Timing Predictability — a Must for Avionics Systems

Reinhard Wilhelm Lothar Thiele
Saarland University ~ Swiss Federal Technical Institute
Saarbriicken, Germany Zuerich, Switzerland

Timing Analysis — the Problem

This position statement concentrates ondsification of the timing propertiesf embedded avionics systems wihthrd
real-timecharacteristics. Farertification they need offline guarantees for thatisfaction of their timing constraints
and these should be derived $yund methods

In modern microprocessor architectures, caches, pipelare all kinds of speculation are key features for improv-
ing (average-case) performance. They also increase ttabildy of execution times; an individual instruction mtake
(amortized) one machine cycle to execute if everything geedk i.e., no cache misses, no pipeline stalls, no misspecu
lation, or it may take 100 cycles is everything goes wrorey, cache misses, pipeline stalls, long instruction lagsnc
long retirement. The variability of execution times existsall system layers, not only in the processor architechue
also the software development for single tasks, the taskddoation level and distributed operation [5]. Approsshe
improve the average case behavior of systems are ofterirdisaso predictability.

Actual execution times depend on the execution state ofythtes, which are determined by the execution history.

The Timing-Analysigproblem consists in the determinationsaffeandprecisebounds on the execution timesalf
runs of a system.

Timing Analysis — our Solution

Timing Analysis of real-time systems is a lively researosearA number of commercial tools and academic prototypes
have been developed [6]. One of the commercial tools, Alss#i tool, is in routine use in the areonautics and the
automotive industries [4, 3, 2]. It is used in the certifioatdf several time-critical avionics systems.

aiT uses static program analysis to determine strong iamtgiat each program point about sets of executions reach-
ing this point. These invariants allow the prediction ofesafd precise upper bounds of the instruction at this program
point.

The control flow of the program is translated into an integeedr program whose maximal solution determines
an upper bound on the execution of the whole program andifeenthe control-flow path on which this bound was
computed. executions

Experience

Valuable experience has been made on the user and on theataalside. Most tools are based on an abstract model of
the underlying hardware. These models are costly to builidhand to get correct. Formal methods are currently being
developed to derive them in an efficient way guaranteeingectmess by construction.

Experience with industrial use has shown that the difficaftderiving guarantees strongly depends onttimeng-
predictability properties of the systems, in particular of the employe@@ssor architecture, the software design disci-
pline, the operating system including the schedulingsggtand the communication mechanism.

Reconciling Predictability with Performance — the Vision
Claim 1 Over-provisioning will no longer work

Traditionally, one tries to give guarantees on the worse aascritical case behavior by increasing the average case
performance (over-provisioning). However, variabilifyexecution times has become too large to use over-provigjon
to derive guarantees.

Claim 2 Completely deterministic systems will not perform

A conservative strategy throughout all design decisiotesrgtts to arrive at completely deterministic designs. saagh
the time-triggered architecture, the damnation of cagtipslining, speculation and dynamic scheduling. This apph
favors predictability but suffers from poor average-casgqrmance by ignoring the advances in computer architectu
design.

Rule 1 Design only what you can analyze

Predictability needs off-line analysis of whole hardwaoéivare systems. Therefore, all design and implememtatio
methods need to be considered under the aspects of anidyzalal, analysis complexity and precision [1]. Basic
guestions concern the relation between analysis and desigmnas: What is the influence of design decisions (e.g.
changing cache replacement from LRU to PLRU) on the vaitstmf execution times? How is the distribution of worst
and average case execution times? Which design methodsreoméll with which analysis methods? How are design
decisions affected by the need to provide analyzability?

Rule 2 Bound the penalties

Penalties have to be paid for the uncertainty remaining aftalysis, e.g. a cache-miss penalty has to be paid for any
memory reference that cannot be classified as a cache hite Sgstem features introduce huge or even unbounded
penalties, e.g. virtual memory, stochastic network prolsor service brokerage. Careful design must lead to bedind
penalties of acceptable magnitude if predictability sdaekult.

Rule 3 Use resource-aware design

System design has traditionally profited from principlestsas theseparation of concernand theabstraction
from resources The abstraction from machine time was the most significeltwever, these same design principles
are conflicting with the design goal Predictability. A nevingiple for the design of layered systemesource-aware
abstractionhas to be developed and used for the construction of tintisalrsystems.

References

[1] R.Heckmann, M. Langenbach, St. Thesing, and R. Wilhdlhe influence of processor architecture on the design ane sudts
of WCET tools.|IEEE Proceedings on Real-Time Systefig7):1038-1054, 2003.

[2] P. Montag, S. Goerzig, and P. Levi. Challenges of timiegfication tools in the automotive domain. In T. Margariditer, 2nd
International Symposium on Leveraging Applications ofnfral Methods, Verification and Validation (ISoL,2RD06.

[3] J.Souyris, E. Le Pavec, G. Himbert, V. Jgu, G. Borios, Bantleckmann. Computing the worst case execution time of mmis
program by abstract interpretation. Pmoceedings of WCET 2003006.

[4] St. Thesing, J. Souyris, R. Heckmann, F. RandimbivaialoM. Langenbach, R. Wilhelm, and C. Ferdinand. An abstract
interpretation-based timing validation of hard real-timgonics software systems. Rroceedings of the Performance and
Dependability Symposium, San Francisco,, Géne 2003.

[5] L. Thiele and R. Wilhelm. Design for timing predictaltjli Real-Time System28:157 — 177, 2004.

[6] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. ThegiD. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, F. Muell
I. Puaut, P. Puschner, J. Staschulat, , and P. Stenstroenwvditst-case execution time problem - overview of methodissamvey
of tools. under revision for ACM Transactions on Embeddedh@ating Systems.

