this project were derived in parallel to
Andrew Gibiansky’s paper, ”Quadcopter Dynamics,
Simulation, and Control”; differences in quadcopter
configuration and coordinate systems were incorpo-
rated into the original calculations performed in that
paper. Such differences manifested itself in the equa-
tions of quadcopter torque, as well as the rotation
matrix utilized to transform the derived quadcopter
dynamics from the quadcopter body frame to the in-
ertial frame. The final rederived equations success-
fully described the 9 state variables of interest as dif-
ferential equations. The equations that describe the
evolution of linear acceleration, angular velocity, and
the time derivative of roll, pitch, and yaw follow:

. kg k

i=—25 4 — (8485 + CyS5ecy) (Wi + ws + w3 +wi)
m m

o ke, K 2., .2, 2 2

i=- y+ m(CySe + SypSece) (Wi + w5 + w3 + wi)

. ke, k
Fm g i —(epp) (W +wh Wi +w))

Y, = Iy, — Lowyw, + Lk(—w? — w3 4+ w3 + w?)
Ipn

Wy = 1. — Lypwaw, + Lk(_w% + w% + w% — LUZ)
Iyy

W, = Low — Iyywewy + b[(W% — w3 +wi —wj)
zz

@ = Wy + Setowy + Cotow,
é = CpWy — SpWz

. S C
1/) = ﬁwy"_ ﬁwz

Co Co

In the above equations, k, k4, and b are physical
constants that represent forces that act upon the
quadcopter. We were able to measure the k-value
by measuring the minimum voltage required to have
the quadcopter take off from an on-ground position.
The drag coefficient, kd, was estimated by approxi-
mating the quadcopter as two overlapping rectangles.
Finally, a rough estimate of b was obtained by exper-
imentally measuring the change in yaw while forcing
the quadcopter into a horizontal orientation. Other
constants such as L (length from center of quadcopter
to any of its propellers) and m (mass of quadcopter)
were easily measured through conventional measur-
ing methods.

Materials

We arbitrarily decided that we would like a medium
sized quadcopter. We decided upon the HobbyKing
X525 V3 glass fiber frame for 2 main reasons. The
first was that HobbyKing had many of the required
components in stock and reasonable shipping time.

EE 149-Fall 2014

QuadQWOPter

Katagiri, Lu, Ng

The second was the cushion the shock absorbing land-
ing legs provided. As we were novice pilots, this cush-
ion prevented some damage to the frame from rough
landings. We predicted a loaded weight of roughly 1.5
kg. Since the recommended upper voltage limit for
the Arduino is 12V, we required a 3 cell 11.1V LiPo
battery, an industry standard. 4 1200kv brushless
outriders combined with 8 inch propellers at 11.1V
was sufficient to not only provide enough thrust to
hover, but also left us enough available thrust to as-
cend. Since the maximum current draw of each mo-
tor was listed at 17A, we opted to use 25A ESC to
mitigate the likelihood of heat issues. Estimating a
current draw of up to 10A per motor, we chose to
purchase a 4000 mAh battery for a minimum flight
time of 5 minutes.

Controller

Based on the mathematical model of the quadcopters
physical dynamics, Gibiansky provides derivations
and equations for desired voltage outputs to obtain
a constant height through a simple unity feedback
mechanism while converging to a user-specified roll,
pitch, and yaw. Again, by altering these derivations
to suit our system, we were able to obtain appropriate
controller equations for our system, as shown below:

Imed,
Lk
_ Iyyeo
b= Lk
Izz€¢
T
_ (throttle 4+ 1)mg
o k‘CQC¢
—a—)
motorl_voltage = aé%
— —)
motor2_voltage = W%
)
motor3_voltage = M%
-8B -)
motord_voltage = ozﬁ#

Here, ey, eq, ey are the error in system angles passed
through a standard PID controller. The proportional
gain, derivative gain, and integral gain for each an-
gle is the parameters fine-tuned during simulation to
allow for flight without instability.

Simulation

By modeling the mathematical equations of the plant
and controller, a unity feedback Simulink model was
created. Using this model, different values of pro-
portional, derivative, and integral gains in each angle
were simulated. Each iteration of simulation was im-
proved upon by following guidelines given in Oscar
Liangs article, Quadcopter PID Explained, and Tun-
ing. After a number of iterations, a good combina-
tion of gain values was obtained, resulting in a the-
oretically stable, self-correcting quadcopter. These
gains, as well as plots of the variables over simulated
time, are shown below in response to an initial pitch
and roll offset of 20 degrees and 30 degrees, respec-
tively, and initial roll and pitch angular velocities of
70 degrees per second, and 60 degrees per second, re-
spectively. These initial conditions were a rough up-
per bound on the angular parameters the quadcopter
would be operating under, and correcting.

[5]

% TS
s 0 o
Tg E [e ———
o
2 05
a 3 10 3 10

(]

Welocity (m/s)
o -

ra

Angular Velocity (g's)
[
T °

f% i 5 10

% 10 = &

£ 2

E’ 3 ‘g 0

= o

E i} E 1 T P

[T}

g 55 : g W 5 10
ES

Time (s} e Time (s}

Figure 1: State Variable Values from Simulation

A link to the video representing a similar simulation
can be found in the appendix.

EE 149-Fall 2014

QuadQWOPter

Katagiri, Lu, Ng

Implementation

For implementation of our quadcopter, we pro-
grammed the Arduino board with ease of testing and
modification during the deployment phase as our pri-
ority. All state variables were made to global, so that
we could peek into our system state, and not need
to rely just on qualitative data. Also since we may
like to test individual aspects of our quadcopter sep-
arately, we also wanted to be able to selectively turn
on and off ISRs, as well as tune the frequencies of
each ISR, and even add other ISRs with ease.

-]

! #/’;State Variablesr
Comm.
Protocol
Sensor
Data

Motor
Qutput]

Sensor
ADC

A\

Figure 2: Overview of Quadcopter System

Timing

Since the sensors and controllers needed to be up-
dated at a fixed periodic rate in order to be useful, we
needed to use a timed interrupt to coordinate timing.
Using the Timerl Arduino library, we set up a timed
interrupt to occur every 4 milliseconds, which would
then call an ISR that would take measure and in-
terpret sensor readings, and calculate motor outputs
using the derived control model. Our servo motors
required a PPM signal, whose width also had to be
timed, so we used the ServoTimer2 Arduino library
to handle it.

As a safety net to prevent erroneous behavior from
overlapping interrupt service routines, our timed ISR
contained a static variable that would be set to true
whenever the processor entered the service routine,
and set back to false when it exited. This flag acted
as lock, which would prevent further invocations of
the same interrupt while it is being serviced, except
rather than waiting for the previous ISR to complete,
it would opt to drop the most recent interrupt com-
pletely. However, since even this behavior is subopti-
mal, we also made sure to keep track of the mean and
maximum CPU utilization rates of the ISR, so that

during testing, we could see how much of the CPU
time the ISR was taking, and adjust the interrupt
frequency if necessary.

Sensor Measurements

To ensure accurate sensor readings, we needed to
calibrate our sensors. We opted to calibrate by
hand, rather than have the board calibrate sensors
on startup, since sensor calibrations will not lose sig-
nificant accuracy over time, and since we would like to
be able to start our quadcopter in any arbitrary con-
figuration, rather than necessitating our quadcopter
to start with zero-degree angle offsets for pitch and
yaw.

We used an affine sensor model to calibrate our sen-
sors, where the reading is determined by the sensi-
tivity and offset of the sensor. We found the offset
experimentally, by taking the average sensor reading
when each sensor value should be 0. For sensitiv-
ity, we were able to determine this experimentally as
well, since the normal force exerted on the accelerom-
eter when it is stationary is know to be 9.81 m/s’.
However, we did not have tools to measure the gyro
sensitivity very accurately, so we used the value as
reported by the IMU3000 data sheet, which was 131
bits per deg/s.

We also needed to reduce noise, so we implemented an
exponential lowpass filter. The exponential lowpass
filter worked by taking a new sensor measurement,
s¢ and taking a weighted sum with the old filtered
sensor value, x;_; with some weight 0 < a < 1, such
that:

2 = (1 — @)zi_1 + asy

Higher values of alpha would cause more recent mea-
surements to be weighed more heavily, and thus cause
the filtered sensor value to converge to changes in
sensor readings much more quickly, while lower val-
ues will keep sensor readings stable, and cause it to
be more resilient to noise. The exponential lowpass
filter proved to be sufficient when we were filtering
the accelerometer measurements, as the amount of
noise even when the motors were on were small, and
the time that the accelerometer took to converge to
sudden changes in acceleration was only a fraction of
a second.

However for the gyroscope, we could not find an «
value that would allow the angular velocity readings
to both be resilient to noise and converge quickly
to changes in sensor readings while being resilient

EE 149-Fall 2014

QuadQWOPter

Katagiri, Lu, Ng

enough to noise. We decided then to use a Kalman fil-
ter as implemented by Kristian Lauszus, which would
try to predict what the next state will be, take mea-
surements and compare them to the predicted state
to determine its accuracy, and then adjust values ac-
cordingly.

Communication

For the user to control the quadcopter, they would
need to be able to communicate four input variables:
desired velocities in the z, y, and z directions, and
yaw. However, we could not simply send all the values
continuously in a sequence, since in a byte stream, it
would be near impossible to determine where a com-
mand begins and where it ends. Also, we would like
to ensure that the data has not been corrupted in
transition, so we would like to be able to verify that
what we received is correct. To do this, we decided
to create an abstraction for packets which would en-
capsulate the data containing the inputs to our quad-
copter. There would be a header, which would indi-
cate where the packet began and end, and a checksum
to validate the packet received.

We first established that the user could only send val-
ues from a range of 0 to 100. This meant that the
byte for each input would always have its most sig-
nificant bit set to 0. Using this property, we defined
a header as a byte whose most significant byte (bit
0) would be set to 1. Bit 1 would be a flag for the
emergency kill switch, while bits 2-3 would be flags
reserved for other special options that we have not
decided to implement, and bits 4-7 would be used to
indicate the length of the packet. So for packet with
4 inputs, our header byte would look like 0x86. If
we wanted to send a kill signal, we could just send a
two-byte packet with the header 0xc2, which would
indicate that we want to kill all motor outputs im-
mediately.

To ensure a degree of data integrity, we also include
a simple checksum in the packet as well. The check-
sum is simply calculated by taking the exclusive or
of all other bytes in the packet, using an initial value
of 0x80. The sequence of bytes is then sent to the
quadcopter, and the onboard processor checks that
the XOR of all the bytes in the packet are equals
0x80, or else it simply drops the packet and attempts
to find the next header. By using an initial value of
0x80, this would retain the property that our header
is the only byte that has its most significant bit set to
1, and so would allow us to easily identify which byte

is the header. So if we wanted to send a packet com-
manding the quadcopter to hover (the inputs would
be 50, 50, 50, 50), then our packet with checksum
would be: 0x86 32 32 32 32 06.

Deployment and Testing

For our earlier attempts to test our quadcopter, we
wanted to make sure we could keep the quadcopter
under control. We suspended the quadcopter with
cord from the top, and also anchored it down from
the bottom, effectively limiting the change in position
the quadcopter could take. Plotting the accelerome-
ter and gyro data along with the derived values for
angular position, we were able to verify that quad-
copter was indeed attempting to correct itself in the
direction we wanted. However, our harness restrained
the quadcopter too much. The quadcopter bounced
off the restraints and was thrown into instability in
our tests.

We then attempted to test without the harness in
a room with more space. We were able to see that
the quadcopter maintained orientation and flew in
straight lines, but did not hover exactly as we ex-
pected, due to a steady-state error in angle. After
tuning our parameters, we were able to get it to hover
somewhat more reasonably, although not perfectly.

Next Steps

As of this writing, we have an Xbox controller nomi-
nally setup to control the quadcopter. However, the
range of inputs given by the gamepad still needs to
be tuned to give finer control, since the large ranges
that the user can currently input to the quadcopter
too move too quickly in the given direction.

A simple process to improve performance and stabil-
ity would be to properly balance the propellers. This
drastically reduces the vibrations and consequently
reduces the noise in our sensor readings and also
makes flight smoother. Furthermore, we have not
yet tested our quadcopter outdoors. It still needs to
be tuned to resist disturbances such as wind.

Once our quadcopter is capable of stable flight, we
can add a payload to it. We still have plenty of avail-
able thrust to work with and carry cargo. We can also
add safety features such as self-landing upon loss of
user input via radio, and if we’re feeling particularly
ambitious, basic collision avoidance using IR sensors.

EE 149-Fall 2014 QuadQWOPter Katagiri, Lu, Ng

Appendix

Quadcopter Simulation with pure PD control: https://www.youtube.com/watch?v=GyPl5mLGbUY
Project Video: http://youtu.be/sWGtMhMRC5k

References

Gibiansky, Andrew. ”Quadcopter Dynamics, Simulation, and Control.” 23 Nov. 2012. Web. 19 Dec. 2014.
<http://andrew.gibiansky.com/downloads/pdf/Quadcopter Dynamics, Simulation, and Control.pdf>.

Lauszus, Kristian. " TKJElectronics/KalmanFilter.” 10 Sept. 2012. Web. 19 Dec. 2014.
<https://github.com/TKJElectronics/KalmanFilter>.

Liang, Oscar. ”Quadcopter PID Explained and Tuning.” OscarLiang.net. 13 Oct. 2013. Web. 19 Dec.
2014. <http://blog.oscarliang.net/quadcopter-pid-explained-tuning>.

Margolis, Michael. ”"nabontra/ServoTimer2.” 2008. Web. 19 Dec. 2014.
<https://github.com/nabontra/ServoTimer2>.

Stoffregen, Paul. ”PaulStoffregen/TimerOne.” 4 Jun. 2014. Web. 19 Dec. 2014.
<https://github.com/PaulStoffregen / TimerOne>>.

https://www.youtube.com/watch?v=GyPl5mLGbUY
http://youtu.be/sWGtMhMRC5k
http://andrew.gibiansky.com/downloads/pdf/Quadcopter Dynamics, Simulation, and Control.pdf
https://github.com/TKJElectronics/KalmanFilter
http://blog.oscarliang.net/quadcopter-pid-explained-tuning
https://github.com/nabontra/ServoTimer2
https://github.com/PaulStoffregen/TimerOne

	Abstract
	Physical Dynamics and Model
	Materials
	Controller
	Simulation
	Implementation
	Timing
	Sensor Measurements
	Communication

	Deployment and Testing
	Next Steps
	Appendix
	References

