
Timing Predictability — a Must for Avionics Systems

Reinhard Wilhelm Lothar Thiele
Saarland University Swiss Federal Technical Institute

Saarbrücken, Germany Zuerich, Switzerland

Timing Analysis – the Problem
This position statement concentrates on thecertification of the timing propertiesof embedded avionics systems withhard
real-timecharacteristics. Forcertification, they need offline guarantees for thesatisfaction of their timing constraints,
and these should be derived bysound methods.

In modern microprocessor architectures, caches, pipelines, and all kinds of speculation are key features for improv-
ing (average-case) performance. They also increase the variability of execution times; an individual instruction maytake
(amortized) one machine cycle to execute if everything goeswell, i.e., no cache misses, no pipeline stalls, no misspecu-
lation, or it may take 100 cycles is everything goes wrong, i.e., cache misses, pipeline stalls, long instruction latencies,
long retirement. The variability of execution times existson all system layers, not only in the processor architecture, but
also the software development for single tasks, the task-coordination level and distributed operation [5]. Approaches to
improve the average case behavior of systems are often disastrous to predictability.

Actual execution times depend on the execution state of the system, which are determined by the execution history.
TheTiming-Analysisproblem consists in the determination ofsafeandprecisebounds on the execution times ofall

runs of a system.

Timing Analysis – our Solution
Timing Analysis of real-time systems is a lively research area. A number of commercial tools and academic prototypes
have been developed [6]. One of the commercial tools, AbsInt’s aiT tool, is in routine use in the areonautics and the
automotive industries [4, 3, 2]. It is used in the certification of several time-critical avionics systems.

aiT uses static program analysis to determine strong invariants at each program point about sets of executions reach-
ing this point. These invariants allow the prediction of safe and precise upper bounds of the instruction at this program
point.

The control flow of the program is translated into an integer linear program whose maximal solution determines
an upper bound on the execution of the whole program and identifies the control-flow path on which this bound was
computed. executions

Experience
Valuable experience has been made on the user and on the toolmaker side. Most tools are based on an abstract model of
the underlying hardware. These models are costly to build and hard to get correct. Formal methods are currently being
developed to derive them in an efficient way guaranteeing correctness by construction.

Experience with industrial use has shown that the difficultyof deriving guarantees strongly depends on thetiming-
predictabilityproperties of the systems, in particular of the employed processor architecture, the software design disci-
pline, the operating system including the scheduling strategy, and the communication mechanism.

Reconciling Predictability with Performance – the Vision
Claim 1 Over-provisioning will no longer work

Traditionally, one tries to give guarantees on the worst case or critical case behavior by increasing the average case
performance (over-provisioning). However, variability of execution times has become too large to use over-provisioning
to derive guarantees.

1



Claim 2 Completely deterministic systems will not perform

A conservative strategy throughout all design decisions attempts to arrive at completely deterministic designs. suchas
the time-triggered architecture, the damnation of caches,pipelining, speculation and dynamic scheduling. This approach
favors predictability but suffers from poor average-case performance by ignoring the advances in computer architecture
design.

Rule 1 Design only what you can analyze

Predictability needs off-line analysis of whole hardware/software systems. Therefore, all design and implementation
methods need to be considered under the aspects of analzability, i.e., analysis complexity and precision [1]. Basic
questions concern the relation between analysis and designsuch as: What is the influence of design decisions (e. g.
changing cache replacement from LRU to PLRU) on the variability of execution times? How is the distribution of worst
and average case execution times? Which design methods combine well with which analysis methods? How are design
decisions affected by the need to provide analyzability?

Rule 2 Bound the penalties

Penalties have to be paid for the uncertainty remaining after analysis, e.g. a cache-miss penalty has to be paid for any
memory reference that cannot be classified as a cache hit. Some system features introduce huge or even unbounded
penalties, e.g. virtual memory, stochastic network protocols, or service brokerage. Careful design must lead to bounded
penalties of acceptable magnitude if predictability should result.

Rule 3 Use resource-aware design

System design has traditionally profited from principles such as theseparation of concernsand theabstraction
from resources. The abstraction from machine time was the most significant.However, these same design principles
are conflicting with the design goal Predictability. A new principle for the design of layered systems,resource-aware
abstractionhas to be developed and used for the construction of time-critical systems.

References
[1] R. Heckmann, M. Langenbach, St. Thesing, and R. Wilhelm.The influence of processor architecture on the design and theresults

of WCET tools.IEEE Proceedings on Real-Time Systems, 91(7):1038–1054, 2003.

[2] P. Montag, S. Goerzig, and P. Levi. Challenges of timing verification tools in the automotive domain. In T. Margaria, editor, 2nd
International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA), 2006.

[3] J. Souyris, E. Le Pavec, G. Himbert, V. Jgu, G. Borios, andR. Heckmann. Computing the worst case execution time of an avionics
program by abstract interpretation. InProceedings of WCET 2005, 2006.

[4] St. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R. Wilhelm, and C. Ferdinand. An abstract
interpretation-based timing validation of hard real-timeavionics software systems. InProceedings of the Performance and
Dependability Symposium, San Francisco, CA, June 2003.

[5] L. Thiele and R. Wilhelm. Design for timing predictability. Real-Time Systems, 28:157 – 177, 2004.

[6] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, , and P. Stenström. The worst-case execution time problem - overview of methods and survey
of tools. under revision for ACM Transactions on Embedded Computing Systems.

2


