Wiisel

Team: Hala Diab, Sam Friedman, Joe Wright

EECS 149 Project Report
19 December 2014
University of California, Berkeley

Abstract

A user will be able to use a Nintendo Wiimote to
on a large screen of LEDs in a variety of colors. The
will also be able to switch to display mode for a slide
of bitmap images.

1 Model

We modeled our system as a finite-state machine (in Fig-
ure). The FSM models how a user interacting with a Wi-
imote changes what is on the display. The model doesn’t
have a sense of which pixels are set (such an FSM would
be very large and complicated, and not terribly useful for
the system design). Each state represents an abstract idea
of setting a pixel (whose position is determined by Wiimote
sensor data and is not captured by the model), setting the
entire display to preset pixel data, clearing a pixel, clearing
the entire array, and swapping pointer color.

2 System Structure

Generally, A user will use a Nintendo Wiimote to com-
municate sensor data via Bluetooth to a microprocessor,
which in turn controls the array of LEDs. Figure [I]
shows more details about the interaction between Wiimote,
Screen, and the microprocessor.

| Reports/ | Data
, Biuetooth | Signal

.
.
.
.
R .
o Mapped
Packets Pif:; :
Bluetooth Interface [ERg—. Processing -== "l:lh_ws“;:" -

mbed FRMD-KL25Z

Figure 1. Detailed Data Flow

3 System Components

Components were, in general, selected for their “embed-
ded” character, cost, and minimal feature sets.

3.1 Screen of WS2812b LEDs

The screen is 1 meter by 1 meter, with a 30x30 reso-
lution, and is made of WS2812b individually addressable
LEDs. It consists of: 15 strips with 30 LEDs per strip and
15 strips with 60 LEDs per strip. Two 74HCT245 buffer
chips allow the 3.3V logic of the microcontroller to effec-
tively control the LEDs, which require a minimum data sig-
nal voltage of 70% of the power supply voltage.

3.2 Freescale mbed FRDM-KI1.25Z

We selected the mbed FRDM-K1L.25Z; 32-bit ARM Cor-
tex microcontroller that runs at 48MHz, has 128kB of Flash

storage for code, 16kB of RAM for variables. The FRDM-
KL25Z is very low cost, and the low amount of memory
required lots of code optimization and modification to ex-
isting libraries to drive all 1,350 LEDs. Another candi-
date was the Teensy 3.1 which is very popular for peo-
ple building large arrays out of WS2812-based LEDs. We
decided against it for three reasons: it is slightly more ex-
pensive, it does not have USB-host software support (al-
though the hardware can, in theory, support it), and it was
far more powerful than what we needed (and in our view,
went against the spirit of working on an embedded system).

3.3 Wiimote

The Nintendo Wiimote is the sensor platform. This in-
cludes a 3-axis accelerometer and several buttons. The Wi-
imote interfaces with the microcontroller over bluetooth us-
ing a Bluetooth CSR 4.0 USB dongle that is connected to
the microcontroller using USB OTG. The Wiimote make
sense as a sensor platform and user interface, because it is
simple, easy to communicate with, and readily available.

4 Building the System

The hardware is designed to be modular so that it can
be set up and taken down in a reasonable amount of time.
It also allows damaged or defective strips of LEDs to be
replaced with minimal work. We found that the LEDs had
a fairly high defective rate; our final display ended up with
2-3 dead pixels and we had to replace a half-row of LEDs

+5 ':::’_

that didn’t work entirely.
Data Ini—w O

00580 o

56 76

Dt nu.;gE 00000480000

Figure 2. LED Strip Wiring

Figure [2| shows how two LED strips are connected. A
single GPIO pin controls 90 LEDs. In the second strip (with
60 LEDs per meter), every other LED is set to “off” so that
the display maintains a constant, uniform 30x30 resolution.
This mapping is handled via software, and although cur-
rently hard-coded, could easily be adapted for any arrange-
ment or configuration of LEDs. Each set of two rows has
their power and ground lines connected, so a single data
line addresses two rows, while a single power line pow-
ers four. The data lines are made of CAT-5e networking

Ihttp://www.pjrc.com/teensy/index.html

cables. This allows them to be easily disconnected from
the microcontroller. Additionally, each twisted-pair has a
data line and a ground that terminates at the same end of
the same strip. This helps reduce interference. Between the
74HTC245 buffer chip and data lines are 100-ohm resistors,
which match the impedence of the CAT-5e cables. This fur-
ther helps with noise reduction.

5 Software
5.1 Screen Control

To control the LEDs, we are using the Multi_WS2811
libraryE] This library can control up to 16 strips of LEDs
in parallel using 3-phase DMA transfers. The number of
parallel LED strips is limited to at most the number of pins
on a single GPIO port for the microcontroller.

5.2 Wiimote

Data Packets from Wiimote are reported over Bluetooth
to the mbed where it processes the packets using a bluetooth
stack built on top of a USB software interface:

1. KL46Z-USBHos{?} a simple USBHost library
for FRDM-KL46Z(FRDM-KL25Z) by Norimasa
Okamoto, under MIT and Apache license.

2. KL46Z-BTstaclﬂ a Bluetooth Stack (built on top of
KL46Z-USBHost) by Norimasa Okamoto. Supports
L2CAP protocol used by the Wiimote.

We processed packets to extract acceleration and buttons
values. To get accurate acceleration values, we had to cal-
ibrate the wiimote we used. Assuming that bias and sensi-
tivity are roughly equal along all axes, we modeled wiimote
as an affine model: f(x) = 102z + 486. Wiimote cali-
bration cannot currently be done without recompiling and
deploying software, but that is a possible area for future de-
velopment. Roll and pitch were calculated using following
equation

roll = arctan (E)
z

pitch = arctan Y
x sin(roll) + z cos(roll)

2This library is by Ned Konz for the FRDM-KL25Z, and is made avail-
able to us under the Apache License.

3http://developer.mbed.org/users/va009039/code/
KL467z-USBHost/

*http://developer.mbed.org/users/va009039/code/
KL46Z-BTstack_example/

°Source:Implementing a Tilt-Compensated eCompass using Ac-
celerometer and Magnetometer Sensors by Talat Ozyagcilar

http://www.pjrc.com/teensy/index.html
http://developer.mbed.org/users/va009039/code/KL46Z-USBHost/
http://developer.mbed.org/users/va009039/code/KL46Z-USBHost/
http://developer.mbed.org/users/va009039/code/KL46Z-BTstack_example/
http://developer.mbed.org/users/va009039/code/KL46Z-BTstack_example/

6 Testing and Verification

We started testing in early phases in the project. We
started by testing screen control software on individual LED
strips to confirm that data signals are sent correctly from
microcontroller to strips. This and the difference between
power connection and the daisy chaining of data wires made
it easier to test hardware issues.

We encounterd a problem where occasionally a vertical line
would appear on the screen, seemingly randomly. We tested
the quality of the signal, used a logic analyzer to look at the
clock timing, and eventually managed to capture a sequence
of 24 bits on an oscillioscope corresponding to an LED af-
fected by this bug. (Lucky, since there are a lot of bits on
any given data line, and the oscillioscope can either see a
large range of data at too-low a resolution to be useful, or
at most two LEDs worth of signal data at a higher resolu-
tion!) We found that a single bit had slightly erratic tim-
ing. While the signal high at the start of a zero-bit should
last at most 400 nanoseconds, with an acceptable error of
about 150 nanoseconds, it would occasionally last over 550
nanoseconds. The offending bit is on the far right in figure

Gl

LIS

Figure 3. Oscillioscope Output

The error was entirely eliminated when we reduced the
DMA timer to last 300 ns instead of 400 ns. We suspect that
the extra time added to certain bits was a result of either
the USB or Bluetooth library interfering with DMA, or a
hardware problem with the mbed board.

7 Analysis
7.1 Power

Although datasheets for the specific model of LED strips
we have were not available, a common upper—boun(ﬂ for
WS2812b-based LEDs is 60 mA per LEljZI Average-case
current draw is typically around 20 mA. For an array of 900
LEDs, this comes out to a total current draw from 18 A to
54 A at 5 volts.

To make the system as safe as possible, we designed the
LED array hardware to distribute this current evenly and
easily handle peak usage without catching fire. We also
drastically lowered the “Peak usage” by limiting the LED
brightness in software, and designing the system behavior
to reduce the frequency of high current draw statesﬂ We
measured power values and found that we consume 93 W
when screen is Red with full brightness. Changing mode to
15% brightness, power consumption is decreased to 37 W.
The highest power we were able to get the screen to con-
sume under normal usage was 42 watts. This corresponds
to (not including power losses from the 120V AC to 5V
DC supply) a maximum of 8.4 amps of current, which is
less than one-sixth of the recommended limit for the wire
gauges used in the power distribution system.

7.2 Memory Usage

As initially written, Multi_WS2811 library cannot sup-

| port the number of LEDs per strip that we need it to in the

available amount of RAM on the device. At 80 LEDs per
strip, the library takes approximately 98% of the RAM on

. the microcontroller. To remedy this, we moved a large run-

time constant array from RAM to Flaslﬂ which reduced
RAM usage to 57% at 90 LEDs per strip. We also com-
pressed the color representation from 24 bits per pixel to 12
bits per pixel.

8 Future Work

Adding additional sensors to improve the drawing expe-
rience and accuracy is a possible area of expansion. The

This occurs when the LED is set to full brightness white. Average
consumption is much lower

7Burgess, Phillip.“Powering NeoPixels.” Adafruit. 30
Aug 2013. Web. https://learn.adafruit.com/
adafruit-neopixel-uberguide/power

3The default “blank” screen is non-white. If the LEDs are off instead
of white, then initially the array will use very little power, instead of the
maximum possible.

9The downside to this approach is that we must now hardcode all values
of the array instead of using memset, which requires more work on the
part of the programmer, but does not affect functionality of the library.

https://learn.adafruit.com/adafruit- neopixel-uberguide/power
https://learn.adafruit.com/adafruit- neopixel-uberguide/power

Wiimote includes an infrared camera, so strategically plac-
ing IR LEDs on the display can make it possible to com-
pute the Wiimote’s yaw, allowing a user to directly point
the Wiimote at the desired cursor location. There is also a
lot more features that can be added to the Wiisel. Things
like changing brush size, displaying text, saving drawn pic-
tures to an SD card, and displaying arbitary bitmap images
are all features that would make for a better user experi-
ence. However, significant feature expansions would likely
require a microcontroller with a larger amount of memory;
the FRDM-KL257’s memory is almost entirely used up in
the current implementation, with only around 800 bytes free
at peak-usage.

9 Fun Stats

1. 134 connections crimped

2. 350 solder joints

1&pic <3/pic:=(pic+1)%3

DisplayPicture

1
2

A&B
A&B

A&B&1&2

Figure 1: Wiisel - Finite State Machine

Figure 4. Model Finite State Machine
5

	Model
	System Structure
	System Components
	Screen of WS2812b LEDs
	Freescale mbed FRDM-KL25Z
	Wiimote

	Building the System
	Software
	Screen Control
	Wiimote

	Testing and Verification
	Analysis
	Power
	Memory Usage

	Future Work
	Fun Stats

