Dynamic Aircraft Routing Services: Complexity, Scalability, Efficiency, and Software Design

Emilio Frazzoli

Lab. for Information and Decision Systems Aeronautics and Astronautics Massachusetts Institute of Technology

> HCSSAS Aviation Workshop Alexandria, VA Oct 5, 2006

Scalability and complexity of aviation software

- Current software design/analysis paradigms:
 - Most research on safety/correctness of automation software.
 - Some concern on scalability/computational complexity of proposed algorithms.
 - For what range of inputs/problem parameters will an embedded system maintain the safety/correctness properties? To what extent shall we be able to verify these properties?
- Little or no systematic investigation of the problem complexity, as a function of system parameters (e.g., traffic volume, network size):
 - Computational complexity (comp. time, space, etc.)
 - Verification complexity
 - "Physical" time complexity (e.g., traffic congestion).
 - Communication complexity (network load)
 - Cognitive complexity (human operator workload).
- Search for tradeoffs/(co)design paradigms for cyber-physical systems.
 - Algorithm design
 - Information flow protocols
 - Human interfaces
 - Infrastructure design

Technological cost - computational complexity - communication complexity

System performance

- Time complexity - Quality of Service Human factors cost - Cognitive complexity

Dynamic Aircraft Routing Services

• Application domains:

- Air Traffic Management
- UAV autonomy
- Command and Control interfaces
- Models:
 - Large-scale heterogeneous networks of mobile and stationary agents (e.g., aircraft and ground operators) as a shared resource.
 - Dynamically-generated tasks and/or constraints; task specifications have a discrete/combinatorial nature.
 - Aircraft dynamics, environmental interaction, sensing/communication add a (differential) geometric aspect.

Performance criteria:

- Quality of service (average, worst-case delays, etc.)
- Acceptable guarantees of safety
- Robustness to off-nominal conditions, adversarial actions.

An input-output view

Example: Traffic volume/congestion tradeoffs

 Problem: What is the minimum time required to safely transfer n mobile agents from their source to their destination point?
Source and destination randomly sampled from a given distribution

Comm	Distribution	Time	Avg. speed
No	Singular	Θ(n)	Θ(I/n)
No	Abs. Cont.	Θ(n ^{1/2})	Θ(n ^{-1/2})
Yes	Abs. Cont.	O(log n)	Ω(1/log n)

Aerospace Robotics and Embedded Systems Laboratory