
SPI on RTU
EE149/249A Final Report, Fall 2014

Jerry Chen, Richard Lin, Allen Tang

1 Introduction

Processors in microcontrollers are optimized for
speed - executing tasks in order to minimize com-
pletion time. Often burdened with interrupts, non-
deterministic execution, auxiliary tasks, and non
real-time operating systems, processors are unable to
make any timing guarantees on most operations. In
a traditional setup, interfacing with external compo-
nents is done via protocol-specific hardware peripher-
als embedded into silicon. This hardware-based im-
plementation puts restrictions on both the types of
communication protocols that can be used and the
number of external ports implementing a certain pro-
tocol. Furthermore, fixed pin functionality mapping
may also cause sub-optimal PCB routing.

To resolve some of these issues, we explore using a
timing-predictable co-processor attached to general-
purpose input/output (GPIO) pins. Digital com-
munication protocols can be implemented using bit
banging, a technique in which software is used to con-
trol signals, giving flexibility. The co-processor can
also offload cycle-consuming hardware tasks from the
main processor, allowing the main processor to utilize
its resources elsewhere. Such a co-processor is called
a real time unit (RTU).

2 Overview

The goal of this project was to implement bit bang-
ing on a co-processor to handle communication with
external peripherals. The co-processor we used was
the FlexPRET processor, a 5-stage RISC-V proces-
sor (implemented in Chisel by Michael Zimmer et al.)
designed specifically for real-time embedded systems.

First, we wrote a bit bang Serial Peripheral In-
terface (SPI) routine, ran the system in simulation,
and verified the waveforms. Next, we deployed the
FlexPRET processor onto an FPGA and tested it by
running programs that communicated with an exter-
nal SPI accelerometer. We then leveraged the pro-

cessor’s multi-threading to run pulse width modu-
lation (PWM) concurrently with accelerometer SPI.
Finally, we improved both our SPI and PWM imple-
mentation by making the timing precise down to a
processor cycle.

3 Protocols Implemented

3.1 SPI

Serial Peripheral Interface (SPI) is a full-duplex
data link used for communication between one master
and one or more slaves. The protocol itself normally
consists of four signals: serial clock, MOSI (data from
master to slave), MISO (data from slave to master),
and slave select (used to specify which slave the mas-
ter is talking to). During a transfer, each clock pe-
riod carries a data bit - data is sampled on one edge
while new data is presented on the other. The actual
waveform is specified by the clock frequency along
with two parameters: clock phase (CPHA - which
clock edge does what), and clock polarity (CPOL -
specifying the idle level of clock).

3.2 PWM

Pulse-width modulation (PWM) is a common tech-
nique for using digital signals to produce analog sig-
nals. It is widely used to control power applications
where a higher duty cycle (proportion of time that
the signal is high relative to the period) is, the more
power it delivers. One example use is for dimming
LEDs with digital-only control.

4 Deploying to FPGA

4.1 Accelerometer Interface

While simulation can provide bountiful informa-
tion and catch almost all the bugs in our code, we
cannot rely on it alone. Thus, to test our programs

1



Figure 1: FPGA-Accelerometer Test Setup

running on the FlexPRET processor on real hard-
ware, we deployed it onto an FPGA. We chose the
Digilent Atlys development board (with Xilinx Spar-
tan 6 FPGA) because it has been previously used
to successfully deploy the processor. Among other
I/Os, the board has 8 LEDs, 8 switches, and 28 ex-
ternal GPIOs on a breakout breadboard which we
connected via a 68-pin VHDCI connector.

The first step to deploying the processor was set-
ting up the environment and installing the necessary
software (Xilinx ISE and iMPACT). This step took
much more effort than anticipated because the Xilinx
software was not fully compatible with Ubuntu (nec-
essary for the RISC-V toolchain). Generating the bit-
file with ISE worked fine, but we ran into problems
installing the cable driver when we tried to deploy
it in iMPACT (this is a known bug). After numer-
ous days of debugging, we finally worked around the
problem by using iMPACT on Windows to deploy the
bitfile

With the processor on the FPGA, we ran sim-
ple C programs and connected the GPIOs to the
switches and LEDs. We successfully verified the be-
havior of these programs, making sure all the LED
and switches were working. Next, we modified our
bitbanging SPI code to communicate with Freescale’s
MMA7455 accelerometer. We connected the SPI pins
from the accelerometer to GPIO pins on the board,
and we succeeded in reading the 8-bit accelerometer
data and displaying it onto the LEDs.

Figure 2: External Connections

4.2 Connecting to PWM

We also deployed bitbanging PWM onto the
FPGA. By varying the duty cycle, we were able to
control the ratio of on to off time for the GPIO-
connected LEDs, essentially changing their bright-
ness. Once we got the accelerometer interface and
PWM working, we looked into running the two pro-
grams concurrently. We modified our test program
to spawn two threads, one to read data from the
accelerometer and one to run PWM. For every new
value the accelerometer thread reads, it writes a tar-
get duty cycle to a shared global variable for the
PWM thread. In all, our program varies the bright-
ness of hte LEDs based on accelerometer readings.

5 Host Interface

As a coprocessor, FlexPRET needs a way to com-
municate with a host processor. To support this, we
added two hardware queues, one in each direction
between FlexPRET and the host. FlexPRET can
access these queues and the relevant status registers
through a memory-mapped IO on a pre-existing pe-
ripheral bus. It is expected that the RTU software
will check that the queue from the host is valid (has
data) before reading from the queue and will check
that the queue to the host is ready (not full) before
writing to the queue. This is because FlexPRET ar-
chitecture requires that all memory accesses complete
in a single cycle, so stalling the memory system in
hardware until the queues are ready is not an option.

2



5.1 Protocol

For this project, we did not attempt to define gen-
eral semantics or recommendations for the host inter-
face protocol. Instead, what hardware we wrote is it -
the two queues essentially provide a stream of 32-bit
words to and from the core. The exact meanings are
up to each RTU program.

However, to test that our implementation actually
works, we implemented host interface code for both
our SPI and PWM modules. On both, we used a
simple word-wide command protocol consisting of 8
bits of opcode and 24 bits of data per word. While
neither efficient nor extensible, it does provide a good
starting point.

For SPI, the main code loop repeatedly checks the
command from host queue for valid data. Once data
is available, it reads from the queue and parses the
command. The available commands are set period

which sets the SPI clock period (in nanoseconds),
set polarity which sets the CPOL and CPHA pa-
rameters, and transfer which initiates a SPI data
transfer on the IO pins. When transfer is done,
the returned byte read from the IO is put onto the
response queue.

However, the host interface for PWM was differ-
ent. Since PWM is supposed to be always active, it
can’t block polling for the host interface. Instead, on
each PWM cycle, it latches in the new period and
duty cycle from shared variables to a local variable.
Host interface code runs in a separate thread, reading
data from the command in queue and writing to the
shared variables as necessary. While the producer-
consumer strategy and single-word-long parameters
help prevent threading bugs, no attempts were made
to synchronize the period and duty cycle. Possibili-
ties are explored in Section 8.1.

6 Testing

Hardware often goes through extensive testing to
make sure it works reliably, and users will likely
expect the same from soft peripherals. Therefore,
another focus of this project was to provide auto-
mated testing infrastructure, ensuring quick detec-

tion of buggy code.

6.1 Infrastructure

For the testing framework, we used Chisel’s
Tester, which provides methods to step cycles
through the circuit, write inputs using poke, read
outputs using peek, and expect conditions. While
these may be sufficient for general hardware testing,
they don’t make it simple to express temporal con-
straints. We therefore augmented the testing library
with constructs to step until some condition as well
as expect a condition during a particular time in-
terval. This allows users to write testbenches in the
typical hardware style but with timing constraints:
send inputs and expect timed outputs.

We also added higher-level methods to abstract
away common tasks like loading FlexPRET’s instruc-
tion memory and reading/writing from/to the host
interface queues.

6.2 Testbenches

Both our testbenches were simple but reasonably
comprehensive: they sent commands through the
host interface and expected back GPIO events within
certain intervals.

For SPI, the testbench configured the RTU pro-
gram with the CLK, CPHA, and CPOL, and initiated
a transfer. It then expected a SPI waveform where
the clock signal met the period specification and the
data was stable on all but the transition edge. While
the RTU generates the SPI master signals, the test-
bench fed in the response signals on the MISO line
and checks the response queue at the end. Two SPI
transfers were done with differing clock phase param-
eters and data.

For PWM, the testbench similarly loaded the RTU
program with the period and duty cycle, then checked
to ensure the output waveform was accurate. Sev-
eral different duty cycles were tested, including the
always-low (zero) and always-high (equal to period)
edge conditions.

3



In the first execution, when the GPIO is toggled is dependent
on the compute timing uncertainty. In the second execution,
the timing uncertainty is absorbed into the delay so when the

GPIO is toggled is predictable.

Figure 3: Optimization Illustrated

7 Optimizing

While the testing timing constructs were written in
a way to allow events within an interval, a goal was
to make everything cycle-precise. The simple linear
coding style of computing GPIOs, writing the GPIO,
then delaying was prone to slight timing variation be-
cause the time to compute the GPIO values is vari-
able based on the computation. For example, this
would lead to one SPI clock half-cycle being slightly
longer than the other. While these errors are small,
they are still annoying.

Our solution was to make the computation happen
out-of-phase, during what would be the delay before
the GPIO is toggled. This strategy, illustrated in Fig-
ure 3, allows the timing-predictable delay to “mask”
the timing-volatile portions of the code. While seem-
ingly simple to implement for linear programs, this
ends up complicating the control flow of loops as ad-
ditional state needed to be kept between iterations.
While we were able to get perfect cycle-precise wave-
forms (and set the jitter tolerances within our test-
bench to zero), this also made the RTU code less
readable.

8 Conclusion

We have demonstrated an implementation of sev-
eral peripherals on the FlexPRET RTU both in sim-
ulation and on an FPGA. With the FPGA, we have
shown that our SPI code is able to properly commu-
nicate with an external digital accelerometer, initial-

ize, and read data from it while generating a PWM
waveform to dim LEDs based on that acceleration
data.

We have also explored some of the practical issues
that might arise when putting a system like this into
production. We created both a host interface frame-
work using hardware queues as well as temporally-
aware testing constructs. We then integrated these
into both the SPI and PWM RTU code, demonstrat-
ing an essentially complete system and verified func-
tionality with testbenches.

8.1 Future Work

However, there are ways our work could be
extended. First, there are many more timing-
constrained IO protocols which could be imple-
mented. While SPI and PWM and hardware are com-
mon on most microcontrollers, more rare and com-
plex protocols like CAN and that of the NeoPixel
strips would benefit most from a RTU. Testing
against more hardware devices would also be impor-
tant for compatibility.

The infrastructure we have built could also be ex-
tended. For example, while we have provided a model
for a host interface based on queues, additional re-
search could go into providing best practices or even
a framework for high level protocols. DMA compati-
bility may also be important where bulk data transfer
is required. It may also be desirable to have a sepa-
rate queue for each peripheral, in which case a host
interface generator may be helpful. Finally, it may be
necessary to several commands to appear to execute
atomically - like setting PWM period and duty cycle.
This could be accomplished with a separate command
telling the RTU to latch in all the new data from the
host.

While we have provided basic temporal testing con-
structs and testbenches for our RTU code, the test-
ing infrastructure could be improved. For example,
instead of specifying expected waveforms in a test-
bench, LTL-like semantics could be associated with
RTU code. While we also explored having multi-
ple threads of testing control, we were unable to get
Scala’s delimited continuations to work with Chisel.

4


