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Abstract
This paper highlights two shortcomings in the current design pro-
cess of embedded systems of avionics.

First, the current software design process does not adequately
verify and validate worst-case timing scenarios that have to be
guaranteed in order to meet deadlines. Consider the RTCA DO-
178B standard requiring coverage testing. An additional require-
ment, namely predictable timing behavior, is essential real-time
embedded systems. Airbus requires their suppliers to provide veri-
fiable bounds on worst-case execution time of software for planes
under development, Boeing is considering it (e.g., for Airbus 380,
Boeing 787 and military aircraft). The automotive industry, among
others, is evaluating similar requirements. We provide an analysis
of this problem that outlines directions for future research and tool
development in this area.

Second, the correctness of embedded systems is currently jeop-
ardized by soft errors that may render control systems inopera-
ble. In general, transient faults are increasingly a problem due to
(a) smaller fabrication sizes and (b) deployment in harsh environ-
ments. In commercial aviation, the next-generation planes (Airbus
380 and Boeing 787) will deploy off-the-shelf embedded proces-
sors without hardware protection against soft errors. Since these
planes are designed to fly over the North Pole with an order of
magnitude higher radiation (due to a thinner atmosphere), system
developers have been asked to consider the effect of single-event
upsets (SEUs), i.e., infrequent single bit-flips, in their software de-
sign. Current developers do not know how to address this problem.
We outline much needed research in this area.

1. Verification and Validation of Worst-Case
Execution Times

Current software design for safety-critical embedded systems re-
quires stringent compliance with coding standards to ensure safety
and reliability. One example is avionics where the RTCA DO-178B
standard requires coverage testing (for statements, branches and
conditionals). A very important additional requirement for real-
time embedded systems is predictable timing behavior of software
components. In particular, so-called hard real-time embedded sys-
tems have timing constraints that must be met or the system is
may malfunction. Airbus (and likely also Boeing in the near fu-
ture), e.g., requires their suppliers to provide verifiable bounds on
worst-case execution time (WCET) for software to be deployed on
planes currently under development (Airbus 380 and Boeing 787).
The automotive industry is currently considering similar require-
ments, and others are likely to follow.

Determining bounds on the WCET of embedded software is
a critically important problem for next-generation embedded real-
time systems [1]. Currently, practitioners resort to testing methods
to determine execution times of real-time tasks. However, testing
alone cannot provide a verifiable (safe) upper bound on WCET.
Exhaustive testing of inputs is generally infeasible, even for mod-
erately complex input spaces due to its exponential complexity.

In contrast to dynamic testing, static timing analysis can pro-
vide safe upper bounds on the WCET of code sections, real-time

tasks or entire applications. Hence, static timing analysis provides a
safer and more efficient alternative to testing [2]. It yields verifiable
bounds on the WCET of tasks regardless of program input by sim-
ulating execution along the control-flow paths within the program
structure while considering architectural details, such as pipelining
and caching [3].

These WCET bounds should also be tight to support high uti-
lizations when determining if tasks can meet their deadlines via
schedulability analysis. Tight bounds, however, can only be ob-
tained if the behavior of hardware components is predicated ac-
curately, yet conservatively with respect to its worst-case behavior.
Static timing analysis techniques are constantly trailing behind
the innovation curve in hardware. It is becoming increasingly
difficult to provide tight and safe bounds in the presence of out-of-
order execution, dynamic branch prediction and speculative execu-
tion. Simulation of hardware components is also prone to inaccu-
racy due to lack of information about subtle details of processors.

We advocate research on new approaches to bounding
the WCET. Most importantly, a realistic hybrid approach is
needed that combines formal static timing analysis with con-
crete micro-timings observations of actual architectures. First,
a formal approach guarantees correctness. Second, dynamic
timings on actual processors for small code sections will allow
advanced embedded processor designs to be used in such time-
critical systems, even in the presence of dynamic and unpre-
dictable execution features. Third, any architectural modifica-
tions in support of such a paradigm have to be realistic in that
they should reuse existing infrastructure both on the architec-
ture side and the methodology for static timing analysis. There
is an immediate need to develop software tools that can provide
verifiable execution times to allow validation of task schedules
within time-critical embedded systems.

2. Protection Against Soft Errors
Transient faults are becoming an increasing concern of system de-
sign for two reasons. First, smaller fabrication sizes have resulted
in lower signal/noise ratio that more frequently leads to bit flips
in CMOS circuits [4]. Second, embedded systems are increasingly
deployed in harsh environments causing soft errors due to lack of
protection on the hardware side [5]. The former reason affects com-
puting at large while the latter is predominantly of concern for crit-
ical infrastructure. For example, the automotive industry has used
temperature-hardened processors for control tasks around the en-
gine block while space missions use radiation-hardened processors
to avoid damage from solar radiation.

Current trends indicate an increasing rate of transient faults (i.e.,
soft errors), not only due to smaller fabs but also because embed-
ded systems are deployed in harsh environments they were not
designed for. In commercial aviation, the next-generation planes
(Airbus 380 and Boeing 787) will deploy off-the-shelf embedded
processors without hardware protection against soft errors. Even
though these planes are specifically designed to fly over the North
Pole where radiation from space is more intensive due to a thinner
atmosphere, target processors lack error detecting/correcting capa-
bilities. Hence, system developers have been asked to consider the



effect of single-event upsets (SEUs), i.e., infrequent single bit flips,
in their software design.

In practice, future systems may have to sustain transient faults
due to any of the above causes. There exists a significant amount
of work on detection of and protection against transient faults.
Hardware can protect and even correct transient faults at the cost
of redundant circuits [6–14]. Software approaches can also pro-
tect/correct these faults, e.g., by instruction duplication or algo-
rithmic design [15–21]. Recent work focuses at a hybrid solution
of both hardware and software support to counter transient faults
[22–24]. Such hybrid solutions aim at a reduced cost of protec-
tion, i.e., cost in terms of extra die size, performance penalty and
increased code size.

We advocate novel research to address the problem of soft
errors. Of interested are (1) software solutions and (2) hybrid
hardware/software solutions. While a number of hardware solu-
tions exist, commodity hardware is being deployed in systems sub-
ject to high rates of transient errors. In the complete absence of
hardware support, a software methodology to address soft er-
rors needs to be developed that retains performance. Current
software schemes (e.g., [16]) reduce the performance of systems
considerably, if not prohibitively, and are not supported by tools.
Further research is required to reduce this overhead to developing
novel schemes to tolerate faults in software. Hybrid solutions of-
fer another promising avenue to address this problem. Minor
architectural modifications that can be adopted within exist-
ing architectures should be accompanied by software solutions
allowing soft errors to be detected at low overhead. Early re-
sults [22, 23] outline the potential of such an approach but leave
many facets for improvement open. Protection at the level of code
and different data sections of programs can be specialized by tool
support to significantly reduce overhead even further. There is an
immediate need to pursue innovative lines of research for soft
error protection that have potentially high yields in perfor-
mance while providing low error rates.

3. Potential Impact
The proposed directions of research on verifiable execution times
would benefit the embedded system community, specifically appli-
cations in avionics, automotive and safety-critical systems. Solu-
tions to the soft error problem will benefit the increasing set of em-
bedded applications in harsh environments, which comprise critical
infrastructure in today’s society. This is particularly true for to air-
craft using commodity microprocessors for control systems. The
results can further benefit the semi-conductor industry at large by
complementing their efforts to counter problems, such as the de-
creasing signal/noise ratio in smaller fabrication feature sizes, with
innovative, cost-effective methods.
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