
Architectural Support for Verification and
Validation of High-Confidence Software

Systems

Oleg Sokolsky
Department of Computer and Information Science

University of Pennsylvania

Model-based design holds high promise for software systems that require
high confidence in their correctness and quality of service. Modeling allows
designers to precisely capture their evolving understanding of the system.
Analysis of models helps to catch errors in system behavior before the system
is built. Finally, generative techniques — generation of code, test suites, and
configuration data — can help with tedious and error-prone tasks, ensuring
that verified properties are preserved.

At the same time, if any benefit is to be derived from model-based de-
velopment, it is imperative to ensure that the model itself if adequate and
consistent with the designer’s expectations. The process of modeling can
be as tedious and error-prone as coding itself. There are two main sources
of errors in a behavioral model. On the one hand, just like software itself,
large models are constructed from separate components or modules, usually
mirroring the physical structure of the system. Incompatibilities between in-
terfaces of model components affect large models just as adversely as they af-
fect large software systems. The other, more serious problem is that different
components can have different levels of abstraction, reflecting incompatible
assumptions made by the designers during the modeling process.

To help designers ensure consistency of their behavioral models, we need
a higher-level modeling layer that concentrates on the architecture of the
system being designed. Such a layer should capture interfaces between model
components - and, ultimately, components in the system itself. The interfaces
described in an architectural model should capture all ways in which two

1



components can influence each other. Communication channels, clearly, is
one way of interaction that is explicit in system’s behavior. In embedded
systems, components can have other, implicit means of interaction such as
limited shared resources.

The benefit of taking time to explicitly spell out means of interaction
between model components makes model designers less likely to accidentally
omit important implicit interactions from the model. More importantly,
guiding model development by the architectural specification of the compo-
nent interface will help designers to ensure that abstractions affecting com-
ponent interactions are done consistently in all components.

The challenging problem, however, is identifying and capturing all possi-
ble sources of interactions and reflecting them in the component’s interface.
In complex embedded systems, such as aviation software, mutual influence
transcends purely software interactions. Various physical sources of interfer-
ence can adversely affect quality of service provided by a component and even
its correctness. Capturing such interference in structural and architectural
models, and using these high-level models in crafting behavioral models, will
help us arrive at faithful models that ensure faithful verification results.

2


