
EE149/249 COURSE PROJECT REPORT 1

Real-time LED Music Visualizer
Jisoo Kim, Jiewen Sun, Pierre Karashchuk, Baihong Jin

Abstract—FlexPRET [9] is a processor platform for mixed-
criticality systems, which can provide accurate timing control
guarantees at the architecture level. In this course project, we
utilize FlexPRET as a Real-time Unit (RTU) and build a real-
time LED music visualizer that can drive seven LED strips and
output audio signal synchronously.

I. INTRODUCTION

An emerging research trend in real-time embedded systems
is executing multiple software tasks with mixed criticality on
a single hardware platform concurrently, while still ensuring
the timing guarantees. FlexPRET [9] is a processor platform
for mixed-criticality systems.

In this project, we aim to build a real-time LED music
visualizer, which requires precise timing control on multiple
tasks. Due to the lack of timing guarantees provided by
conventional processors, achieving this on a conventional
processor is not easy, which may involve using complicated
hardware mechanisms such as timed interrupts and timing
libraries written by professional people. Different from con-
ventional processors, FlexPRET is built to enable accurate
and precise timing control at the architecture level. Moreover,
the compiler for FlexPRET architecture provides user-friendly
interfaces, so that programmers can control timing in an easy
and explicit way. As a result, we chose FlexPRET as the
platform to implement a real-time led music visualizer.

II. PROBLEM DEFINITION

The desired functions of our system include generating
sound by toggling a GPIO pin or driving a MIDI, and driving
7 LED strips that represent different notes. In particular, When
the music is playing, the corresponding LED strip will be
glowing with the music. They need to be sychronized very
well.

III. BACKGROUND

A. myRIO

We choose myRIO-1950 [4] as our hardware platform to
implement the music visualizer. The National Instruments
myRIO-1950 is an embedded microcontroller with multipro-
cessor architecture. The reconfigurable processor on myRIO
is the Xilinx Artix-7 field-programmable gate array (FPGA).

We want to express our sincere appreciation towards our Professors Edward
Lee and Alberto Sangiovanni-Vincentelli and our mentor Michael Zimmer for
their valuable guidance in this project.

B. FlexPRET

FlexPRET is a 32-bit, 5-stage, fine-grained multithreaded
processor with software-controlled, flexible thread scheduling,
designed for mixed-criticality systems. [9] It uses a classical
RISC 5-stage pipeline. Zimmer et al extended the RISC-V ISA
to support timing instructions that enables more user-friendly
timing control instructions in high-level languages such as C.

Under fine-grained multithreading, the processor switches
between different hardware threads on each clock cycle.
In single-threaded processors, a context switch is needed
to switch between different tasks while maintaining spatial
isolation. To achieve fine-grained multithreading, FlexPRET
was built with extra hardware resources to allow each thread
to maintain its own state. Using fine-grained multithreading
with flexible scheduling and timing instructions, it allows each
task to make a trade-off between hardware-based isolation and
efficient processor utilization.

Several Berkeley researchers have developed a prototype
RTU based on the open-source Berkeley RISC-V architecture
and realized it as a soft core [8] on the myRIO platform. The
processor is written in Chisel, which generates both Verilog
code and C++ simulator for various configurations.

Figure 1 is a piece of example code showing the software-
controlled thread scheduling. Under the hard active scheduling
configuration, three threads are executed in a fixed order. The
interval between the execution of consecutive instructions in
the same thread is three clock cycles.

Fig. 1. An example code showing the software-comtrolled thread scheduling



EE149/249 COURSE PROJECT REPORT 2

C. NeoPixels

NeoPixel [1] is Adafruits brand for individually addressable
RGB color strips. It is based on the WS2812 driver [6], using
a single-wire control protocol. The signal is self-clocked, in
which high and low bits are differentiated using different duty
cycles of a square wave at a fixed frequency of 880Hz.

Fig. 2. The timing specification of NeoPixels

D. MIDI

Musical Instrument Digital Interface (MIDI) is a technical
standard that describes a protocol and a digital interface, which
allows a wide variety of electronic musical instruments and
devices to connect and communicate with one another. [3]

IV. MODELING AND ANALYSIS

A. Timing Analysis

Since the Flexpret architecture gives us strong guarantees
about timing and scheduling, we are able to probe the fea-
sibility of implementing the Neopixel driver under various
circumstances. In particular, we’re interested in how precisely
we can control the timing under different clock frequencies
and for different numbers of threads running concurrently.

To do this, we’ll analyze the delay_until instruction
from FlexPRET semantics [9]. This instruction delays the
execution of a thread for some amount of time. How precise
can we make this delay? That is, if we specify a delay, how
long will it really take until the next instruction is executed?

Suppose we have N threads and a clock period of P . The
answer lies in FlexPRET’s interleaving schedule and pipeline.
Once the delay has passed, the thread is scheduled again. It
will take between 1 and N cycles until the next instruction is
fetched, and 3 more cycles until it is executed (see Figure 3).

F D E M W

Delay 
Ends

1 to N cycles

3 cycles

Time until thread 
is scheduled

Fig. 3. Analysis of delay_until instruction

In total, the instruction will be executed between 4 and N+3
cycles after the delay ends. If we set the delay to be 4 cycles
shorter than we want, the interval becomes 0 to N −1 cycles.
If we want to further maximize the precision, we can set the
delay to be even shorter by b(N −1)/2c cycles. Now the next
instruction will execute between b(N − 1)/2c cycles before
the expected delay and d(N − 1)/2e cycles after, giving us a
final precision of d(N − 1)/2e cycles. In terms of time, this
is:

precision = P d(N − 1)/2e
.

Given our clock period of P = 10 ns and desired precision
of 150ns (to match Neopixel specification [6]), we could in
principle run up to 31 concurrent threads that all control LEDs!

In fact, we are only running 2 threads (one for sound, one
for LEDs). Under these conditions, we can control our output
up to a precision of 10ns, the clock period!

Certainly, the FlexPRET goes above and beyond in meeting
our requirements.

V. IMPLEMENTATION

A. Workflow
Figure 4 shows the workflow of our project. To be more

specific, we wrote our code in C, and compile it into .elf file
using the extended RISC-V compiler. Then we can do simula-
tion with the C++ simulator generated during the compilation.
After that, we use LabVIEW FPGA to deploy the FlexPRET
specification with our software code overlaid into the memory
part in the .bmm file onto the FPGA on the myRIO board. We
hook up the general output of FlexPRET to the Connector A
on myRIO, which is connected to the NeoPixel LEDs, speaker
or MIDI-to-USB cable.

Fig. 4. Work flow of the system

B. Hardware
Figure 5 shows the hardware of our system. myRIO and

speaker use external power source. Since the voltage output
of general-purpose DIO is 3.3V, we also use the 3.3V power
output on the board to power NeoPixel, which makes them
compatible. Our LED strips are designed to be in the length
of 16 LEDs, which is short, and 3.3V is enough to run it.



EE149/249 COURSE PROJECT REPORT 3

TABLE I
HARDWARE SPECIFICATION

Hardware Platform myRIO-1950(Xilinx Zynq Z-7010[7])
LED Strip Adafruit NeoPixel Digital RGB - 60 LEDs / 1m [1]

Speaker Altec Lansing ACS90 [2]

Fig. 5. Hardware of the system

C. Sound Driver

Our first approach to generating sound was to generate
square waves with different frequencies by toggling a GPIO
pin (GPIO 1), which was directly connected to speakers
(Figure 5). This was an intuitive and only possible approach
to produce sound directly from FlexPRET, since it was not
feasible to process the sound on FlexPRET to make it nicer
due to the lack of available memory and limited operations.
Figure 6 shows the waveform of the sample sound wave.

In order to produce a square wave with a certain frequency,
we used periodic_delay instruction from FlexPRET se-
mantics, which delays the execution of a thread for certain
period of time in nanoseconds. This instruction guarantees
precise timing, so we were able to generate a square wave
with a precise and consistent frequency.

Fig. 6. Square wave with different frequencies

The downside of this approach was that the quality of the
sound was not pleasing. To improve the quality of sound,
we decided to implement a MIDI driver on FlexPRET so the
sound signal can be transmitted to computer and synthesized.
We followed MIDI 1.0 specification. We had to modify the
sound generating part of our c program to send MIDI signal
bits to GPIO 1 instead of toggling it.

To play or stop a note, we need to send a sequence of 3
bytes: the first byte speficies note on/off and MIDI channel,
the second byte specifies the pitch, and the third byte speicifies
the velocity, which usually gets translated into volume. Each

byte is sent in the order of least significant bit first, and
concatenated with start and stop bit, which are always 0 and
1 respectively. All the bits must be sent with the fixed rate
of 31.25 kbit/s [3]. Since it requires a precise timing, we
used periodic_delay instruction to acheive the bitrate.
The last four bits of the first byte represents MIDI channel,
which ranges from 1 to 16. MIDI channel 10 is reserved for
only percussion instruments, so we chose to use channel 3 for
our purpose.

For our song Fight For California, there was no harmonics,
so we sequentially sent the set of 6 bytes for each note,
where the first three bytes were for playing the note and
the last three bytes were for stopping the note. We used
periodic_delay between the two sets in order to play
a note for a certain period of time.

Here is the example sequence of bytes in order to play note
D4 on MIDI channel 3: 0x93 (note on channel 3) 0x62 (pitch
D4) 0x3E (with velocity 62) 0x83 (note off) 0x62 0x3E.
The waveform of the first byte is in Figure 7.

Fig. 7. Wave form of 0x93 (0 1100 1001 1) including framing bits, in the
order of LSB

D. Pattern Generator

For our project, each song is represented as a sequence of
notes and their durations (in second). Using our Python script,
we convert the sequence into several arrays where each array
contains information for notes and their duration in different
format. These arrays are used in our main C program that
generates the sound and drives the LED strips. For square
wave generation, we used the arrays that represent each note
in terms of its period (in nanosecond) divided by two, and the
duration of each note in terms of number of cycles. For MIDI,
we used the arrays that represent each note with corresponding
byte representation and duration in terms of nanoseconds.

This method was employed because FlexPRET doesn’t
support multiplication and division yet, as well as floating
point. Therefore, precalculation of everything was needed
beforehand. The example format of a song pattern and the
output arrays are in Figure 8.

E. Neopixel Driver

Since FlexPRET is a research architecture, we had to
implement our own Neopixel library. The specification for
the LEDs suggests that we need to drive the GPIO pin with
150ns precision [6], though empirical tests found that we can
get away with 215ns of precision [5]. In order to show the
reliability of FlexPRET, we opted to meet the 150ns precision.

As the timing analysis suggests, we used the
delay_until instruction to meet the requirement.
We would set the gpio pin high, then delay for some time,



EE149/249 COURSE PROJECT REPORT 4

Fig. 8. Converting four notes to sequence, and then arrays

depending on the bit (0 has smaller delay). Then, we would
set the GPIO pin low, and delay again. Using the FlexPRET
simulator [8], we found that this approach gave us cycle
accurate timing with 1 thread as predicted, while being off
by a few cycles for 2 threads.

F. LED & Music Synchronization

With the LED drivers written, we moved on to generating
pleasing patterns on our small (7x16) LED matrix, synchro-
nized to the music.

In order to perform the synchronization, we simply had
the same delays between notes for LEDs and for the music.
The semantics of FlexPRET guaranteed that the LEDs and the
music would not become offset.

To test synchronization with the song, we first tried a simple
pattern: light one LED strip at a time, corresponding to the
note played.

We found that it indeed worked well when generating square
waves and toggling LEDs. They were perfectly synchronized.
However, when generating MIDI output, the synthesizer on the
computer had a small delay, so we had to artifically introduce
a startup delay to our LEDs.

G. LED Patterns

Once we got the basic patterns down, we moved on to
generate more complex patterns, which would change between
notes. In order to prototype these patterns more efficiently,
we created a basic LED simulator using python and pygame
(see Figure 9). Using this simulator, we found that identifying
notes with columns instead of rows/strips gave better results. In
addition, fading these columns out, instead of simply turning
them off looked cooler. So we implemented these changes in
the real architecture and got our final result.

VI. SUMMARY

In this project, we used FlexPRET, an academic processor
architecture, as a real-time unit to control NeoPixel LEDs
and output square-wave/MIDI audio signals. FlexPRET, unlike
conventional processors, utilizes the inherent timing accuracy
from the hardware (cycles) and provides the users an easy-
to-use interface for accurate timing control. Since FlexPRET
offers reliable real-time guarantees, we analyzed its perfor-
mance limit based on the timing constraints. The results prove
that FlexPRET is capable of perform accurate concurrent

Fig. 9. LED Simulator built in pygame to test out patterns

timing control over multiple threads in an efficient way, and
thus is very appropriate for timing-critical embedded system
applications.

REFERENCES

[1] Adafruit. Adafruit NeoPixel Uberguide.
[2] Altec Lansing. Altec Lansing Computer Speaker System ACS-90.
[3] MIDI Manufacturers Association et al. The complete MIDI 1.0 detailed

specification: incorporating all recommended practices. MIDI Manufac-
turers Association, 1996.

[4] National Instruments, Austin, Texas. USER GUIDE AND SPECIFICA-
TIONS for NI myRIO-1950.

[5] Tim. Light ws2812 library v2.0 - part i: Understanding
the WS2812. https://cpldcpu.wordpress.com/2014/01/14/light
ws2812-library-v2-0-part-i-understanding-the-ws2812/.

[6] Worldsemi. WS2812 Datasheet.
[7] Xilinx. Zynq-7000 All Programmable SoC Overview.
[8] Michael Zimmer. Flexpret. https://github.com/pretis/flexpret, 2014.
[9] Michael Zimmer, David Broman, Christopher Shaver, and Edward A Lee.

Flexpret: A processor platform for mixed-criticality systems. Technical
report, DTIC Document, 2013.




