
SHaZam the Magic Lamp:
IR-Based Gaze Tracking and Light Direction

Chaim Halbert, Dexter Scobee, and Edward Zhao
EE149A/EE249A Project Final Report

Fig. 1: SHaZam ConOps. This diagram represents the intercon-
nections between components for the SHaZam system

I. PROJECT VISION

The goal of this project was to design a lamp that will redirect
its light to follow a user’s gaze. The magic lamp will consist of a
flashlight attached to a two-axis motor assembly, to be directed by
an embedded microcontroller. Additionally, the lamp will utilize
a Wiimote to track IR LEDs affixed to a specially designed hat.
The Wiimote will communicate relative positioning data to the
microcontroller via Bluetooth, which will in turn direct the motors
to aim the flashlight. The controller will behave according to a
state-machine that describes both automatic and manual modes of
behvior. Figure 1 shows the logical connections between system
components and how they are intended to interact, and Figure 4
depicts the governing state machines.

II. HARDWARE

The hardware consists of a gimbal-mounted flashlight con-
nected to a system controller, in turn connected wirelessly to a
Wiimote, which tracks sensor bars mounted on the user’s hat.

The gimbal is a pair of Dynamixel RX-24F smart servos, which
are daisy-chained and connected to the system controller via
RS-485 serial link. To convert the RS-485 to 3.3V serial UART,
we used an SP3485 breakout board.

The system controller is a Raspberry Pi running Raspbian
Linux in “headless” configuration, without a monitor, keyboard
or mouse. These can be added for development and debugging,
or an ethernet connection can be used to log in remotely via SSH.

The system controller links to the Wiimote via a USB Bluetooth
dongle. (Somehow, we had issues with newer Wiimotes that
included MotionPlus, so we used an older Wiimote without it.)
The WiiBrew web site 1 was a valuable resource in understanding
the Wiimote hardware and in interfacing the Wiimote with the
system controller.

1http://wiibrew.org/wiki/Wiimote

The hat has two Wii “sensor bars” mounted to it. These bars
are not sensors at all, but actually contain a simple collection of
IR LEDs at either end of each. The specially-designed camera
in the Wiimote picks up and tracks these four points of invisible
light. For more information about the sensor bars’ asymmetrical
configuration, see section IV.

Design changes

Although the overall structure and linkages of our system
diagram have not changed since the beginning of our project,
virtually every block was modified by the end of development.

1) Gimbal: Our original design called for traditional servo
motors to drive the gimbal’s motion, but we decided to change to
advanced, serially-controlled servos. These Dynamixel RX-24F
motors (see Figure 2) provided several advantages, the primary
one being ease of control.

Unlike traditional servo motors which are commanded to set
their position using PWM, our smart servos could be commanded
via RS-485 serial link. This provides more timing flexibility
in our control logic, since this makes PWM interrupt routines
unnecessary. The smart servos also allowed us to set the speed
of the movements over the serial link, offloading logic from our
main control loop to the motors.

Also, the new servos were daisy-chainable, an impossibility
with PWM. This allowed us to use a single serial output, as
opposed to multiple, independent PWM outputs, each with their
own interrupt routines. This resulted in a subtantial time savings
in development, and greater reliability.

A disadvantage was that RS-485 is quite different from serial
UART, in that it uses 200 mV differential signaling over two wires
and is half-duplex, whereas our TTL UART operates at 3.3V and
is full-duplex. We used a breakout board for the SP3485, which
accomplishes both level conversion and protocol translation, with
the aid of an RTS signal from our system controller’s GPIO.

2) Bluetooth: Originally, we planned to use a BlueSMiRF
Gold to connect to the Wiimote. However, the Gold only connects
via serial data endpoints, while the Wiimote requires an HID
interface. So, the BlueSMiRF Gold did not work.

To resolve this problem, we purchased a BlueSMiRF HID,
which has the same hardware as the BlueSMiRF Gold, but has
different factory-flashed firmware for HID capabilities. This also
did not work, because the BlueSMiRF HID was designed to
operate as an HID slave device, such as a mouse, keyboard or
joystick; it could not operate as an HID host, to control such HID
devices.

In the end, we used a USB-Bluetooth dongle.
3) System controller: Although we originally intended to use

the ARM mbed FRDM-KL25Z Freedom board, we decided to
change platforms to the Raspberry Pi model B.

Fig. 2: SHaZam External Hardware. On the left, the main console
with a protruding Wiimote camera and a Dynamixel 2-axis motor
assembly with an attached flashlight. On the right, the head-
mounted IR LED assembly for user wear.

We did not use the Pi initially because the lab already provided
each of our group members with a free, personal ARM mbed
processor. This allowed us to work independently, parallelizing
development. In comparison, the Pi cost $35. Also, PWM control
requires Linux kernel programming on the Pi, or a separate
daughterboard with its own microprocessor, such as the Arduino-
compatible Pi Alamode (another $35). We deemed this too
complex and expensive.

However, circumstances changed during development. By
switching to the serial servos, we eliminated the need for kernel
programming or a daughterboard. Just like with the ARM mbed,
we could now control all the hardware with a single system
controller. Also, when we exchanged the BlueSMiRF for the
Bluetooth dongle, the easily-installed support for the dongle in
Linux gave the Pi a clear advantage over the ARM mbed, which
in contrast required compiling and integrating C++ code. The Pi
was simpler.

The Pi also offered new capabilities not available on ARM
mbed. With the Pi, we could change languages from C++ to
Python, and we could develop and test directly on the Pi itself.
This eliminated the need for compilation and flashing every time
we made a change. It also gave us an interactive Python shell to
test out snippets of code prior to integration.

Next was the ethernet connection on the Pi. Connected to a
LAN, multiple members could work simultaneously on the Pi
via SSH. Also, with an internet connection, we could use package
managers to quickly install and test pre-built third-party modules
for new Linux and Python functionality. The internet also gave us
tighter integration with GitHub for version tracking and merging
our code modifications. The confidence that we could quickly
revert our changes allowed rapid progress even as the deadline
approached.

III. SOFTWARE

On the Raspberry Pi platform, we opted to utilize Python as
our language of choice. The reason for that is twofold; the first is
that there is an extensive library called CWiiD2, which provided

2CWiiD was developed by Donnie Smith of Georgia Tech -
https://github.com/abstrakraft/cwiid

Fig. 3: SHaZam Internal Hardware. Clockwise, from top: Wi-
imote, Sparkfun RS485 breakout board, Raspberry Pi with at-
tached Bluetooth dongle, USB power module for the Raspberry
Pi, Battery assembly (8 AA) for powering motors.

a robust API to interface with the Wiimote. The second reason
was that, once we had decided to use the Pi and its full Linux
capability (see section II), we wanted to use a language with
which we had more experience coding and debugging, cutting
down development time by significant margins.

In the actual code, the main logic resides in statechart.py. The
state machine logic, connection to the Wiimote via CWiiD, and
sample logic all reside in this file. Essentially, we run a while loop,
sampling every 0.2 seconds for IR position data. Based on this
data, we used the modeling algorithms (described in section IV) to
find the appropriate pitch and yaw angle, then move the motors to
that angle. We had to introduce a small amount of asynchronous
behavior in order to receive the latest input data from the Wiimote.
This is because periodic polling with get mesg() yields only the
oldest undelivered data, which is not sufficient for our purposes.
In our solution, CWiiD is set to continuously receive IR camera
and button status data. Every time CWiiD receives a new message,
it invokes a callback which updates variables with our input data
and updates our FSM state. For instance, if we detect button A
being pressed, we immediately update our state to go into Manual
Mode. This was difficult with purely synchronous updating, since
the output of get mesg() was almost always out-of-date.

We import a file in statechart called motor control, which
is responsible for changing the motor positions via serial link.
Once the desired pitch and yaw commands are calculated in
statechart.py, and deemed to be within the designed range of
motion, they are passed into motor control.py. Motor control.py
then takes this data, and calculates the difference between the
desired pitch and yaw and its current pitch and yaw, and finds
the necessary speed needed to reconcile that difference. Once
this is calculated, motor control.py constructs a serial packet
and sends it via the RS-485 converter to the motors. The motor
microcontrollers take over from there, driving the servos to track
the user.

IV. MODELING AND ALGORITHMS

We developed a finite state machine that models the behavior
we want for our project, as well as mathematical models detailing

our tracking algorithm.

FSM System Model

The SHaZam system can be modeled as a hierarchical compo-
sition of state machines. At the highest level (shown in Figure 4a)
the system starts by looking to pair via Bluetooth with a Wiimote
(state BLUETOOTH PAIRING), and continues doing so until it
successfully pairs. This is the state first entered when the sytem
is turned on.

Once paired, the system will transition to AUTO mode, which
enables tracking of the user position. Within AUTO, there are
two identical yet separate state machines for controlling the
motors pitch and yaw. Figure 4b shows the FSM model for these
machines. The system begins in the STAY state for both angular
axes. For a given axis, if the motor are commanded to change its
angle by a value which is within our accepted bounds (described
in the figure as the range between minThresh and maxThresh)
then the system transitions to TRACK and the lamp will be
reoriented to point at the appropriate location. If the angular
command falls outside of this range, that command is ignored
and the system remains in STAY (in this case, the calculated
command is never actually sent to the motors). Once in TRACK,
if the change in angle is below minThresh (the desired lamp
position has settled) or the change is above maxThresh (likely
due to an errant measurement), then the system returns to STAY
and holds its position.

If the user pushes the “A” button on the Wiimote, the system
will transition into MANUAL (the manual mode is represented
in Figure 4c). This sub-state machine follows a similar model to
AUTO in that it also transitions back and forth between a station-
ary state (NotButtonPress) and a moving state (ButtonPressed).
As the state names suggest, the transition is triggered by the
pressing or releasing of buttons on the Wiimote. In ButtonPressed,
the change in motor position is determined by which button is
being pressed, and at every time increment (recall that our sample
time is 0.2 seconds) the appropriate change occurs. Unlike AUTO,
MANUAL has a third state, labeled Rumble. When a button is
pressed that would have commanded the system to move beyond
its designed range of motion, the system transitions to Rumble in
lieu of ButtonPressed. In Rumble, the system remains stationary
and vibrates to alert the user that they have reached the bounds
of motion.

Finally, if the user presses “A” and “B” simultaneously on
the Wiimote, the system will transition from MANUAL back to
AUTO, allowing the user to change between these two modes of
operation at their discretion.

User State Estimation

We have also derived a mathematical model that will allow
us to reconstuct the state of the LED configuration (which
reveals where the user is looking) by obtaining angular position
measurements from the Wiimote.3 The data provided are x- and
y-angle measurements, corresponding to the estimated angular
position of the LEDs in two orthogonal planes. Figure 5 shows the
geometry of reconstructing the state in one of these measurement
planes. Note that the state of the LEDs in a plane has three degrees
of freedom (shown in Figure 5 as x3, y3, and ψuser), so three
angular measurements are needed to unambiguously reconstruct

3This model is an expansion of work done by Johnny Chung Lee (Google,
formerly CMU). See http://johnnylee.net/projects/wii/

the state. Once the state in the first plane is known, however, the
range data (x3) is known for the second plane as well, so only two
angular measurements are needed to reconstruct the state relative
to the second plane.

Command Generation

Given the user’s head position (x,y,z) and orientation (pitch θ
and yaw ψ), we could then use a second algorithm to calculate
where the user’s line of sight would intersect with the surface
of the table upon which the SHaZam system was placed. Once
that location was known, it was then possible to calculate the
required pitch and yaw of the lamp to shine a light such that it
would also intersect the table at that same location. This process
of calculating the intersection location based on user angles and
then the required lamp angles based on the intersection loca-
tion was accomplished using standard trigonometric and inverse
trigonometric functions.

Verification and Testing

In order to verify the accuracy of these solutions, we created
a simple model of the system in MATLAB that allowed us to
specify user state data (angular and positional state), determine
where the LEDs would appear relative to the Wiimote camera, and
use that data to drive our state estimation and command genera-
tion algorithms. After successfully recreating our input state data
based on expected measurements, the simulation indicated that
we had derived an exact solution to the problem. However, upon
running our algorithm using actual data collected by the Wiimote,
we soon discovered that even in a static configuration (minimal
motion of the Wiimote and the LEDs) the estimated angular state
of the user exhibited large variations that would give erratic data
to the command generation algorithm, and would have resulted in
extraneous lamp motion. We confirmed this numerical instability
in our MATLAB simulation, noticing that even a 1◦ error in a
single measurement could result in nearly 50◦ of error in the user
orientation estimate.

Managing Noisy Data

While the estimated angular state of the user was determined
to be unusable (varying by tens of degrees), the estimated user
position was notably more stable (varying on the order of one or
two centimeters). It was therefore decided to re-scope our design
to focus on directing the lamp at the user themselves. This change
was accomplished without significant variation to our existing
state estimation algorithm (we were already estimating positional
data) or our command generation algorithm (we substituted the
user’s head position for the position of their gaze upon the table).
To further ensure that the motors would not be commanded to
move erratically, we tuned the angular change thresholds used in
our state machine to allow the motors to respond to meaningful
small changes while ignoring extraneous large changes which
may be caused by measurement anomalies. Future implementa-
tions may consider applying various filtering schemes to smooth
out state estimates and acheive gaze tracking capability.

Manual Mode

Operating the system in manual mode proved to be more
straightforward as it did not rely on camera measurements taken
by the Wiimote. In this mode, directional input from the Wiimote
D-pad was used to increment or decrement the pitch or yaw of
the motor assembly. If the user tried to command either a pitch or

(a) Top-level state machine model

(b) Automated mode state machine model

(c) Manual mode state machine model

Fig. 4: State Machines. The system is modeled as a hierarchical
composition of state machines

yaw angle that was outside of the designed range of motion, the
command would not be executed and the Wiimote would rumble
to alert the user to the fact that they had reached the system
bounds.

Fig. 5: State Reconstruction. By obtaining angular position mea-
surements of three LEDs with known offsets, it is possible to
fully reconstruct the state in a plane.

V. PATH FORWARD

Originally, our project goal was to track the user’s gaze,
illuminating what the user was looking at on his or her desk.
However, our algorithm proved too mathematically unstable for
this, so we simplified the problem by having the light simply point
at the user. Moving forward, we would like to explore more robust
algorithms to solve the original problem.

Moreover, we could explore other options of tracking the user’s
face. For instance, if we added an accelerometer to the hat, we
could get further insight into what the user’s head movements are,
supplementing our existing algorithms with more data and reduc-
ing the effect of noise. Furthermore, we could investigate facial
tracking or eyetracking, incorporating computer image or even
video processing techniques to solve this problem. These other
solutions could reinforce or replace our current tracking system,
reducing the effect of input noise and possibly miniaturizing or
entirely eliminating the headgear.

Another aspect that we could improve on is our physical design.
Right now, the design is unpolished and unintuitive. The LED bars
are mounted on cardboard taped to a hat, and our components are
housed in a cardboard box. Moving forward, we would investigate
the use of individual LED lights, so that the headgear is much
more compact and usable. We would also strive to improve the
user interface to SHaZam. Ideally, the user could start it up and
enjoy its features with the push of a button. Ultimately, while
there are many improvements yet to be made, we believe we
have established a solid starting point with our work.

