
A Pervasive Software Validation Approach for
Next-Generation Avionics Systems

Matthew B. Dwyer, Sebastian Elbaum, Steve Goddard
Department of Computer Science and Engineering

University of Nebraska - Lincoln
{dwyer,elbaum,goddard}@cse.unl.edu

1. POSITION
Future aviation systems are the vanguard for a new breed of soft-

ware that must address opposing forces demanding high confidence
and high adaptivity in systems. Advances in autonomous systems
will enable unmanned flight to become common place and will pro-
vide the opportunity to offload the monitoring and planning of an
increasingly dense airspace from human pilots and controllers. Au-
tonomous software, by its very nature, is highly adaptive – it must
assess the system environment, plan an appropriate response, and
execute that plan. It must do this correctly even in the face of un-
foreseen circumstances in the environment or failures on-board the
system it is controlling. Assuring high-confidence in such systems
goes well beyond the state of the art in software testing.

Our position is that researchers and aviation software and sys-
tems developers must adopt a pervasive approach to software vali-
dation and, in particular, that validation must continue into the field
with deployed systems. Validation must be grounded in meaning-
ful, demonstrable, and formally defined evidence of software qual-
ity. Evidence may be contributed to the software quality case for a
system through the entire software life-cycle, from early phase for-
mal requirements specification, pre-deployment static analysis and
verification to assess behavioral conformance with requirements,
and, finally, online monitoring of fielded systems for those require-
ments that cannot be assured statically. An integrated body of
evidence would provide a basis for avionics software certification
and acceptance. Simultaneously, this evidence will allow quality-
oriented autonomic adaptation of systems to adapt their run-time
behavior to to maximize system safety.

2. CHALLENGES
Our position that a pervasive approach to software validation will

be needed is predicated on the fact that the complexity of today’s
systems is already beyond the state of the art in software verifi-
cation and validation. To compensate for this weakness, aviation
systems are deployed with predefined modes of operation, wherein
each mode has been verified and validated in isolation. Any de-
viation from predefined modes of operation places the aircraft in
an invalidated state. Clearly a new approach is needed to validate
future systems that will need to adapt to non-deterministic environ-
ments in a timely and safe manner.

Software for next-generation aviation systems will include ad-
vances in software-enabled control and technologies supporting dis-
tributed systems-of-systems. Thus, rather than focus on the chal-
lenges associated with specific technical advances in those areas,
we believe that it is crucial to emphasize the systemic and cross-
cutting challenges facing developers of such systems.

Challenge 1: Develop meaningful, formally defined, quantifi-
able, direct measures of the quality of software components and

systems for aviation systems. The current practice for developing
and validating aviation software is insufficient to meet the needs
of future systems. For example, DO-178B makes demands on the
software development process with the inference that such a pro-
cess will produce high-quality software products. This approach
is too human-oriented to scale to the size and complexity of next-
generation systems. Thus, a shift to product-oriented quality as-
sessment is essential.

Challenge 2: Define a total life-cycle software validation pro-
cess that produces an explicit body of evidence of software product
quality. Software products throughout the life-cycle must be val-
idated and associated with quality measures to enable traceability
of linkages between assurances of quality in early phase artifacts,
such as requirements models, and late phase artifacts, such as de-
ployed code. In this setting, it is clear that monitoring and adapting
the development process based on intermediate product qualify will
be essential. Due to the dynamic and unpredictable nature of the
aviation systems environment, quality monitoring and adaptation
activity must further pervade the execution of systems by enabling
run-time systems to adapt and steer system behavior to assure cor-
rect operations even in unforeseen circumstances.

Challenge 3: Develop curricula to train software developers in
the use of advanced software and systems modeling, development
and validation methods that emphasize explicit evidence of soft-
ware quality. These challenges demand a significant shift in the
skill set of software developers. Current curricula typically include
very limited exposure to software quality assurance techniques, and
almost no exposure to the kinds of formal modeling and formal
analysis techniques that will be needed in next-generation aviation
software development environments. This is especially true in the
area of quality-oriented autonomic computing where even the ba-
sic continuous mathematics and control-theory to understand these
concepts is missing from existing curricula.

3. RESEARCH NEEDS
The challenges identified are formidable. If we are to meet these

challenges, a bold new research agenda must be set. The following
research needs provide a starting point.

Formalizing notions of correct software behavior. Existing
measures of software quality are an incomplete patchwork of ap-
proaches that provide only the weakest information about how a
program may operate. We must define approaches to to capture
a wide-variety of disparate forms of information about software
behavior and to integrate that information into a holistic view of
software product quality. For example, rich notions of behavior
coverage are required to support claims of correct operation across
a wide range of system execution contexts. Such notions must ac-
count for the space of possible program executions rather than sam-



pling specific syntactic criteria of a program, such as MCDC.
Extending and formalizing correctness by construction. Many

researchers advocate the use of technologies for assuring correct-
ness by construction. These are promising ideas that must be ex-
plored, but in the context of aviation systems it is crucial that the
implicit assurance provided by such trusted tools can be made ex-
plicit. This will allow auditing of such quality evidence and lever-
aging of that information to drive other software validation activi-
ties.

New integrated models of software quality. Software qual-
ity models must be able to encode information from a wide range
of validation activities, including traditional testing, static analysis
and verification techniques, and system synthesis techniques. An
integrated model of software quality will allow different validation
technologies to contribute to an overall definition of system correct-
ness and to work in a synergistic fashion. For instance, if a system
synthesis method generates a component along with a guarantee
that it operates according to specified requirements within a spe-
cific, formalized, range of behavior, then other methods can target
the validation of the component outside of that range.

Specifying and validating intent rather than action or state.
Today’s systems are specified and validated with very specific low-
level actions. Next-generation aviation systems will require the
specification of intended action that can be observed, measured,
and monitored in both offline, e.g., static analysis, and online, e.g.,
dynamic analysis, modes. Unless new, high-levels of specification
abstractions can be formalized and validated, the complexity of fu-
ture systems will be limited by our ability to specify them. Imag-
ine trying to develop an enterprise-level application using assembly
language. The evolution of development languages has dramati-
cally increased the complexity of the systems we are able to build
and deploy. A similar evolution is needed in the way we specify
and validate systems.

Pervasive validation approaches. If we had a perfect and scal-
able method for synthesizing an implementation from a specifica-
tion we would still not solve the problem of developing trustworthy
aviation systems. Humans will always drive the development of
requirements and specifications and they may well make errors in
defining proper system behavior or, more subtlely, in characterizing
the nature of the environment in which the system will operate. For
these reasons, we believe that it will be essential for researchers to
develop methods to efficiently extend the validation process to sys-
tem run-time. To achieve this, advances in deployed run-time mon-
itoring, process scheduling, run-time systems and program adap-
tation must all be pursued in concert with the goal of providing
an online monitoring safety net that operates transparently with re-
spect to system functional and temporal requirements.

Methodology and tool support. As in any complex engineer-
ing domain, aviation software system engineering demands tools
and techniques. The nature of these systems is such that tools
that are cost-effective for more traditional classes of software, such
as enterprise-computing or web-based applications, are completely
inappropriate. New tools for software developers that simplify the
use of advanced software validation methods are needed. These
tools must scale to the size and complexities of distributed real-
time aviation systems-of-systems and must demonstrate the ability
to increase system trustworthiness.

4. ROADMAP
Given the complex interplay of governmental, industrial and aca-

demic participants in driving next-generation aviation software sys-
tems any realistic roadmap must account for the different stake-
holder positions. Here we only provide a focused research roadmap

based on the position and vision espoused in this paper:

Early years It is essential to engage with aviation systems devel-
opers to understand and build support for the advantages of
explicit statements of quality goals and explicit evidence of
goal satisfaction. Without that research advances will not
transition to practice at the end of the roadmap.

Years 1-2 Development of families of behavioral coverage models
and criteria that account for the diversity of system structure
in complex, distributed, real-time systems. This must be cou-
pled with thorough empirical evaluation of the relative costs
and strength of using those models.

Years 2-4 Adaptation of existing testing, validation, verification
and synthesis techniques to produce behavioral coverage in-
formation in an integratable form. Development of adaptive
transparent run-time monitoring technologies and maturation
of those technologies to the point where they can be inte-
grated into production run-time platforms.

Years 3-6 Development of over-arching validation processes that
integrate the application of individual techniques by moni-
toring behavior coverage achieved and quality indicators and
targeting new validation activities to maximize cost-benefits.

Years 5-9 As technologies stabilize, the development of robust us-
able toolsets and curricula that emphasize the underlying math-
ematics and modeling required to use those toolsets must be
developed.

Years 7-10 To enable effective technology transition, a series of
increasingly demanding challenge problems should be posed.
These challenges should be driven by industry to meet their
needs and responded to by researchers. Both competitive and
collaborative approaches to challenge problems can be used
to maximize engagement with the research community.

5. CONCLUSION
We have reached a critical junction in the development of avi-

ation software systems. The second century of flight offers both
significant promise and grand challenges. New research will be
needed to meet these challenges. It is our position that a new perva-
sive approach to software validation will be needed. This approach
must consist of an integrated model of software quality that begins
with formal requirements specification and continues through de-
ployment via adaptive, transparent online monitoring.

6. BIOGRAPHIES
Matthew Dwyer, the Henson Chair of Software Engineering at

UNL, has over a decade of experience developing static software
analysis techniques and tools and studying their application in prac-
tice. Sebastian Elbaum is an Associate Professor in CSE at UNL
with expertise in run-time monitoring of deployed software and
empirical studies of software testing techniques. Steve Goddard,
an Associate Professor in CSE and College of Engineering Dis-
tinguished Scholar at UNL, is a highly-regarded expert in real-
time and embedded systems and enterprise-scale decision support
software. This team of researchers has led more then 25 research
projects for ARO, DARPA, NASA, USDA, and NSF that have pro-
duced more than 10 software systems which have been leveraged
for industrial use.


