
A Fully Abstract Trace Model for Dataflow Networks

Ben@ Jonsson
Swedish Institute of Computer Science
Box 1263, S-164 28 Kista, SWEDEN

bengt@sics.se

Abstract: A dataflow network consists of nodes that com-
municate over perfect FIFO channels. For dataflow networks
containing only deterministic nodes, a simple and elegant
semantic model has been presented by Kahn. However, for
nondeterministic networks, the straight-forward generaliza-
tion of Kahn’s model is not compositional. We present a
compositional model for nondeterministic networks, which
is fully abstract, i.e., it has added the least amount of extra
information to Kahn’s model which is necessary for attaining
compositionality. The model is based on traces.

1 Introduct ion

Dataflow is a paradigm for asynchronous parallel computa-
tion, in which data “flows” between nodes that are intercon-
nected by channels into a dataflow network.

We are concerned with semantic models of dataflow net-
works. A model of dataflow networks is a mathematical de-
scription of their behavior. Two desiderata for such a model
are: (1) the model should describe only the externally ob-
servable behavior of a network, e.g. as manifested by data
flowing in to or out from the network, and (2) the model
should support modular descriptions of dataflow networks: if
a large network is constructed by composing smaller compo-
nent networks, then the denotation of the composed network
should depend only on the denotations of its components.
This last property is often called “compositionality”.

For dataflow networks with only deterministic processes,
Kahn [Kah74] has proposed an elegant semantic model, which
satisfies both of the above desiderata. Kahn models a net-
work by a function from sequences of data items on input
channels to sequences of data items on output channels.

*This work was supported in part by the Swedish Board for Tech-
nical Development (STU) under contract no. 86-4250.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 ACM 1989 0-89791-294-2/89/0001/0155 $1.50

For nondeterministic networks, the straight-forward gener-
alization of Kahn’s model would be to model a network by
a relation rather than a function between sequences of data
items on its channels. A sequence of data items that ap-
pears on a channel is often called a history, and we will
therefore refer to this model as the history model. Unfortu-
nately, for nondeterministic networks the history model fails
to satisfy desideratum (2). In other words, the denotations
in the history model of two networks, Ni and Nz, do not
contain sufficient information to infer the denotation of the
network which is composed of Ni and N2. This was shown
by Brock and Ackerman [BASl].

To obtain a compositional model for nondeterministic net-
works, the history model could be refined to a model con-
taining more information about networks. Desideratum (1)
suggests that the model should not contain details that are
irrelevant for this purpose. A model with this property is
called fully abstract. Intuitively, a model l3 is fully abstract
with respect to a model 0 if 2) has added precisely enough
information to 0 to attain compositionality. For modular
verification methods, where the verification of a network can
be split into independent verifications of its components, a
fully abstract model indicates what aspects of a network’s
behavior must be described.

The paper by Brock and Ackerman [BA81] shows why the
history model is not compositional for nondeterministic net-
works. Two nondeterministic networks that are equivalent
in the history model may exhibit different behaviors if one
introduces constraints on the order in which input is supplied
and output appears (e.g. that one input is only supplied af-
ter some output appears). Such ordering constraints can be
introduced by composing two networks, and therefore the
denotation of the larger network is not derivable from the
denotations of its components.

In this paper, we present a model of nondeterministic dataflow
networks, which is fully abstract with respect to the history
model. In order to obtain a compositional model, we must to
the history model add information about how a network be-
haves under different ordering constraints. Our model pro-
vides precisely this information. We denote a network by
the set of its traces. A trace is a linearly ordered sequence
of communication events that may appear on its input and
output channels during a computation. A communication

155

event represents the appearance of a data item on a certain
channel.

In the literature, ma.ny compositional models have been pro-
posed [BM85, Bou82, BA81, Bro83, Bro88, Kok86, Kos78,
KP85, KP86, Par83, Pra82, Pra84, SN85], which are not
fully abstract. Another full,y abstract model has been pre-
sented by Kok [Kok87]. In this paper, we include a compar-
ison with the model of Kok. We argue that our model uses
less complicated concepts and allows a more natural proof
of full abstraction.

Our model is similar to a model presented by Misra and
Chandy (Mis84], in our earlier work [Jon85, Jon87], and by
Lynch and Tuttle [LT87]. These models are defined for
a model of distributed systems, called I/O-automaton in
[LT87] and I/O-system in [Sta84, Jon87]. Our formal defi-
nition of a dataflow network will in fact be a special case of
an I/O-automaton (I/O-system). The results of this paper
appear in the context of I/G-systems in the author’s thesis
[Jon87].

This paper is organized as follows: In the next section, we
give the basic definitions of dataflow networks. In section 3,
we define our trace model and the history model. In section
4, we prove that our model. is compositional. In section 5,
we state and prove the main theorem: our model is fully ab-
stract with respect to the history model. Section 6 contains
a comparison of our model with the fully abstract model pre-
sented by Kok. Section 7 contains a comparison with other
related models, and the last section contains conclusions.

2 Dataflow Networks

In this section, we define dataflow networks. In subsec-
tion 2.1, we give an informal presentation, which is formal-
ized in section 2.2 by using labeled transition systems.

2.1 Informal Presentation

A dataflow network is a set of nodes connected by directed
channels. Each channel is distinctly named. The nodes com-
municate with each other and with the environment by pass-
ing data items over the channels. The channels are of three
different types:

input channels transmit data items from the environment to
a node.

output channels transmit data items from a node to the en-
vironment.

internal channels transmit data items from a node to an-
other node of the netswork.

At any step of its execution, a node can poll its incoming
channels for presence of data items, consume data items from
incoming channels, perform internal computations (change
its state), and produce data items on outgoing channels.

The channels of a network behave like perfect, unbounded

FIFO queues. That is, data items sent over a channel are
delivered in unchanged order, after a finite unspecified delay.
Note that this also applies to the input and output channels
of the network.

Larger networks can be built by composition of smaller net-
works. Given networks Nr , . . . , Nk, where each channel name
occurs at most once as an input channel and at most once
as an out,put channel, a composite network is obtained by
connecting input channels to output channels with the same
name. The resulting network can also be viewed as a node
whose input and output channels are those that were not
connected. Figure 1 shows how two networks, Nr and Nz,
are composed to yield a network with input channel a and
output channels b and d.

Figure’l: Two networks, Nr and Nz (left), and their compo-
sition (right).

2.2 Formal Presentation

In this subsection, we give a formal definition of dataflow
networks by using labeled transition systems. A labeled
transition system has a state, which can be changed by tran-
sitions. Transitions can have labels that represent the com-
munication of data values over channels. Labeled transi-
tion systems is a general framework, which have often been
used for operational descriptions of computing systems, (e.g.
[Plo81, MP81]).

We first give a formal definition of individual nodes. There-
after we define a network in terms of its nodes. It should
be noted that we use labeled transition systems as a means
for obtaining a formal definition of dataflow networks, upon
which we can build subsequent definitions and proofs. The
details are a formal counterpart of the informal presentation
in subsection 2.1.

We assume a set V of data items, ranged over by d. Let V”
denote the set of finite sequences of data items in V, ranged
over by q. The sequence consisting of the elements dr, . . . , &
is denoted (d,, . . . ,d,). The empty sequence is denoted by
(). The concatenation of two sequences q and q’ is denoted
by q.q’. We assume a set of channels, ranged over by c, in,
and out.

Definition 2.1 A node p is a tuple (IP,OP,SP,s~, R,,,FJ
where

IP is a set of channels, called the set of incoming channels.

156

0, is a set of channels, called the set of outgoing channels,
with IP n 0, = 0.

S, is a set, called the set of states

s,” is an initial state, with SE E S,.

Rp is a set of firings. A firing is a tuple (3, xi,,, s’, xout) where
s,s’ E S,, where xin is a mapping from I,, to V’, and
where x0,,* is a mapping from 0, to V’.

3r s ‘F’(b) is a finite collection of fairness sets. Each fair-
ness set F is a subset of the set Rr of firings, subject to
the following constraint: for each channel in E Ib, if F
contains one firing (s,x;,,,s’,xoUt) which satisfies the
property that xi,(&) # (>, then F contains all firings
in JLP with that property.

cl

The intuitive meaning of a firing (s, Xin, s’, xout) is: “when
the node is in state s and the contents of each incoming chan-
nel in starts with the sequence x;,,(in), then these sequences
may be consumed, while the node changes its state to s’ and
the sequence xout(out) is produced on each outgoing channel
out”. A fairness set represents a set of firings which may not
be neglected indefinitely in executions of a network where
the node occurs. For instance, if &, = {Rp}, i.e., the set of
all firings is one fairness set, then the node will continue to
perform firings indefinitely, until no more firings are possible
(e.g. for lack of input). The constraint on fairness sets is
a technical requirement which excludes certain pathological
fairness sets.

We use the following notation for mappings. If {xi,. . . , zr,}
is a set of elements, we use [II I+ el, . . . ,z, H e,] to denote
the mapping from {zr, , . . , c,} that maps 5i to e; for i =
1 ,“., 12. If 0 is a mapping we use a[zr H ei, . . . , I, H e,]
to denote the mapping which is equal to o except that it
maps Zi to ej for i = 1,. . . ,n.

Example 2.2 Consider a node F&merge. Intuitively, it
consumes data items from the channels ini and ins and pro-
duces them onto out. The node is “fair”, i.e. it never neglects
any incoming channel indefinitely. The set of incoming chan-
nels is {inI, ins} and the set of outgoing channels is {out}.
The node has one state, denoted s, which then of course is
the initial state. The set of firings is the union of the set

Rl = {(s, [ini H (d) , in2 H ()] , s , [out H (d)])) d E D}

of firings that consume a data item from in1 and produces
it on out, and the set

R2 = ((s, [in1 +, () , inz ++ (d)] , s , [out - (d)])) d E D>

of firings that consume a data item from inz and produces
it on out. By postulating two fairness sets, RI and R2, we
ensure that the merge will be fair. •I

We can now define a network N which consists of a set P of
nodes, by using labeled transition systems. The definition
is a formalization of the intuition that in a network, each

node behaves according to its definition, and each channel
behaves like an unbounded FIFO channel.

Definition 2.3 A dataflow network N consists of a set PN
of nodes, such that in PN, each channel occurs at most once
as an incoming channel and at most once as an outgoing
channel.

If N is a dataflow network consisting of the set PN of nodes,
we make the following definitions:

IN = (UP &) \ (UP 0,) is the set of input channels of N.

ON = (Us 0,) \ (,u~ Ip) is the set of output channels of N.

EN = IN U ON is the set of external channels of N.

CN = $$Ip) U (~~0~) is the set of channels of N.

EN is the set of mappings from PN U CN, which map each
node p to a state in S, and each channel in CN to a
sequence in V’. Such a mapping is called a state of
N. Intuitively, for a state d E EN, the state a(p) gives
the current state of node p, and a(c) gives the current
content of channel c.

u$ f EN maps each node p to s$ and maps each channel c
to the empty sequence 0.

A communication event of N is a pair (c,d), where c is an
external channel in EN, and d is a data item in V.

RN is a set of transitions, i.e., tripIes of the form o -5 (T’,
where g, cr’ E EN and e is either a communication event
of N or the silent event r. The set RN consists of all
transitions that can be generated according to one of
the following three alternatives:

1. RN contains a transition u 5 o’ (called an inter-
nal transition) if there is a node p E PN with a
firing (s, xin, s’, xout) such that

l c satisfies a(p) = s and for each incoming
channel in E 1, to p, the sequence x;,(in) is
a prefix of o(in).

l u’ agrees with u on nodes except p and chan-
nels not in IpU 0,. The state c’ differs from c
exactly in that a(p) = s’, that for each in E
I, the initial sequence x;,(&> has been re-
moved from the sequence a(in) to get o’(in),
and that for each out E 0, we have u’(out) =
~(out).Xout(ouq.

2. For each input channel in E IN and data item
d E V, the set RN contains a transition of the

form D (3 cr’ (called an input transition) such
that c’ = a[in H (o(&).d)], i.e., a’ is the same
state as o except that d has been added at the
end of in.

3. For each output channel out E ON, RN contains a

transition of the form ,“ut,d)u’ (called an output
transition) such that g = ~‘[out H (d.a’(out))],
i.e., d is the first data item in o(out) and u’ is the

157

same stat,e as u except that d has been removed
from the front of out.

FN C P(R,) is called the set of fairness sets. 3N contains
all sets of the following types:

1. For each node p and fairness set F in FPp, there
is a fairness set in TN Consisting of all internal
transitions derived from a firing in F,

2. For each output channel out E ON, the set of

transitions of form c (3) 0’ in RN constitute one
fairness set.

q

Intuitively, a state in CN gives the state of each node and
the contents of each channel. The state can change in tran-
sitions, which are either (1) caused by a firing of a node, (2)
caused by the arrival of a data item to an input channel,
or (3) caused by the output, of a data item from an output
channel. In the two last cases, the channel and data item
in question are recorded as a label on the transition. The
fairness sets in FN make sure that (1) the fairness require-
ments of each node are obeyed, and that (2) all data items
in output channels are eventually output from the channel
in a transition of form (3).

We finally define the composition operation, by which large
networks can be built from components.

Definition 2.4 The dataflow networks Nr, . . . , Nk are called
compatible if in Nr , . . . , Nk each channel name occurs at most
once as an input channel and at most once as an output
channel.

Given compatible networks Nr , . . . , Nk, we define their com-
position Nr(] . . _]lNk as the network whose set of processes is
the union Y Pnr, of the processes of Nr,. . . ,Nk. q

It follows that the input channels of Nr]] . . .](Nh are those
input channels among Nr,. . . , Nk that to not also occur as
output channels, and analogously for the output channels of

NI II . . IINk.

Remark: Some authors (e.g. (SN83, KP85, Kok87]) use slight-
ly different operations to form larger networks from compo-
nents. They define a tupling operation which puts networks
in parallel without connecting any channels, and a linking
operation which connects an input channel to an output
channel of a network. For the purposes of this paper, this
difference is not important. The tupling operation can be re-
garded as a special case of our composition operator, and the
linking operation can be emulated by composing the network
with a FIFO buffer that connects the two channels.

3 Models of Dataflow Networks

We can now define the set of traces and histories of a net-
work.

Definition 3.1 A transition 01 La2 is enabled in a state
aifa=crr. 0

Definition 3.2 A computation of a dataflow network N is
a finite or infinite sequence

uo 2 alA . ..x+a n en+> -----*...

of transitions, which satisfies the following conditions:

1.

2.

3.

q

a0 is the initial state of N.

Each triple on-l % o” in the sequence is a transition
in RN.

For each fairness set F E FN, if there is a u” in the
computation such that a transition in F is enabled in
all states urn of the computation with m 2 n, then

there must be a transition #’ ez u”‘+l E F with
m >_ n in the computation. Note that for finite com-
putations this condition is equivalent to the condition
that no transition from F is enabled in the last state.

Definition 3.3 Let I? be a computation of the network N.

l the history function of r is a mapping from EN which
maps each external channel to the sequence of data
items transmitted over that channel in I’.

l the trace of I is the sequence of communication events
in r. In general, a trace may be either finite or infinite.

We say that h is a history function of a network N if h is
the history function of a computation of N. Similarly, we
say that t is a trace of a network N if t is the trace of a
computation of N. If N is a dataflow network, we define

HN as the set of history functions of N

TN as the set of traces of N.

Definition 3.4 Let N be a dataflow network.

a

l

q

The history model% is defined as follows: for a dataflow
network N, its denotation ‘H(N) is the triple

(IN, ON, HN).

The trace model 7 is defined as follows: for a dataflow
network N, its denotation T(N) is the triple
(IN, ON,TN).

Intuitively, a computation is a complete run of the network,
in which all nodes perform firings according to their defini-
tions, and all channels behave like FIFO channels. A trace
of a computation is the sequence of communication events
that is exchanged with the environment over input and out-

158

put channels. A history function of a computation gives for
each input and output channel the sequence of data items
that have been exchanged over that channel.

An important detail is that in each computation, all data
items in an output channel are eventually output from that
channel. This follows from the introduction of a fairness
set for each output channel in definition 2.3. Without this
requirement the trace model would not be compositional.
The model would not be able to distinguish between a net-
work that always produces a certain output and a network
which sometimes produces this output and sometimes pro-
duces nothing (for the network that always produces output,
the output may sometimes be left in the output channel).

Example 3.5 Consider a network N which consists of the
only node Fairmerge with input channels inr and in2 and
output channel out.

Each history function h of N maps out to a sequence h(out)

which is obtained by merging the sequences h(ini) and h(inz).
An example of a history function is the function h for which

h(irLl) = (1,3)

k(inz) = (2)

h(otd) = (1,2,3)

To describe the set of traces oft, let tinI denote the sequence
of data items transmitted over the channel in1 in t, and
similarly for ins and out. A trace t of N is then a sequence
of communication events on inI, ins, and out, such that

l tout is obtained by merging tinI and tins.

l For each prefix t’ of t, the sequence tiut is a prefix of
some sequence that is obtained by merging t:,, and

%, .

An example of a trace is the sequence

((i%,l), (in2,2),(out,l),(i~l,3),(out,2),(out,3)j

4 Compositionality

As shown by Brock and Ackerman [BA81], the history model
is not compositional for dataflow networks that contain non-
deterministic nodes. They presented an example containing
two networks with the same denotation in the history model.
However, when composing the networks with another net-
work, the composed networks had different denotations in
the history model.

In this section, we prove that the trace model is indeed com-
positional. For a large network is the composition of smaller
networks, we present an operation for obtaining the denota-
tion of the large network from the denotations of the smaller
networks.

Let us introduce some notation. If C is a set of channels,
and t is a sequence of communication events, let t[c (the
restriction of t to C) denote the subsequence of t consisting
of those communication events that occur on channels in
C. Let Ct denote the set of finite and infinite sequences of
communication events on channels in C.

Theorem 4.1 Let Ni, . . . , Nk be compatible dataflow net-

works, and let N be their composition NilI . . . IINk. Let
CN denote y EN,. Then the denotation 7(N) is the triple

(IN, ON, TN) where

l IN = (‘JIIN~) \ (UioNc)

’ ON = (&ON,) \ @IIN<)

l TN = {tr(r,uo,.,) 1 t E (CN)+

and ~[(E~,)E TN, for i = 1,. . . , k}

cl

In other words, to obtain the traces of Nr]l . . . (]Nk, first form
the “synchronized merges” of the traces of Nr, . . _ , Nh (syn-
chronizing on events on channels that are common to several
Ni), then delete the communication events on those channels
that are internal channels of Nr J] . . . (JNk.

Proof Sketch: The proof for the sets IN and 0~ follows im-
mediately from definition 2.4, by considering how channels
are connected.

The proof for the set TN follows from a related theorem
for I/O-automata in [LTU] or I/O-systems in [Jon87]. A
dataflow network, as defined in definition 2.3, can be re-
garded as an I/O-automaton or I/O-system. The compo-
sition M of Nl,..., Nk as I/O-automata is similar to their
composition Nil]. . .]]Nk as dataflow networks, with the ex-
ceptions that (1) M will contain two copies of channels that
connect one subnetwork with another, and (2) communica-
tion events on channels that connect subnetworks are still
observable. For instance, the composition of the networks
Ni and Ns in the left part of Figure 1 is not exactly the
network in the right part of that figure, since it contains two
serially connected copies of the channel c, and since commu-
nication events on c can be observed. If we define transi-
tions, computations, etc. of M in the natural way, it can be
proven that the traces of M are “synchronized merges” of
the traces of Nr, . . . , Nk, i.e., they are the sequences t such
that t [(E,,JE TN, for i = 1,. . . ,/c. To complete the proof of
theorem 4.1, we must prove that t is a trace of M iff t [(lNUoN)
is a trace of Nr]] . . . IINk. This follows from the following two
properties

1. Computations of Nr I(. . .]I Nk have no observable events
on internal channels

2. The set of computations is not changed in an essen-
tial way if the two copies in M of channels that con-
nect subnetworks are replaced by the single copy in
Ni]I . . . IINk. To prove this property, we need the con-
straint on fairness sets in 2.1. 0

159

Example 4.2 AR Example by Brock and Ackerman

To illustrate the composition operator in the trace model,
we shall briefly outline how the example of Brock-Ackerman
is handled by the trace model. Here we use a version of the
example described by Park [Par83].

We consider the networks Nr and Nz, where Ni has nodes
Merge, Buf;, and channels a, 6, and c. We shall later com-
pose Ni with the network M which has nodes Plus1 and
channels c and a. The structure of the networks is shown in
Figure 2.

f-l B"fi

77 c

9

+

‘PIUS1

c

Figure 2: The Example by Brock and Ackerman.

The function of the nodes is intuitively the following

Merge merges the first data item from a with the sequence
(5,5) and produces the result on b. Thus, depending
on whether some data items arrive on a, three or two
data items will be produced on b.

Bufr consumes a data item from b and produces it on c.
Thereafter Bufi repeats this behavior once more be-
fore terminating.

Bufz first consumes two data items from b, produces them
on c and thereafter terminates.

Plus1 adds one to the first incoming data item from c, pro
duces it on a, and terminates

The networks A$ and NZ have the same denotation in the
history model. If we for the moment only consider compu-
tations in which only the data item 6 arrives on a, then the
possible history functions of Ni are those history functions h
for which h(a) = (6) and h(c) is one of (5,5) , (5,6), or (6,5).
However, if we compose Ni and M, and make the channel c
external (for example by introducing a fan-out node) then we
see that (5,6) is a possible history on c of Nr /M but not of
Nz]]M. The reason for this is that when the first data item 5
is produced by N2(1M on c, then the node Bufi has already
consumed a second data item. This data item must be a 5,
since a 6 has not year appeared on channel a. Therefore the
second data item on c must also be a 5.

In the trace model, the networks Nr and Nz have different
denotations. Again only considering computations in which
the data item 6 arrives on a, the possible traces of Nz are

((a, f3), k, 5L (c, f-3) ((c, 5L (a, Q, (~5))
((a, f% (c, 5h (c, 5)) ((~,5),(~,5)7(a,6))
((a, f-9, (c, 6>, (c, 5))

However, the network Nr has in addition the trace

((c, 5L (a, 6L (c, 6))

Note that this is not a trace of Ns, since when the com-
munication event (c,5) occurs, the node Bufi has already
consumed a second data item, which must be a 5.

The traces of M which match the traces of Nr and N2 dis-
cussed above are

((~3 5), (a, f-317 (c, 5)) ((c, 5h (a7 6L (~6))
(Cc, 5L (c, 5), (a, 6))

If we use the composition operator in the trace model, we see
that the only trace of NzjlM (again considering only those
with a 6 on e) is ((c, 5), (c, 5)) whereas the network NIIJM

has the traces ((c, 5), (c, 5)) and ((c, 5), (c, 6)).

5 Full Abstraction

In this section, we present the main result of the paper:
the trace model is fully abstract with respect to the his-
tory model. In other words, it contains the minimal amount
of extra information necessary to attain compositionality.

Let us introduce some terminology. By a model (of dataflow
networks) we shall mean a mapping from the set of dataflow
networks to some set. By a context C[s] we mean a compo-
sition of a set of networks with a “place holder”, denoted by
a dot . A network N is put into the context by replacing
the place holder . by N.

The idea of the definition of full abstraction is that there is a
model 0, which usually characterizes an observable behavior
of a network. In some cases, the model 0 is not composi-
tional, and in that case a more refined model V is defined.
The purpose of V is to add precisely ‘enough information to
the model 0 to make it compositional.

Definition 5.1 Let V and 0 be two models of dataflow
networks. The model 2> is said to be fully abstract with
respect to 0 if for all networks Nr and Nz

D(N) = D>(S)

(V contexts C[.]) [OT[Nr]) = O(C[Nz])]

0

An alternative way to understand this definition is to note
that it is equivalent to the conjunction of the following three
properties:

1. If D(Nr) = z>(Nz) then O(Nr) = O(Nz),
i.e., the model 2, is more distinguishing than the model
0.

2. For all contexts C[.] we have
V(Nl) = V(Nz) e D(C[N,I) = WC[NzI),
i.e., the model 2, is compositional.

160

3. If V(Nl) # V(Nz) then there is a context C[.] such
that U(C[NI) # O(C[W),
i.e., if two networks are distinguished by V, then there
is a context such that the networks can be distin-
guished by 0.

To see that these three properties are equivalent to def-
inition 5.1, note that property 1 follows from the impli-
cation I, using the identity context. To derive prop-
erty 2, note that for a particular context C’[.] and net-
works Nl and Nz such that V(Nr) = V(Nz), it follows
from the implication * that for all contexts C[.] we have
U(C[C’(Nr]]) = O(C[C’[N~]]), since composition of two con-
texts yields a context. From the implication e it follows
that V(C’[Nr]) = V(C’[Nz]). Property 3 follows directly
from the implication s as its contrapositive

Conversely, assume that 0 and 2, satisfy the requirements
1 - 3. The implication G is equivalent to property 3. The
implication ;--*. follows by noting that if V(Nr) = V(Na),
then by the fact that 2, is compositional (property 2) we infer
for all contexts C[.] that V(C[Ni]) = V(C[N&. Finally, by
prp;;rj;)l. we have for all context C[+] that U(C[N,]) =

2.

In summary, the definition of full abstraction intuitively means
that V is more distinguishing than 0, and that V distin-
guishes between networks exactly when that distinction is
necessary for attaining compositionality.

We now state the main theorem of the paper.

Theorem 5.2 The trace model is fully abstract with re-
spect to the history model. q

Proof: To establish the theorem, we shall prove the three
properties listed after the theorem. Property 1 follows di-
rectly from definition 3.4. Property 2 was proven in theo-
rem 4.1, Property 3 follows from the following lemma 5.3.

Lemma 5.3 If Ni and Nz are dataflow networks such that
T(Nr) # 7(&), then there is a context C[.] such that

~(WlI) # ‘H(cPJ21). cl

Proof of lemma 5.3: To prove the lemma, we must for each
pair Nr, Ns of networks find an appropriate context C[.].
If I(N,) # I(Ns) or if O(Nl) # O(&), the lemma fol-
lows immediately by taking Cl.1 as the identity context (i.e.,
C[N] = N).

In the remaining cases we have T,, # TN~. Assume that
both Nr and Nz have the input channels inr, . . . , in, and
the output channels outi,. . . , out,. We must find a context
which makes it possible to distinguish between Ni and Nz
in the history model. Intuitively, the history model orders
data items that are produced on one channel in a total or-
der, whereas the trace model orders communication events
on all channels in a total order. Thus, the sought context
must “bring together” the communication events on all ex-

ternal channels of Ni to a single channel. We shall use the
context Cl.1 shown in Figure 3. The idea of the context is
to bring together data items on channels ini,. . . , in, and
OUtI,.. . , out, into a totally ordered sequence on channel b.
The sequence on b is copied onto c in order to make it ob-
servable from outside.

Figure 3: Context.

Over the channels in1 , . . .,in, and outl,. . , out, are trans-
mitted data items in V. Over the remaining channels a,
b, and C, are transmitted data items that have the form of
communication events of N;, i.e., they are pairs of the form
(inj,cZ) and (out,,d), h w ere inj or out! is one of the channels
of N;, and d is an ordinary data item that can be transmitted
over that channel.

The nodes perform the following functions:

MergeMu& merges data items from a and outl, . . . , out, onto
b, i.e., it reads a data item from either incoming chan-
nel and produces it on the outgoing channel. Each data
item d from a channel out1 is first transformed into the
pair (outl,d), i.e., it is tagged with a channel name,
whereas the data items from channel a (which are all
of the form (inj,d)) are transmitted unchanged. The
merge is “fair”, i.e., it does not indefinitely neglect any
of its incoming channels.

Split copies each incoming data item from b onto c. More-
over, if the incoming data item is of the form (ini, d),
then the data item d is transmitted onto the channel
inj in addition to the data item (inj,d) being trans-
mitted over c.

Let NM be the network consisting of only the node Merge-

Mark, and let Ns be the network consisting of only the node
Split. We can then write the context C[.] as Iv,]] . [INS.

Continuing the proof, recall that we assumed TN~ # TN~.
From this we conclude that there must exist a trace t such
that t $ TN~ but t E TN? (if not, reverse the roles of Nr
and Na). The trace t is a (finite or infinite) sequence of
communication events of the form (inj, d) and (out,, d). Let
in(t) be t [finl,,.,,inml, i.e., the subsequence of t consisting of
all communication events of the form (inj,d). Define the
history function h by h(a) = in(t) and h(b) = t. We claim
that

161

We first give a sketchy proof of the claim (*). First note
that the node Split is essentially connected to nodes of Ni
via FIFO channels: for eacln data item of form (inj, d) that
are consumed by Split the data item d is transmitted to N;
over a FIFO channel, and each data item d transmitted from
N; over outl reaches Split in the form (oz&,d} over FIFO
channels via MergeMu&. It follows that tagged data items
are consumed by Split in the same order as the corresponding
communication events wou1.d occur in a computation of N;.
Hence the sequence t is transmitted over b (and hence over
c) iff t is a trace of Ni.

We next give a more detailed proof of (*). First assume that
t is a trace of Ni. We transform t into a sequence t’ of commu-
nication events on the channels ini,. . . , in,, o&l,. . . , out,,
a, b, and c as follows:

l Each communication event of the form (o&r, d) in t is
replaced by the sequence of communication events

((OU~I, 4 (4 WI, 4) (c, WI, 4))

l Each communication event of the form (inj, d) in t is
replaced by the sequence of communication events

We now use theorem 4.1 to prove that t’[{a,cl is a trace of
C[Ni]. This follows if we note that (1) t’[(outl,...,out,,o,b) is
a trace of the network N,M, since it is composed of frag-
ments of the form ((out/,(i) (b, (out,, d))) and of the form

((~7 (inj, d)) (b, (injv d))), and that (2) t’[(inl,...,in,.b,c} is

a trace of the network Ns, since it is composed of fragments
of the form ((b, (outr,d)) (c, (outl,d))) and of the form
((b, (inj, d)) (c, (inj, d)) (inj, d)). The if-part of (*) now
follows by observing that the sequence of data items trans-
mitted over c in t’[ro,=> is t, ans that the sequence of data
items transmitted over a in t’[fa,=l is in(t).

To prove the only if-part of (*) it appears necessary to argue
about computations rather than about traces. Assume that
there is a history function h of C[Ni] such that h(e) = in(t)
and h(c) = t. Then there is a computation I? of C[Ni] in
which the sequence of items transmitted over c is t. Hence
the sequence of data items produced by Split is also t. We
shall construct a computation I of Ni in which t is the se-
quence of communication events.

We transform I” into a computation of Ni as follows:

Remove all transitions with communication events of
the form (a,d) or (c,d), and all transitions resulting
from firings of the node MergeMurk.

Each internal transition (derived from a firing of Split)
which consumes a (data item of form (mtl,d) from
channel b is labeled by (out!, d).

Each internal transit.ion (derived from a firing of Split)
which consumes a data item of form (ini, d) from chan-
nel b (and produces d on i7tj) is labeled by (ini, d).

4. Replace each state u’ of C[Ni] in I” by a state u of Ni.
The state o agrees with o’ for nodes in N;, for internal
channels of Ni, and for the channels inr,. . . , in,. For
the channels o&, . . . , out, we obtain o(outr) as the
concatenation a’(b) r~,,~,).d(outO, where o’(b) f{out,~ is
the subsequence of a’(b) of data items of form (outi, d).

The result is a sequence I. The intuition here is that the
channels inr, . . . , in, p erform the same sequence of transi-
tions in l? as in I”, whereas each channels out) in l? sim-
ulates the concatenation of the sequence of data items of
form (outl,d) in b and the channel outi in I?.

Note that each firing of Split in I” is replaced by a corre-
sponding transition with the communication event that was
produced by Split. It follows that the sequence of communi-
cation events in I is the sequence of events that is produced
on c by Split, which is exactly t. To see that I’ is indeed a
computation of Ni, note that the nodes and internal chan-
nels of N;, and the channels ini, . . . , in, perform exactly the
same sequence of transitions in l? as in I”. Also note that
the channels o&l,. . . , out,, participate in the same sequence
of transitions in r as in I”, with the difference that the tran-
sitions that remove data items from them may occur in a
later position but still in the same relative order. q

6 Comparison with Another Fully
Abstract Model

Another fully abstract model of dataflow networks. has been
presented by Kok [Kok87]. Denoting the set of data items
by V, a network is modeled as an element in ((V*)“), --+
P(((V*)“‘)“), that is, as a function from tuples of infinite
sequences of finite words of data items to a set of such tuples
of infinite sequences.

Intuitively, we describe the idea behind Kok’s model as fol-
lows. We use v, w, possibly with subscripts, to range over
infinite sequences of finite words. Let w[i] to denote the
ith finite word in the sequence w, and let w 7 i denote the
concatenation w[l]. . * * .w[i] of the i first words of w, and
let w t 00 denote the concatenation of all words of w. A
dataflow network N with input channels numbered from 1
to m and output channels numbered from 1 to n is denoted
by a function f,v from ((V*)w)‘” to P(((V*)w)“). For fN we
have (WI,. . . , wn) E f~((vr, . . . ,vm)) if there is a computa-
tion I of the network in which

l for each i > 1 there is a finite prefix I” of I’ such that
v t i is the sequence of data items transmitted over c

in I’, and

s u -t co is the sequence of data items transmitted over
c in l?.

We can derive the model of Kok from our model by stating
that (wl,. . . , w,J E f ((v,, . . . ,v,,,)) precisely if TN contains
the trace

162

(;nl,~l[l]).-.(inm,~mIll) (outl,zol[l])...(out,,2Un[l])
(i~*,~*[2])...(i~m,Vm[21) (~7&,421)...
A proof of this will appear in [JK].

We argue that our trace model uses simpler concepts and
gives a more natural proof of full abstraction than the model
by Kok. The context in that proof has the property that the
set of histories that can be observed on the output channel
is exactly the set of traces of the network inside the context.

A trace model is a suitable basis for specification of net-
works: there is a rather extensive literature on specifying
and verifying distributed systems using traces (e.g. [CH81,
Jon85, MC82, MCS82, NDG086]). The model by Kok is
in line with some earlier models for dataflow networks (e.g.
[Bro86, Par83, Bou82]) in that it uses functions to denote
networks.

7 Related Work

In this section, we review other related models of dataflow
networks from the point of view of full abstraction.

The seminal paper in this area is by Kahn [Kah74], where a
model for deterministic dataflow networks is presented. Sub-
sequently, it was shown by Brock and Ackerman [BA81] that
a straight-forward generalization of this model, the history
model, is not compositional for nondeterministic networks.
Brock and Ackerman showed that in order to attain com-
positionality, some information about ordering or causality
between the appearance of data items on different channels
must be introduced.

One way to attain compositionality is to extend the history
model by a partial ordering relation between data items on
different channels. The partial ordering represents causal-
ity or temporal ordering [Ke178, BA81, Pra82, Pra84, SN85].
The introduction of partial ordering information attains com-
positionality, but not full abstraction. For instance, a net-
work which performs the unrelated output events (outi, d)
and (outs,d) is distinguished from a network which either
relates (o&r, d) before (or&, d) or vice versa.

Keller and Panangaden [KP85] (in [KP86] in a slightly dif-
ferent framework) propose a trace-model related to ours. A
difference is that they use input events in traces to repre-
sent the consumption of a data item by a node and output
events in traces to represent the production of a data item
by a node. Hence their model is not fully abstract. For
instance, their model distinguishes a network with a single
node acting as a one-place buffer from a network with a two-
place buffer. But the difference between these networks is
“masked” by the input and output channels of the network,
and is therefore not observable in any context, Back and
Mannila [BM85] model a network by a prefix-closed set of
finite sequences, which corresponds to the set of prefixes of
our traces. Their model identifies certain networks that are
distinguished in the history model.

Several authors represent nondeterminism as determinism
with a missing parameter - an “oracle” - which accounts

for the nondeterminism. An oracle is an infinite sequence of
outcomes of nondeterministic choices. Broy [Bro83, Bro88,
Bro86] models a nondeterministic network by a set of deter-
ministic incarnations of it, each corresponding to a particular
assignment of oracles to nondeterministic choices. Boussinot
[BOURN] and Park [Par831 use oracles and also add “hiatons”
to sequences of data items in order to model the passage
of time. A network is denoted by a function from oracles
and ‘hiatonized” input sequences to “hiatonized” output se-
quences. Park also hides the oracles to obtain a model in
which a network is denoted by a function from hiatonized
input sequences to sets of hiatonized output sequences. How-
ever, the resulting model includes too much detail about the
number of hiatons in sequences to be fully abstract. Kosinski
[Kos78] tags data items by the sequence of internal choices
that were made in order to produce them.

A related trace model, which is applicable to both synchronous-
ly and asynchronously communicating networks, and hence
includes more detail, has been presented by Nguyen et al
[NDG086].

8 Conclusion

We have presented a fully abstract model of dataflow net-
works, which denotes a network by the set of its traces. As
indicated by earlier work (e.g. [Kel78, BA81]), one must add
information about how the behavior of a network depends
on the ordering of the appearance of data items on different
channels. Our model provides precisely this information by
the set of traces, giving all possible total orderings of supply
of input and appearance of output on the channels of the
network.

Two properties of Kahn’s original model [Kah74] are miss-
ing in our trace model. Kahn showed how to compute the
denotation of a network from the denotations of its compo-
nents by a fixedpoint construction. It appears difficult to
incorporate this property into a model for networks that ex-
hibit nondeterminism and fairness. Approaches to solving
this problem appear in e.g. [Bro86, SN83, KP85]. Kahn also
showed that his model is equally applicable for recursively
defined networks in which a node can expand recursively into
a subnetwork.

We have not investigated either of these properties in the
context of our model. Since we have primarily aimed at
investigating what must be described rather than how, our
model does not have the first property. It would be interest-
ing to see whether our results can be extended to recursive
networks.

Acknowledgments

I am grateful to Joost Kok for stimulating discussions and
ideas. I also would like to thank Joachim Parrow for critical
reading of earlier versions of the paper and for many fruitful
discussions and comments.

163

References

[BA81]

[BM85]

[Bou82]

[Bro83]

[Br086]

[Bro88]

[CH81]

[JKI

[Jon851

[Jon87a]

[Jon87b]

[Kah74]

J. D. Brock and W. B. Ackerman. Scenarios:
a model of non-determinate computation. In
Diaz and Ramos, editors, Formalization of Pro-
gramming Concepts, LNCS 107, pages 252-259,
Springer Verlag, 1981.

R. J. R. Back and H. ManniIa. On the suit-
ability of trace semantics for modular proofs of
communicating processes. Theoretical Computer
Science, 39(1):47-68, 1985.

F. Boussinot. F’roposition de semantique deno-
tationelle pour des processus avec operateur de
melange equitable. Theoretical Computer Sci-
ence, 18(2):173-206, 1982.

M. Bray. Fixed point theory for communi-
cation and concurrency. In Bjoerner, editor,
Formal Description of Programming Concepts
II , pages 125-146, North-Holland, Amsterdam,
1983.

M. Broy. A theory for nondeterminism, paral-
lelism, communication, and concurrency. Theo-
retical Computer Science, 45:1-61, 1986.

M. Broy. Nondeterministic data flow programs:
how to avoid the merge anomaly. Science of
Computer Programming, 10:65-85, 1988.

Z. C. Chen and C. A. R. Hoare. Partial cor-
rectness of communicating sequential processes.
In Proc. Internutional Conference on Distributed
Computing, pages l-12, Paris, April 1981.

B. Jonsson and J. Kok. Comparing dataflow
models. In pr0g;res.s.

B. Jonsson. A model and proof system for asyn-
chronous networks. In Proc. 4:th ACMSymp. on
Principles of Distributed Computing, pages 49-
58, Minaki, Canada, 1985.

B. Jonsson. Compositional Verification of Dis-
tributed Systems. PhD thesis, Dept. of Computer
Systems, Uppsa.la University, Sweden, Uppsala,
Sweden, 1987. Available as report DoCS 87/09.

B. Jonsson. Modular verification of asyn-
chronous netwo:rks. In Proc. 6th ACM Symp. on
Principles of Distributed Computing, pages 152-
166, Vancouver, Canada, 1987.

G. Kahn. The semantics of a simple language for
parallel programming. In IFZP 74, pages 471-
475, North-Holland, 1974.

[Ke178]

[Kok86]

[Kok87]

[Kos~~]

[~~85]

[KP86]

[Lam831

[LT87]

[MC821

[MCS82]

[Mis84]

[MP81]

R. M. Keller. Denotational models for par-
allel programs with indeterminate operators.
In Neuhold, editor, Formal Descriptions of
Programming Concepts, pages 337-366, North-
Holland, 1978.

J. N. Kok. Denotational semantics of nets
with nondeterminism. In European Sympo-
sium on Progmmming, Saarbrccken, LNCS 206,
pages 237-249, Springer Verlag, 1986.

J. N. Kok. A fully abstract semantics for
data flow nets. In Proc. PARLE, LNCS 259,
pages 351-368, Springer Verlag, 1987.

P. R. Kosinski. A straight-forward denotational
semantics for nondeterminate data flow pro-
grams. In Proc. 5th ACM Symp. on Principles of
Progmmming Languages, pages 214-219, 1978.

R. M. Keller and P. Panangaden. Semantics of
networks containing indeterminate operators. In
Brookes, Roscoe, and Winskel, editors, Seminar
on Concurrency 1984, LNCS 197, pages 479-
496, 1985.

R. M. Keller and P. Panangaden. Semantics
of networks containing indeterminate operators.
Distributed Computing, 1:235-245, 1986.

L. Lamport. Specifying concurrent program
modules. ACM TOPLAS, 5(2):190-222, 1983.

N. A. Lynch and M. R. Tuttle. Hierarchical cor-
rectness proofs for distributed algorithms. In
Proc. 6th ACM Symp. on Principles of Dis-
tributed Computing, pages 137-151, 1987.

J. Misra and K. M. Chandy. Proofs of networks
of processes. IEEE Transactions on Software En-
gineering, SE-7(4):417-426, July 1982.

J. Misra, K. M. Chandy, and T. Smith. Prov-
ing safety and Iiveness of communicating pro-
cesses with examples. In Proc. ACM SIGACT-
SIGOPS Symp. on Principles of Distributed
Computing, pages 201-208, 1982.

J. Misra. Reasoning about networks of com-
municating processes. In INRIA Advanced Nato
Study Institute on Logics and Models for Verij-
cation and Specification of Concurrent Systems,
La Colle sur Loupe, France, 1984.

Z. Manna and A. Pnueli. The temporal frasne-
work for concurrent programs. In Boyer and
Moore, editors, The Correctness Problem in
Computer Science, pages 215-274, Academic
Press, 1981.

[NDG086] V. Nguyen, A. Demers, D. Gries, and S. Owicki.
A model and temporal proof system for networks
of processes. Distributed Computing, 1(1):7-25,
1986.

164

IPar D. Park. The ‘fairness’ problem and nondeter-
ministic computing networks. In de Bakker and
van Leeuwen, editors, Foundations of Computer

Science IV, Part 2, pages 133-161, Amsterdam,
1983. Mathematical Centre Tracts 159.

[Plo81] G. Plotkin. A Structural Approach to Opera-
tional Semantics. Technical Report DAIMI FN-
19, Computer Science Department, Aarhus Uni-
versity, 1981.

[Pra82] V. R. Pratt. On the composition of processes. In
Proc. 9th ACM Symp. in Principles of Program-

ming Languages, pages 213-223, 1982.

[Pra84] V. R. Pratt. The pomset model of parallel pro-
cesses: unifying the temporal and the spatial.
In Brookes, Roscoe, and Winskel, editors, Proc.

Seminar on Concurrency, LNCS 197, pages 180-
196, Springer Verlag, 1984.

p~83] J. Staples and V. L. Nguyen. Computing the
behaviour of asynchronous processes. Theoretical

Computer Science, 26(3):343-353, 1983.

[SN85] J. Staples and V. L. Nguyen. A fixpoint seman-
tics for nondeterministic data flow. ACM Jour-

na2, 32(2):411-444, April 1985.

[Sta84] E. W. Stark. Foundations of a Theory of Specij-

cation for Distributed Systems. PhD thesis, Mas-
sachussetts Inst. of Technology, 1984. Available
as Report No. MIT/LCS/TR-342.

165

