
Software Fault Protection for Avionics

Allen Goldberg Greg Horvath

Kestrel Technology JPL
goldberg@kestreltechnology.com Gregory.A.Horvath@jpl.nasa.gov

In this position paper we present an approach for achieving high assurance of flight
systems that is related to and complementary with software verification and validation
methods. We propose a model-based approach to runtime monitoring and error recovery
of flight software, in short, software fault protection. More specifically certain aspects of
the intended system behavior are formalized in a model. At runtime the software is
monitored and compared with the model. Should there be disagreement, the model
specifies a recovery action to perform. Like all V&V processes it is concerned with
checking the consistency of the behavior of the software with some other entity such as a
formal or informal model, requirements, or a set of test cases. In this case the consistency
check is performed in operation rather than during development.

The value proposition for this approach is based on the following two observations:

1. It is generally acknowledged that almost all fielded software contains errors that
are not uncovered, even after undergoing a rigorous verification and validation
campaign. Often these errors are manifested by software behavior that is
obviously incorrect. The software may crash, fail to meet its interface
requirements, consume an unexpected amount of system resources, or produce a
result that is clearly erroneous given the constraints of the application. Due to the
obvious nature of these types of failures, a relatively simple model of software
behavior may be developed in order to detect, at run time, errors that may only
manifest themselves in rare situations. As a result of the rarity of such behaviors,
these situations are often unanticipated and, therefore, not tested. Recovery from
such errors may be possible because the transient conditions that caused them are
no longer in force.

2. It is our view that a model that effectively detects such failures describes interface
behavior among components, computational resource usage and data
reasonableness. These attributes are somewhat crosscutting to the explicit
functional behavior of a component, thus minimizing common errors in the model
and code. Such a model is inexpensive to monitor, easy to validate/certify,
mitigates adoption risks, and enables an attractive technology insertion path. .By
concentrating on developing a strategy that attempts to simply detect that an error
has occurred rather than attempting to pinpoint the exact cause of the error, we
believe that software fault protection will be a suitable complement to V&V
processes, contributing to more reliable software.

Our approach is for integrated hardware/software fault protection that builds upon and
extends ARINC 653. The ARINC 653 standard defines an Application Executive, or

ApEx, which provides OS and middleware services for Integrated Modular Avionics.
Central to the facilities provided by an ARINC 653 compliant ApEx are temporal and
spatial partitioning. This partitioning insures that faults do not propagate beyond the
partition and thus simplifies the task of fault isolation. Additionally, the ARINC 653
standard defines a health monitoring capability, intended to detect and respond to both
hardware and software faults at the process, partition, module, and system level. This
facility is customizable with user code that runs in its own “health management” partition
or as a high-priority process within an application partition.

An ARINC 653 is configured by XML file that provides description of the partitions,
their resources (memory, and the schedule for processor usage), identifies the processes
executing in each partition, and the ports and channels used for the two forms (queuing
and sampling) of message-based communication defined at the partition level. It tabulates
fault response to errors detected by the hardware, the system software or application
code. When a fault occurs a user-supplied fault handling procedure can be invoked that
can log errors, restart processors or partitions, stop and/or replace processes, or report the
error to a higher level entity (e.g. from partition to module).
We note that the configuration file is a model of architecture (components and their
connections) resource usage, and health monitoring response, and as such is a primitive
version of our fault protection o model. Thus a natural and incremental adoption strategy
is to extend this model with a finer description of intended system behavior and then
generate (at least some of) the system monitoring, model execution, and recovery code
from the model. We believe only the most conservative recovery strategies should be
employed. These include logging errors, restarting components at the process, partition,
and module level, entering a “safe mode” or replacing a component with one that
performs only essential services.

In summary ARINC 653 is an excellent starting point for a software fault protection
system. We are currently designing such a capability.

