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Project Summary 
This ITR project is aimed at developing the foundations of a modern systems science that is 
simultaneously computational and physical; it remarries time, concurrency, robustness, continuums, and 
resource management to computation. The lead partners in the proposed consortium are the Center for 
Hybrid and Embedded Software Systems (CHESS) at the University of California at Berkeley (UCB), the 
Institute for Software Integrated Systems (ISIS) at Vanderbilt (VU), and the department of Mathematical 
Sciences at the University of Memphis (UM). This new systems science represents a major departure 
from the current, separated structure of computer science (CS), computer engineering (CE), and electrical 
engineering (EE): it reintegrates information and physical sciences. 
Educational Impact. The impact of this change on teaching and research is profound, and cannot be 
confined to the graduate level. Based on the ongoing, groundbreaking effort at UCB, we propose to 
deliberately re-architect and retool undergraduate teaching at the participating institutions, and to engage 
in course development at a set of California community colleges with which UCB has established 
relationships and which have a high enrollment of Hispanic and African American students. We will also 
engage undergraduate students from around the country via the UCB SUPERB program, an established 
NSF REU site, and the VU SURGE program, which have focused on preparing highly successful students 
of color to pursue advanced degrees. At the participating institutions, we will replace the 30-year-old 
conventional curriculum in systems science with one that admits computation as a primary concept. The 
curriculum changes will be aggressively promoted through a process of workshops and textbook 
preparation, to adapt the technical material to the needs of the participating institutions and will be 
disseminated widely. Faculty and graduate student researchers from minority and other institutions will 
be recruited each summer to participate in a program called SIPHER (Summer Internship Program in 
Hybrid and Embedded Software Research). 
Research  (Technical Impact). The proposed ITR has four focus areas of research. (a) Hybrid systems 
theory. The focus here is on scaling up pioneering approaches that integrate physical modeling with 
computational systems. Existing methods work for simple, low-dimensional systems; we will find 
methods that apply to complex, interconnected systems with stochastic attributes. As part of this effort, 
the mathematical foundations of systems theory need to be rebuilt in a way that tightly integrates 
continuous and discrete domains. (b) Model-based design. The main effort here is to develop a set of 
models with solid mathematical foundations that allow for the systematic integration of diverse efforts in 
system specification, design, synthesis, analysis and validation, execution, and design evolution. Key to 
this effort is research in concurrent and real-time models of computation, and in meta-modeling and meta-
languages for composing, transforming, and validating domain-specific models. (c) Advanced tool 
architectures. The deliverables from this project will be a set of reusable, inter-operating software 
modules, freely distributed as open-source software. These modules will be toolkits and frameworks that 
support the design of embedded systems, provide infrastructure for domain-specific tools, and provide 
model-based code generators. (d) Experimental research. The program will leverage existing system-
building efforts involving avionics, anti-terrorism technologies, vehicle electronics, and autonomous 
robots. In addition we will apply our methods to networks of embedded systems for applications such as 
environment monitoring, building protection, and emergency response. Embedded systems laboratories 
will be established at the partner institutions to host experimental applications of these results. The 
experimental validation effort will provide the community with case studies for the toolkits and 
infrastructure developed in this program. 
Research (Broader Societal Impact). This project, because of its focus on foundations, will provide a 
fundamentally new paradigm, based on hybrid systems, for modeling and analysis of many complex 
phenomena that occur in the physical and biological sciences on both microscopic and macroscopic 
levels. Because of its attention to methodologies, our research will generate new paradigms and tools for 
the design of complex embedded systems to ensure reliability, performance, low power consumption and 
cost beyond what can be achieved by current, ad hoc practices. These outcomes of the project are 
prerequisites for the deployment of embedded, autonomous computing in many safety-critical 
applications, from medical devices to transportation to national security needs in avionics. Finally, the 
attention to a new education model will create a new generation of engineers who will be able to master 
the design of complex, heterogeneous systems that will be the backbone of the future IT industry. 

  

Project Description 
 
The science of computation has systematically abstracted away the physical world. The science of 
physical systems has systematically ignored computational limitations. Embedded software systems, 
however, engage the physical world in a computational manner. We believe that it is time to construct a 
Modern Systems Science (MSS) that is simultaneously computational and physical. Time, concurrency, 
robustness, continuums, and resource management must be remarried to computation.  
 
At UC Berkeley (UCB), the Center for Hybrid and Embedded Software Systems (CHESS) was founded 
with the explicit mission to build and disseminate MSS. At Vanderbilt University (VU), the Institute for 
Software Integrated Systems (ISIS) is the leading proponent of model-integrated computing, a paradigm 
that is central to MSS. At the University of Memphis (UM), the Mathematical Sciences Department 
conducts groundbreaking research on phase transitions in computational complexity, which has 
fundamental importance in dynamic, embedded computing applications. 
 
We propose a program that includes the long-term, high-risk, high-reward, basic scientific research 
necessary to build the foundations of MSS, and a sustained effort to create a new generation of engineers 
that are comfortable with the juncture of computation and physical phenomena. The research will be 
carried out by UCB-CHESS, VU-ISIS, and UM. Educational outreach programs will include the 
California community college system, which feeds many of the engineering students to UCB and other 
State Universities, and HBCUs and universities with high minority populations in the South. The proposal 
to the NSF-ITR has the potential of high leverage from other activities of the participating organizations 
paid for by other means, such as university and state investment and industry funding.  

1. Research Rationale 
The fusion of information processing with physical processes changes the physical world around us. From 
toys to aircraft and from cars to factory robots, computers monitor and control our physical environment. 
Information processing that is tightly integrated with physical processes is called embedded computing. 
Embedded computing is becoming the universal system integrator for physical systems. Its pervasiveness 
is well illustrated by the following facts: (a) the total shipment of microprocessor units and micro control 
units in 1997 was over 4.4 billion units, and of this about 98% related to embedded applications [94]; and 
(b) between 1994 and 2004 the need for embedded software developers is expected to increase 10-fold 
[28]. 
 
Embedded software development is one of the grand challenges in computer science today. Many of the 
abstractions that have been so effective at improving our computational capabilities are either indifferent 
to or at odds with the requirements of embedded software. In fact, embedded software programming has 
never transitioned from a resource-driven (architecture-centric) to a requirements-driven (application-
centric) paradigm. The result is costly, over-engineered, brittle systems. The generous attitude of desktop 
software vendors towards system reliability is not acceptable here—for example, failures are intolerable 
in safety-critical systems such as vehicle electronics, avionics, and transportation systems. And over-
engineering (exaggerated safety margins) is unacceptable in systems that use expensive or limited 
physical resources. 

 
We believe that in order to address these issues, a modern systems theory that provides a solid 
mathematical foundation for embedded software design is needed. While traditional systems theory 
focuses on behavioral attributes of small, homogeneous, idealized systems (for example, linear time-
invariant systems), a modern systems theory must be based upon attributes of computational systems such 
as concurrency, hierarchy, heterogeneity, resource awareness, and controlled complexity. Groundbreaking 
research in these areas has been carried out at UCB, VU, and UM. We believe that the time is right to 
integrate and focus these efforts to construct a modern systems science for embedded software systems, 
and to transition the results under the umbrella of a multi-university effort. 



  

The proposed research has major potential impact in engineering and the sciences. Embedded computing 
controls physical interactions in engineered systems, that is, energy and material flows that have direct 
and immediate impact on the physical environment and the people involved. As a result, almost all 
embedded software is subject to high or extremely high assurance requirements [48]. Increasingly, the 
safety and dependability of our cars, airplanes, weapon systems and critical infrastructure monitoring 
systems depend on the foundations of our embedded system technology, which is the central objective of 
our research on MSS.  

 
Moreover, while the development of MSS will be driven primarily by the need for scalable techniques in 
embedded systems engineering, any fundamental advance in the understanding of processes that are both 
physical and computational in nature will have ramifications far beyond embedded software design. For 
example, at the microscopic level, the traditional abstractions of computer science will break at the level 
of future molecular computing devices, whose physicality will be used in computation in ways that are far 
more intricate than the Boolean state abstraction used for transistors. Second, at the macroscopic level, a 
very large network of interacting computational elements gives rise to emergent behavior that will be best 
understood in continuous, physical terms, in the same way in which the behavior of a gas is best 
understood as a continuous entity rather than a discrete collection of individual molecules. In turn, the 
continuous behavior of such an entity may undergo mode transitions, which is again a discrete 
phenomenon. Such observations have led recently, for example, to the application of hybrid systems 
theory in areas as diverse as the design of asynchronous circuits [59] and the modeling of biological 
systems [10]. We are convinced that the time is right to make a focused effort in establishing MSS and 
developing a new understanding of its implications on system modeling and analysis, design technology, 
and tool architectures in a carefully selected set of representative applications. 

1. Research Focus Areas 
The proposed research program has four focus areas: hybrid systems theory, model-based design, 
advanced tool architectures, and experimental research. Hybrid systems theory will build the 
mathematical foundation of MSS. This foundation needs to be grounded both in the continuous 
mathematics of physical processes and the discrete mathematics of computational processes. Model-based 
design will build a scalable methodology for systems design and analysis based on hybrid systems theory. 
Model-based design controls complexity by supporting the manipulation and integration of models for 
multiple design aspects. Advanced tool architectures will provide software support for model-based 
design. An open software infrastructure will accommodate design and analysis tools as inter-operating 
components. Experimental research will guide the theory and tool development. Special emphasis will be 
on applications with societal impact, such as networked embedded systems for environmental monitoring 
and embedded control systems that address national and homeland security needs. The overarching theme 
in our research is compositionality. We will pursue compositionality in hybrid system theory, we will use 
composable models and model manipulation methods in model-based design, and we will investigate 
composable tool architectures that enable the rapid integration of domain-specific design environments. 
Compositionality enables the separation of orthogonal concerns, and the integration and reuse of solutions 
(theories, models, tools), and thus makes the significant objectives of this project feasible. 

1.1 Hybrid Systems Theory  
A hybrid system is a system that contains both physical and computational processes. A typical example 
of a hybrid system is embedded control software, which interacts with a physical environment through 
sensors and actuators. Hybrid systems theory, therefore, lies at the foundation of any effort to 
systematically build a modern systems science (MSS). So far, hybrid systems theory has been developed, 
largely at UCB, only for small, idealized systems, such as hybrid automata [12][65]. A scalable MSS 
must address the following key issues. Key faculty participation here will be from Biswas, Bollobas, 
Henzinger, Lee, Sangiovanni-Vincentelli, Sastry, Sztipanovits, and Varaiya. A graduate text is in 
preparation in this area based on a course being taught at UCB [125]. 
 
 

  

1.1.1 Deep compositionality 
In the early 90s, a realization began to set in that, on the one hand, systems modeling techniques from 
classical electrical (systems) engineering are inadequate for capturing the computational aspects of 
systems implemented increasingly in software, and on the other hand, the computational models from 
classical computer science are inadequate for capturing the physical aspects of software that interacts with 
physical processes. The new field of hybrid systems was founded on the premise that both bodies of 
knowledge need to be combined for the design and analysis of embedded software. There are two ways in 
which such a combination may be achieved. In a shallow combination, hybrid systems are described in a 
language that results from connecting expressions describing physical processes (such as difference and 
differential equations) with expressions describing computational processes (such as state machines or 
pseudo-code). While a shallow combination enables the description (requirements specification, 
architectural and behavioral description) of mixed physical-computational systems, it does not, per se, 
support the design and analysis of such systems. For this, we need a deep combination of the two worlds. 
Deep compositionality requires that the properties of a composite system can be derived solely from the 
properties of the component systems and the type of the connection. In the case of hybrid systems, this 
must apply to both computational properties—functionality, efficiency, accuracy—and physical 
properties—stability, timing, resource usage. 
 
Compositionality of computational systems has long been studied in computer science, both in the case of 
sequential connections such as procedure calls (semi-formally in software engineering, and formally in 
programming language semantics [174][132]), and in the case of concurrent connections (semi-formally 
in hardware description languages, and formally in concurrency theory [93][131][126][42] [103][62]). 
The mathematics of compositionality is a discrete one, based on logic, combinatorics, and universal 
algebra (fixed points). Properties of computational systems become interesting through complex patterns 
of composition, such as iteration and recursion, concurrency, inheritance, and dynamic process creation. 
In contrast, the properties of physical systems (stability, for example) can be nontrivial even in simple 
cases, and much of the focus in systems theory has been on standardized system architectures, such as 
feedback loops. The mathematics of physical properties is a metric one, based on linear algebra, topology, 
and analysis. It is the underlying fundamental dichotomy between Boolean (true, false) and metric 
(quantitative) data types that separates the two disciplines on all levels. Obtaining a theory of deep 
compositionality for hybrid systems requires a complete rebuilding of the mathematical foundation, based 
on a core collection of new concepts that combine or replace the main concepts of systems theory and 
computation theory [125][136][138]. 
 
Preliminary progress in this direction [23][89][127][171] still falls short of the proposed science of deep 
compositionality. For example, efforts such as Masaccio [67] and Charon [16] do not address resource 
and stochastic performance properties, nor do they achieve the kind of scalability needed in practice, 
lacking essential features such as model parameterization, instantiation with inheritance, and dynamic 
model reconfiguration. To control the complexity inherent in combining this multitude of issues, we are 
pursuing a systematic attempt to orthogonalize concerns. For example, we are studying ways to add, say, 
model instantiation to any deeply compositional formalism in a way that preserves deep compositionality 
with respect to the properties of interest. In other words, we are striving to develop the mathematics for a 
meta-theory of models of computation, with deep compositionality being one of the meta-properties. Just 
as on the level of a particular formalism, properties such as safety should be preserved by the putting-
together of systems, on the meta-level, properties such as compositionality should be preserved by the 
putting-together of formalisms. It is our hope that in this way we can also arrive at a deeply compositional 
theory of stochastic hybrid systems, which has proved elusive despite repeated attempts [8][97][137]. 
Deep compositionality can be exploited in system design through the use of component interfaces, and in 
system analysis through the use of assume-guarantee reasoning. 

 
 
 
 



  

Interfaces for hybrid components. The notion of interface is central to the composition and decomposition 
of systems. An interface must expose sufficient information about a system for determining if two 
systems are compatible, but it should expose no more than that. In component-based design, interfaces 
facilitate the bottom-up assembly of a system by providing a compatibility check for components that 
originate from different vendors or libraries. Dually, interfaces also facilitate the top-down design of a 
system by providing contracts that can be handed to the independent designers of individual components 
and guarantee that if each component implementation satisfies its interface contract, then the overall, 
composite system is well-formed and meets its requirements. A paradigmatic class of software interfaces 
is types. Unlike specification formalisms such as temporal logics, types specify not only output behavior, 
but also constrain input behavior: the environment, when interacting with the component, is expected to 
respect its type; otherwise, the compiler will signal a violation of this expectation. While traditional type 
systems specify static requirements on input and output values, recently researchers have begun to 
develop type systems for dynamic requirements [51][40][111][6][119], such as the ordering of method 
calls. We have formalized such generalized, behavioral type systems as interface theories [7]. For 
example, a suitable interface theory permits us to specify, and check, that the read method of a file server 
must not be called before the open method. Currently we are developing an interface theory for timing 
constraints, which permit us to specify and check, for instance, that a software task completes before a 
deadline provided that the frequency of external interrupts is bounded. For hybrid components, we will 
need to consider more general physical and computational constraints, such as stochastic behavior, 
resource usage, stability, and convergence.  
 
Assume-guarantee reasoning for hybrid systems. In the analysis of component-based systems, as in 
design, it is usually insufficient to consider components in isolation; rather, one must consider each 
component together with an assumption about the environment in which the component is placed. In 
other words, a component typically meets its requirements only if the environment does likewise. Such 
reasoning is inherently circular, and not always sound. For example, the circular (“assume-guarantee”) 
reasoning is sound for safety properties: if component A won’t fail (the guarantee) provided B does not 
fail (the assumption), and B won’t fail provided A does not fail, then the composition of A and B will 
never fail [1][128][19]. The same reasoning, however, is unsound for liveness properties: if A will 
respond eventually provided B does, and B will respond eventually provided A does, this does not ensure 
that the composition of A and B will ever respond. Little is known about assume-guarantee reasoning for 
richer properties of the kind we are interested in, such as timing, resource usage, and performance [85][8]. 
Indeed, such properties are inherently non-compositional if components are viewed in isolation; for 
example, if two components share the same resource, then their individual worst-case timing properties 
do not apply to the composition. Therefore, assume-guarantee reasoning, with its emphasis on 
environment assumptions, is essential for composing physical and computational properties. 

1.1.2 Robust hybrid systems 
Current models of hybrid systems have the problem that they are, in a sense, too “exact.” Consider, for 
example, a timed automaton [14], which is a finite automaton equipped with real-valued variables (so-
called “clocks”) which measure the progress of time. The transitions of such an automaton can be guarded 
by conditions on the clocks. In particular, one transition may be enabled when x≠5, for a clock x, and 
another one, when x=5. This situation, where the transition time must be determined with “infinite 
precision,” does not represent a physical process, which typically can be modeled only approximately 
using error terms, nor can it be implemented as a computational process, which has limited space and 
time resources. We have made preliminary attempts to develop more “robust” models of hybrid systems, 
by considering not individual behaviors over time, but “bundles” of behaviors that are proximate in an 
appropriate topology [61]. These attempts, however, have largely been unsuccessful, as they add a layer 
of complexity to the traditional, already brittle, models. It has become our sense that we must instead look 
for a way of redefining fundamental concepts such as behavior and property in a way that is less fragile. 
This can be done by borrowing ideas from economics, in particular, discounting of the future.  
 
Suppose we redefine the value of a property at a state to be not 0 (false) or 1 (true), but a real value in the 
interval [0,1]. The value is computed using a discount factor d ∈[0,1]: if the property is violated in the 

  

current state, then its value is 0; if the property is fulfilled in the current state, then its value is 1; 
otherwise its value is d times the minimal (or maximal, depending on the “polarity” of the property) value 
of the property at successor states. In this way, the value of a safety property is inversely determined by 
the length of the shortest unsafe trajectory. As the discount factor d goes to 1, we obtain the classical, 
boolean value of the property. This view extends naturally from purely discrete to stochastic, timed, and 
hybrid systems. Moreover, in these systems the real value of a property often has a natural “physical” 
interpretation, such as probability, time, or cost. We can capture, for example, optimization criteria and 
performance characteristics. The redefinition of properties in this way is, by itself, not sufficient to obtain 
robust models—the introduction or removal of a single transition can still cause an arbitrary, unbounded 
change in the value of a property. However, we can similarly define a topology on systems, where 
proximity is based on a discounted notion of equivalence. For example, the discounted bisimilarity of two 
states is a real number between 0 (not at all bisimilar, i.e., distinguishable at present) and 1 (perfectly 
bisimilar, i.e., indistinguishable in all future) [41]. Then we can show that if two states have a high 
bisimilarity value, then any given property has almost the same value in both states. In this way, we 
obtain a continuous (epsilon-delta) view of stochastic hybrid systems [97]: if such a system is perturbed 
in a small way (say, by changing the timing or probability of a transition), then the values of its properties 
change only proportionally. The hope that the fundamental notions from concurrency modeling such as 
bisimulation can be redefined in a way that gives rise to a topology of hybrid systems is indeed the hope 
that there is a way to fully and elegantly bridge CS and EE systems theory. It hints at how we may be able 
to inject, uniformly and systematically, continuous “physicality” into discrete computational systems. The 
reverse problem, of injecting computational issues into physical processes, is addressed next. 

1.1.3 Computational hybrid systems 
We will investigate hybrid systems from the numerical and computational complexity points of view. For 
the computer simulation and execution of hybrid systems, computational limitations render idealized 
mathematical models inadequate. Issues such as event detection and Zeno behavior need to be addressed, 
and a theory of error estimation for hybrid systems needs to be developed [109][141]. We will address 
these problems by pursuing a constructive, computational approach to hybrid system design, and to con-
troller synthesis in particular. In the continuous case, optimal control laws may be derived as solutions to 
the Hamilton-Jacobi-Bellman equation, while discrete controllers can be synthesized by solving games on 
finite automata. Both methods can be seen as special cases of a generic game-theoretic approach [167]. 
To convert this general approach into a constructive synthesis procedure, we need efficient numerical 
tools to compute the solutions of Hamilton-Jacobi equations. Approximation techniques are a first step, 
where we will use ellipsoid, linear hyperplane, and fast wavefront methods [166][173][108]. In addition, 
we will use quantitative computing methods when the equation has shocks, corresponding to changes in 
the gaming strategy. For systems with high-dimensional state spaces or for many agents, a hierarchical 
application of the approach facilitates least-restrictive control computations [107]. We will also invest-
igate the projection of control objectives onto the state spaces of individual agents, and the use of system-
atic decomposition techniques based on the data provisioning paths of the underlying architecture [153]. 

1.1.4 Phase transitions 
Search-intensive algorithms are essential to the analysis of hybrid systems. Resource allocation, 
scheduling, planning, and combinatorial optimization are necessary for implementing new capabilities in 
a variety of emerging applications. The fundamental challenge is that search-intensive algorithms can 
easily lead to computationally intractable problem instances. Research in average- or typical-case 
complexity has recently led to the recognition that the hardness of a random instance of a problem may be 
related to the phase transition that the randomly constrained system undergoes. To be more precise, it has 
been observed that one can define control parameters in terms of which search-intensive problems 
undergo phase transitions. The study of phase transitions in large combinatorial systems has brought 
together statistical physics, discrete mathematics, probability theory, and theoretical computer science. 
This combination of techniques has led to much recent progress in the study of the “random k-SAT 
problem,” which studies satisfiability of typical instances of a fixed number k of clauses [133][38][110] 
[106][54]. The best result to date is [27]: they determined the exact scaling window of the phase transition 
for 2-SAT. This result was much sharper than anybody had hoped to prove. The expertise we have gained 



  

in techniques of statistical physics, combinatorics, and computer science in solving this problem should 
enable us to tackle the more complex phase transition problems that arise in hybrid systems. 

1.2 Model-based Design 
While hybrid systems theory provides a semantic, mathematical foundation for the integrated modeling of 
physical and information systems, model-based design focuses on the formal representation, composition, 
and manipulation of models during the design process. It addresses system specification, model 
transformation, synthesis of implementations, model analysis and validation, execution, and design 
evolution. The semantic frameworks in which these models are applied may be domain-specific, offering 
embedded system designers methods and syntaxes that are closer to their application domain. To do this 
well, they must emphasize concurrency, communication abstractions, and temporal properties, rather than 
procedural interfaces. For example, domain-specific semantic frameworks for embedded systems might 
represent physical processes using ordinary differential equations, signal processing using dataflow 
models, decision logic using finite-state machines, and resource management using synchronous models. 
Key faculty involved are Aiken, Henzinger, Karsai, Keutzer, Lee, Necula, Sangiovanni-Vincentelli and 
Sztipanovits. 
 
One approach to model-based design, called actor-oriented design [115][122], has been extensively 
researched at UCB. The term actor-oriented refers to a refactored software architecture, where instead of 
objects, components are parameterized actors with ports. A port represents an interaction with other 
actors; its precise semantics is determined by a model of computation, which captures the interaction and 
coordination between actors. (Although the term “actor” is often associated with Agha [3], the UCB use 
of the term is broader, in that actors are not required to encapsulate a thread of control.) Many models of 
computations have been developed, including the domain-specific frameworks listed above. 
 
There are many other examples of actor-oriented frameworks, including Simulink (from The 
MathWorks), LabVIEW (from National Instruments), and Cocentric System studio (from Synopsys), all 
of which are used for embedded systems design. The approach has not been entirely ignored by the 
software engineering community, as evidenced by ROOM (Real-time Object-Oriented Modeling) [151] 
and architecture description languages such as Wright [9]. Hardware design languages, such as VHDL, 
Verilog, and SystemC, are all actor-oriented. In the academic community, active objects and actors [3], 
I/O automata [126], Polis and Metropolis [35], and Giotto [70], all emphasize actor-orientation. 
 
Domain-specific languages (DSLs) have significant impact on the design process [100]. In embedded 
systems, where computation and communication interact with the physical world, DSLs offer an effective 
way to structure information about the system to be designed along the “natural dimensions” of the 
application [29][36]. We take the position that DSLs for embedded systems should have a mathematically 
manipulable representation, and call these domain-specific modeling languages (DSMLs). The VU team 
has been researching the use of meta-languages to describe DSMLs [105][58]—for example, in work on 
the Graphical Modeling Environment (GME), they used UML object diagrams and OCL (Object 
Constraint Language) as a meta-language for modeling abstract syntax. There are many other interesting 
examples of domain-specific languages targeting multiple-aspect modeling, such as Modelica [135], 
Rosetta [146], dialects of Real-time UML [44], Charon [13], and others. In this ITR project, we will focus 
on developing the foundations of model-based design, building on the research conducted to date at UCB 
and VU. We are explicitly not develop yet another representation formalism and design process; rather, 
we will address the fundamental issues of composition of domain-specific languages, design synthesis 
using a model-based approach, and transformation of models. 

1.2.1 Composition of domain-specific modeling languages 
Building the semantic foundations of a DSML and support for an appropriate end-to-end design process is 
a difficult, expensive and lengthy process. In addition, they are of course domain-specific---and in any 
complex system, different parts of the system, and different levels in a hierarchy of abstraction, will 
encompass multiple knowledge domains thus requiring the use of different DSMLs. We intend to resolve 
these difficulties by developing language-engineering support using a meta-modeling approach. By this, 

  

we mean that we use a representation formalism (that is, the meta-language) for describing the semantic 
and syntactic elements of DSMLs. Models built using a DSML, as well as in the meta-language itself, are 
manipulable, enabling powerful techniques such as deep composition of DSMLs. 
 
The VU team has done work in this area, developing techniques for composing the abstract syntax of 
DSMLs using meta-model composition [113]. The UCB team has taken a complementary approach, using 
a uniform abstract syntax in multiple DSMLs, and making the semantic mapping of these DSMLs 
changeable [39]. They have also performed preliminary research on a type-system for abstract semantic 
domains [119]. 
 
A clear next step is to join the efforts of these two teams. In particular, our goal in this project is to 
understand the heterogeneous composition of DSMLs using meta-models. Starting with our existing 
results, we will examine different meta-modeling formalisms and develop composition operators to 
manipulate meta-models. We will place special emphasis on the composition of meta-models using non-
orthogonal component languages. We will also work on the verification of properties of the composed 
modeling language. Finally, we will investigate how to integrate the representation of the semantic 
domain and semantic mapping in the meta-modeling framework. This will depend strongly on integrating 
results from our proposed research in hybrid systems theory with model-based design. 

1.2.2 Model synthesis using design patterns 
The software design patterns community has developed a number of useful prototypical solutions for re-
curring software design problems [55]. Very little is known, however, about design patterns suitable for 
embedded systems. In previous research, the VU team has developed techniques to precisely formulate 
design spaces using templates and parameterization. VU used design constraints and symbolic, design-
space pruning methods to synthesize models that meet all requirements [22]. We see the meta-modeling 
approach to defining the abstract syntax of DSMLs as an opportunity for the introduction and use of de-
sign patterns in design synthesis for embedded systems. Graph grammars [147] are a promising candidate 
for the representation of abstract syntax meta-models—preliminary research at VU [121] has shown that 
by defining design patterns as parameterized meta-models, they can be used as graph rewriting rules, en-
abling the use of graph rewriting technology in the synthesis of new designs. We propose the following: 
 Research on pattern-based model synthesis using graph grammars and graph rewriting machinery 

transparently embedded in domain-specific development environments. This research has many 
challenges: precise and efficient representation of model transformation and synthesis algorithms as 
graph rewriting rules; generation of efficient transformation code from the rewriting rules; 
optimization when the rewriting involves search and non-determinism; integration of the graph-
rewriting techniques with traditional (though efficient) procedural approaches; precise semantics of 
the rewriting; and verification of transformation systems based on graph rewriting.  

• Research on the expression of our semantic understanding of models of computation as design 
constraints and design patterns by integrating VU and UCB work. If successful, this research may 
have tremendous impact on the productivity of embedded systems design by enabling transformation 
of designs between different platforms supporting different models of computations. 

1.2.3 Model transformation 
Model transformation is the workhorse of model-based design. In the successive-refinement model of the 
design process [149], a design evolves along iterative refinement, fusion, composition, and analysis of 
models. During this process, design models change not only because of their evolution but also because 
of the need for transforming domain-specific design models to the native forms of various analysis and 
synthesis tools. In practice today, many model transformations are performed entirely by hand, essentially 
by reconstructing the model in a different semantic framework. Our approach will be to use model-based 
generators, which systematize the conversion process. For example, an abstracted dataflow model of the 
signal processing in an embedded system, annotated with real-time constraints, might be converted to a 
Giotto model of a multitasking software implementation. Of course, a generator is valid only if well-
formed models produce well-formed models. The transformations may add implementation detail 
(concretization) or remove implementation details (abstraction)—both are useful. 



  

We see our approach as an essential generalization of the two-step process ingrained into traditional 
software design: detailed design is done in a high-level language, and then compiled to produce 
executable code. As embedded systems become more complex, however, more and more levels of 
abstraction appear in the design process. For example, block diagrams in a modeling environment like 
Simulink might be used to design control systems long before software is written in a high-level 
language. One can view these executable abstract specifications as designs in “higher-level” languages, 
and transformations to other high-level languages as new forms of compilation. We will re-examine 
compiler technology from this point of view, with the goal of replacing the ad hoc “code generators” or 
“auto-coders” that are sometimes used today with a systematic, model-based generation technology. 
 
Meta-generation. Active research by the VU group has focused on meta-generators—generators for 
generating generators from their specification—in multiple-aspect modeling environments [134]. The 
approaches investigated included component-based generator composition, and specification of 
generators using graph rewriting [121]. The UCB group has focused on building generators using a 
reusable infrastructure [169]. Taking into consideration the tremendous richness of DSMLs and models of 
computation, we propose a major expansion of this research by combining the VU and UCB results, and 
developing a new meta-generation technology. We believe that a technology for generator 
implementation needs to satisfy two key, often contradictory requirements: it is easy to use; and it 
supports a level of formality such that properties of generators can be determined algorithmically. 
Techniques based on graph rewriting may not be the only suitable solution, and so we will experiment 
with other techniques, such as techniques based on algebraic specifications and category theory [155], 
language-based approaches (PARLANSE from Semantic Designs [152]), and techniques based on 
functional programming [99] and partial evaluation [102]. Our goal is to create and disseminate a 
reusable meta-generation framework that can be used by researchers working on embedded systems to 
rapidly prototype new model transformation tools. 
 
Scalable models. Current model-based design and meta-modeling techniques scale poorly to large 
systems. For example, the UCB team have worked with staff on the IceCube project at Lawrence 
Berkeley Labs to produce a complex model for analyzing signals from neutrino detection arrays 
suspended in the Antarctic ice [123]. A scaled-down model was used, as the visual syntax does not scale 
well (see the referenced paper for visual syntax examples). Large systems like this can be specified using 
a model-based generator approach, in which the designer specifies generative components for replicating 
and conditionally instantiating complex model structures [112]. An IceCube model specified this way 
would contain a component that defines the structure, and individual detector models as first-class objects 
provided as arguments to that component [46]. This approach allows models to operate on models, and is 
related to higher-order functions in functional languages [98][114]; it has also been demonstrated in 
DSMLs [144][118]. We plan to investigate how this approach can be raised to the meta-level, and how a 
novel meta-modeling language can allow the definition of such generative modeling languages. 
 
Construction of embeddable generators. To build complex embedded systems that can adapt their 
architecture at run-time, models need to be deployed on the run-time platform, and the system re-
generated when circumstances dictate. This regeneration process necessitates embeddable generators that 
can re-interpret models and reconfigure the run-time system, under strict time constraints. Starting from 
preliminary research by the VU group [2], we will investigate the fundamental science underlying the 
construction of time- and resource-bounded embedded generators, and the technologies required for their 
implementation. 

1.3 Advanced Tool Architectures 
We have a long history of producing high-quality pioneering tools (such as Spice, Espresso, MIS, 
Ptolemy, Polis, and HyTech [74] from UCB, and GME, SSAT, and ACE from UV) to disseminate the 
results of our research. The conventional notion of “tool,” however, does not respond well to the 
challenges of deep compositionality, rapid construction and composition of DSMLs, and model-based 
transformation and generation. We therefore propose in this project to shift the emphasis to tool 

  

architectures and tool components—that is, software modules that can be composed in flexible ways to 
enable researchers with modest resources to rapidly and (most importantly) correctly construct and 
experiment with sophisticated environments for hybrid and embedded systems. Concretely, the key 
products of this work will be a set of toolkits, frameworks [55], and other software modules. We will still 
develop tools, but only as reference applications of the toolkits and frameworks. This approach has had 
high impact in other areas, most notably in compilers (for example, [157]), and we believe that its 
application in the context of MSS will yield high dividends for researchers and tool implementers in 
hybrid and embedded systems.  
 
The tool architecture work will be guided by the concurrent work in the other research focus areas. In 
particular, the concept of compositionality of hybrid systems languages and modeling languages has a 
profound impact on the ways in which we think about tool architectures. We propose to extend the tool 
architecture work performed to date at UCB and VU. To disseminate the results of this work, we propose 
to create a national resource consisting of a repository of open-source, well-documented, web-integrated 
toolkits and frameworks. Particular areas in which we will focus our efforts follow. Key faculty involved 
here include Aiken, Henzinger, Karsai, Keutzer, Lee, Messerschmitt, Necula, Sangiovanni-Vincentelli, 
Sastry, and Sztipanovits. 

1.3.1 Syntax and semantics 
The foundation of model-based tools is a suitable abstract syntax. Toolkits operate on this abstract syntax 
to perform scheduling, resource management, optimization, type inference, type checking, and other func-
tions. Meta-programming frameworks can then be built to implement mappings into the semantic domain. 
 
Semantic composition. If the abstract syntax supports hierarchy, models of computation can be mixed at 
different levels of the hierarchy. The Ptolemy Project has demonstrated this approach [114] and shown 
that hybrid systems are a special case of such hierarchical heterogeneity. In Ptolemy, an abstract 
semantics—which abstracts semantic properties of domain-specific models of computation—enables their 
hierarchical composition. We will build toolkits and frameworks that support such abstract semantics, and 
will extend them to non-hierarchical heterogeneous models, such as those where multiple views of a 
design represent distinct aspects of the design. The frameworks will thus be used to specify semantic 
interfaces between tools, in contrast to the more commonly addressed problem of syntactic interfaces. 
 
Visual concrete syntaxes. Embedded systems designers are more often application engineers, in fields 
such as control systems and signal processing, than software engineers. Tools with visual syntaxes make 
it easier for application engineers to reason about a design and to ensure that it is correct. For researchers 
to experiment with visual syntaxes, however, is extremely costly. We will develop toolkits and 
frameworks supporting experimentation with visual syntaxes, new graphical idioms, and modeling 
languages and language theory that are amenable to rendition in visual syntaxes. These toolkits and 
frameworks will be based on the meta-programming concepts developed in the GME [113] tool from VU, 
MetaDome [43] from Honeywell, and Moses [47] from ETH. 
 
Modal models. The figure below is a rendition of a hybrid system rendered as a hierarchical model, where 
the top level is an automaton, and its middle state is refined to a continuous time model of some physical 
dynamics. In the continuous-time model, integrators are placed in feedback loops to define second-order 
differential equations. The pattern that this hierarchical combination follows is that of a modal model, in 
which the states of an automaton represent modes of operation of some other model, and the refinements 
to the states give the detailed specification of the mode. This pattern can be repeated for concurrency 
models other than continuous time using exactly the same infrastructure. Toolkits and frameworks 
supporting modal models, therefore, could be applied not just to hybrid systems, but also to other sorts of 
modal models. We propose to create such infrastructure. 

1.3.2 Interface theories 
In the hybrid systems theory focus area, we identified the notion of interface theories as a generalized 
behavioral type system. For components in embedded systems, this concept is much more powerful than, 



  

for example, the type systems used to capture static structure in object-oriented design. Rather than rely 
on informal documentation to declare temporal properties, concurrency, and other dynamic properties 
such as valid ordering of method invocation, we propose to provide infrastructure for interface theories 
for embedded systems design. Recent work at UCB on interface automata for Ptolemy abstract semantics 
[119] can be viewed as an implementation of a stateful interface theory for Ptolemy actors. We will 
continue to develop rigorous abstractions and complementary tool support for interface theories in hybrid 
models of computation.  

1.3.3 Virtual machine architectures 
Today, embedded software designers use low-level facilities of a real-time operating system (RTOS), 
tweaking parameters such as priorities until the system seems to work. The result is, of course, quite 
brittle. In general-purpose computing, the virtual machine concept has been effective at permitting 
software developers to focus on problem-level design rather than platform-specific idiosyncrasies. In 
recent work at UC Berkeley, the virtual machine concept has been applied to embedded systems. The E-
machine [77] is a virtual machine that abstracts away from the idiosyncrasies of the RTOS, shifting the 
burden of ensuring time-correctness from the programmer to the compiler. We will continue to develop 
platform-independent virtual machines that support the temporal and concurrent properties essential to 
hybrid and embedded applications. Concepts such as real-time scheduling, exception handling, and code 
mobility will be handled by the virtual machine rather than being handled in an ad hoc way by the 
application programmer. 

1.3.4 Components for embedded systems 
One objective of our research is to substantially impact the design of embedded systems in industrial 
practice. We see reusable components as one means to this end. Although the term “component” is used 
often in this proposal and elsewhere, there is no broadly accepted definition [30]. Szypersky [161] points 
out that achieving a component assembly methodology requires a marketplace where a wealth of 
components is available for purchase and use. Each independent component supplier tries to maximize its 
market size, justifying the extra time and effort devoted to maximizing the range of feasible uses and 
simplifying use through appropriate abstraction and configurability and associated tools [37]. 
 
Our approach will be to first ask what characteristics of a component would be most beneficial in actual 
practice in an embedded systems design context. The successful “big component” approach of business 
software will not work here; instead, embedded software and system design requires a different 
component technology. A key problem in component systems is providing a coherent framework in 
which multiple components, likely written in many different programming languages, can interact. 
Today’s component technology does not allow for the tightly-coupled interaction necessary for small 
components to meet real-time deadlines and other system resource constraints. Part of our work on 
components, which is aligned with our work on modeling, is to create a framework in which components 
written in different languages and even with different models of computation can sensibly interact. We 
will incorporate concepts identified in the work on hybrid systems theory and model-based design into a 
new component framework suitable for embedded systems. Where necessary, we will assimilate and 
incorporate ideas from other domains addressing similar challenges, like component software [161], 
ubiquitous computing (e.g. Jini [159] and PnP [130] and future extensions), web services [56], and the 
semantic web [25]. 

1.4 Experimental Research 
To be relevant, a new design technology and systems science has to be informed by the real problems of 
real systems. The investigators in this project have strong track records in developing, fielding, and 
supporting large-scale applications, including highway transportations systems, air traffic management, 
electronic design automation systems, aerial robotics, vehicular electronics, sensor nets, and smart 
structures. Moreover, the participants maintain ongoing collaborations with outside systems efforts, 
including big science projects (such as the IceCube neutrino detection project), avionics-based homeland 
defense (the Boeing-led SoftWalls project and a joint NASA-FAA center of excellence), distributed 
monitoring of critical infrastructure, the Network for Earthquake Engineering Simulation (NEES), and 

  

high-performance distributed real-time embedded computing for physics applications (NSF project to 
build a data acquisitions system for the Fermilab BTEV detector). This ITR project will serve as a focal 
point for the problems and solutions raised by these systems efforts. A sub-theme here is that the ITR 
project will offer “new economy” technologies to “old technology” sectors. 
 
Note that we are not proposing that the ITR project orbit around a single (or even a small number of) 
challenge problems or testbeds. The project will engage in dialog with large systems efforts, and provide 
technology to those systems efforts for evaluation and testing, but it will not divert resources to the large 
systems building efforts themselves. Our experience indicates that when research is too closely coupled 
with large challenging applications, delivery of the applications, rather than development of the 
fundamentals, becomes the primary focus. 
 
Instead, this ITR project will include a distributed laboratory for experimentation with location-aware 
computing, robotics, aerobotics, vehicle electronics, control systems, security systems, smart 
environments, smart structures, and even whimsical embedded systems. This laboratory will be used to 
test the concepts emerging from the center, to evaluate evolving technology from elsewhere, to 
demonstrate results from the project, and to keep the research grounded in practical, implementable 
methods. The design of the laboratory, applications, and reference solutions will be made available to the 
research community. All ITR investigators will participate in this activity. 

1.4.1 Embedded control systems 
This ITR project will evaluate embedded controller design methods for avionics and vehicle electronics 
by leveraging ongoing efforts at the participating universities. For avionics, we will interact with the 
teams building software for a set of rotorcraft UAVs at UCB [95], and with the aerospace industry at VU. 
We will also use an automotive suspension and engine-control testbed at UCB, and interact with the 
industrial partners of the CHESS center at UCB and the ISIS center at VU. These experimental platforms 
are being developed with DoD and DARPA funding. Both have potential to address concerns of national 
security and homeland security needs. These platforms have a substantial amount of embedded real-time 
software, integrate subsystems that were designed to work independently (for example, sensors from 
different vendors), and are safety-critical. 
 
At VU, we have been working with Boeing to develop an Embedded Systems Modeling Language that 
supports the model of computation used in their Bold Stroke architecture for avionics systems. This 
language allows high-level, component-based modeling of embedded applications in the style of the 
publish-subscribe paradigm. The models are used not only to synthesize the actual applications, but also 
to support formal analysis to check schedulability and other properties of the system at design time. VU is 
also working closely with researchers from the automotive industry to support the component-based 
design of software for automotive control systems. We have developed techniques for the constraint-
based pruning and exploration of complex design spaces consisting of a large number of hardware and 
software components. The ITR project will allow us to deepen the theoretical foundations of this work. 

1.4.2 Embedded software for national and homeland security 
UCB is working with Boeing, NASA, and the FAA on avionics approaches to improving homeland 
defense. One approach being pursued is to create “no-fly zones” that are enforced by the flight control 
system in aircraft. As an aircraft approaches the boundary of such a zone, the flight control system creates 
a virtual pushing force that forces the aircraft away. The pilot feels as if the aircraft has hit a soft wall that 
diverts it. 
 
For fly-by-wire aircraft, this modified control system is conceptually easy to implement. The aircraft 
carries a three-dimensional model of the earth’s atmosphere, annotated with the topology of the surface 
(which creates real “no-fly zones”) and the topology of regulatory constraints on flight space (which 
creates virtual “no-fly zones”). The virtual no-fly zones would shield, at a minimum, major cities, 
government and industrial centers, and military installations. The model is updated only rarely, and is 
coarse grain; the zones are large, representing the overall structure of cities, not individual buildings. 



  

One of the key challenges is that although deployment of the system is conceptually simple in fly-by-wire 
aircraft, and not that much more difficult in older aircraft, the need for software certification presents a 
major impediment to deployment. This ITR project will work with Boeing, NASA, and the FAA to begin 
to identify model-based software design techniques that could lower the certification costs while 
improving confidence in the software. 

1.4.3 Networks of distributed sensors for environmental monitoring and national security 
A recent NRC report “Embedded Everywhere” argues that our view of the environment will be 
transformed by using low-cost wireless distributed sensors. UCB has recently received quite a bit of 
attention for its wireless “motes” and “smartdust.” UCB dropped clusters of these from the air at 29 
Palms Marine Corps Station, and monitored electricity consumption in Cory Hall during the height of the 
power crisis. UCB is currently developing a national experimental test bed on networks of embedded 
sensors [92] for use by a number of academic and industry partners (with DARPA funding). The 
protection of critical infrastructures for homeland security can be improved by monitoring them passively 
using such sensor networks. 
 
Ideally, application scientists should be able to program sensor nets with aggregate query and processing 
expressions, that would be translated into specific sensor acquisition on the nodes, triggers, interrupts, and 
communication flow. The problem is related to database query processing, if one views the sensor data as 
a fine-grained distributed database, with data identified by key, rather than address. Rather than regular 
tables and records, we have a pool of intermittent, unstructured noisy data streams. One can also view the 
sensor network as an extremely fine-grained tuple-space, as in Linda or JINI. Many operations are 
naturally data-parallel but are likely to be statistical, rather than deterministic. We can borrow techniques 
from online query processing to report the result statistically and with tolerance for adversarial inputs 
from the nodes. These incremental techniques provide a means of implementing triggers to indicate 
unusual events. In general, the aggregation operations must handle outliers within the network to be 
robust to processing and networking errors. We will investigate the right set of data-parallel operations 
for programming sensor networks. 

1.4.4 Hybrid models in structural engineering 
Smart Structures are mechanical structures (buildings, aircraft, space systems, maritime vessels, civil 
structures, and so on) that contain sensors and actuators as integral components of their design and 
construction. Such configurations, combined with computational capability, enable systems to sense and 
control the static and dynamic state of the structure. Current applications of such technology include 
mitigation of extreme stresses, active noise and vibration control, structural health monitoring, structural 
fault and failure detection, and operational reconfiguration. Smart structures are excellent experimental 
platforms for networked embedded software applications.  
 
Understanding the behavior of structures under extreme stress is fundamental to engineering robust 
infrastructure for our society. In near-failure states, behavior of structures is governed by complex 
interaction of many nonlinear structural components. Complex systems of this nature are best investigated 
using hybrid simulation techniques. NSF’s George E. Brown Network for Earthquake Engineering 
Simulation (NEES), an $87 million MRI project to be completed in September 2004, will provide a 
network of structural engineering laboratories, and the hardware foundation for model-based hybrid 
simulation in structural engineering. This ITR project will provide the science and software foundation 
for such hybrid simulation. 
 
The methods developed by this ITR will also be evaluated on smart structures in the Vibro-Acoustics Lab 
at VU. As part of this proposal, we will support the development of three graduated experimental testbeds 
[52][53][60][156]. The control objective will be to minimize structural vibration caused by exogenous 
inputs. The testbeds include: a 10-node system acting on a basic, easy-to-model beam experiment; a 30-
node beam experiment; and a 50-node rib-stiffened plate experiment. These three experiments will enable 
investigators to explore the effects of increased complexity both in the structure and in the embedded 
network. Two important aspects of these testbeds are: (1) that they be accessible and usable by 

  

investigators not experienced in applied controls and smart structures technology; and (2) that they 
relatively inexpensive to construct. 

2. Education and Outreach 
Our agenda is to build a modern systems science (MSS) with profound implications on the nature and 
scope of computer science and engineering research, the structure of computer science and electrical 
engineering curricula, and future industrial practice. This new systems science must pervade engineering 
education throughout the undergraduate and graduate levels. Embedded software and systems represent a 
major departure from the current, separated structure of computer science (CS), computer engineering 
(CE), and electrical engineering (EE). In fact, the new, emerging systems science reintegrates information 
and physical sciences. The impact of this change on teaching is profound, and cannot be confined to 
graduate level. Based on the ongoing, groundbreaking effort at UCB, we propose to deliberately re-
architect and retool undergraduate teaching at the participating institutions, and to make the results widely 
available to encourage critical discussion and facilitate adoption. In addition, will be recruiting new 
undergraduate students (usually juniors) from minority institutions through the established REU programs 
SUPERB-IT at UCB (8 more) and SURGE at VU (5 more) to participate in the research of the project. 

2.1 Undergraduate Curriculum Development 
Five years ago, UCB EECS faculty initiated a long-term experiment of revising a traditional EE systems 
science program to better relate to the realities of a computation-oriented world [117]. A traditional EE 
curriculum, which emphasizes formal modeling and design of physical systems, can be effectively mar-
ried with a traditional CS curriculum, which emphasizes computation divorced from the physical world. 
This is not the “standard” CE curriculum, with its focus on the design of computer hardware; rather, it is a 
new way of thinking about computational systems so that the passage of time, concurrency, resource 
utilization, and their engagement with the physical world form the basis of system conceptualization, and, 
inversely, a new way of thinking about physical systems to embrace discrete events and computation. 
UCB has begun a drastic revision of its undergraduate “EECS” curriculum to introduce a formal systems 
science to CS undergraduates, and to introduce information science to EE undergraduates. A kingpin of 
this effort is a sophomore-level course on a computational view of signals and systems [120][170]. 
 
UCB and VU will jointly develop more advanced undergraduate courses on system modeling and design, 
as well as on the underlying hybrid mathematical foundations. We will coordinate discussions on 
curriculum revision at UCB, VU, and the California community colleges. Based on our experience with 
new courses and on these discussions, we will seek to revise the undergraduate CS and EE curricula. 
These curricula are essentially 30 years old, and even a cursory examination reveals the need for reform. 
For example, concurrency is treated in the ACM CS curriculum mainly in the operating systems course, 
in the form of mutual exclusion protocols. From the perspective of embedded software and systems this is 
a misplaced and insufficient way of teaching concurrency, and its focus is inappropriate: concurrency in 
modern computing systems is not a reducible extension of sequential behavior, but arguably the most 
fundamental organizing principle of design. The current treatment of real time, with its preoccupation on 
scheduling, is similarly outdated. A curriculum based on modern systems science will elevate topics such 
as concurrency and real time from a discussion of implementation details on von Neumann platforms to 
intrinsic properties of systems and their mathematical models. A systematic infusion of MSS into the 
undergraduate curriculum has far-reaching consequences. We should not train engineers, as we do today, 
to become experts in the combinatorial complexities arising in discrete mathematics (CS), or experts in 
the analytic complexities arising in continuous mathematics (EE). We need engineers who are equally at 
home in both worlds.  

2.2 Undergraduate Curriculum Transfer 
The insertion of new course material and laboratory practice will be implemented in the framework of a 
carefully planned, gradual, measured, and controlled process. The gradual introduction is a key 
requirement. Over its 30-year history, the undergraduate CS and EE curricula have acquired an 
interlocking structure of prerequisites, so that changes introduced in one course require accommodating 



  

changes in other courses. We envision a process that will gain acceptance and momentum over the life-
span of the project, starting with existing curricula at our institutions, and leading to the implantation of 
major elements of the MSS agenda. We propose the following steps for the transfer: 
1. Develop the goals of new CS and EE curricula based on MSS. The high-level goals will be developed 

and documented according to ABET requirements, and they will reflect what is to be achieved by the 
end of the project. We will also develop course evaluation criteria, which we will use later to measure 
the success of the new courses. Timeline: months 1-6 of the project. 

2. Develop new “EECS” courses, and corresponding courseware material, that will form the center of 
the new CS and EE curricula. We will (1) identify what courses are necessary to achieve the 
curriculum goals, (2) classify these courses into core and elective categories, and (3) study how the 
introduction of these new courses affects the existing CS and EE courses. Timeline: from month 6 to 
the end of the project. 

3. Introduce new core courses into the current CS and EE curricula. Each new core course must replace 
an existing course requirement. However, during a transition period, the new courses may co-exist 
with more specialized courses from the “old” curricula, and emphasize the integrated nature of the 
material. We expect the transition to be uneven—some institutions will respond more quickly to some 
courses than others. A successful example of the introduction of a new core course is EECS 20 at 
UCB [120][170]. A second new core course may focus on the mathematical foundations of MSS. We 
will insist that the faculty from all participating institutions share courseware development—texts, 
web-based material, laboratory experiments, exercises, and challenge problems. This will ensure 
accommodation of the diversity among us in terms of student background and faculty orientation and 
objectives, and aid in the wider adoption of these courses. Timeline: years 1-2. 

4. Evaluate and revise the new core courses as needed, and adjust (or phase out) the existing CS and EE 
courses on related (and overlapping) material accordingly. Timeline: years 1-2. 

5. Introduce new elective courses that specialize in various aspects of embedded and hybrid systems 
design. Timeline: years 3-4. 

6. Evaluate and revise the elective courses as needed, and fine-tune the overall curriculum.  

2.3 Summer Internship Program in Hybrid and Embedded Software Research (SIPHER) 
One of our major challenges in CS and EE education is to attract talent in research careers. America’s 
prosperity in the new millennium and increasing national security concerns make it vitally important to 
increase the number of students who are interested in joining the nation’s technical enterprise as 
researchers. The situation is particularly serious in the area of women and minorities. While in all areas in 
our economy we must increasingly build on the diversity within this country, the trends in CS and EE 
research go in the opposite direction. The potential impact of this trend is extremely negative. On one 
hand, it contributes to the chronic lack of US graduate students this area, but even more importantly, it 
makes it very hard to recruit faculty from underrepresented groups, so the trend may perpetuate itself.  
 
The SIPHER program will focus on this problem. We will design the program to motivate the best 
undergraduate students from women and minority groups to go to graduate programs in CS and EE. The 
technical area of embedded systems is exceptionally suitable for this. The physicality of embedded 
systems has a tremendous appeal for students because of the opportunity for active experimentation and 
interaction with the created “smart objects.”  
 
The Director of the SIPHER program, Dr. Brian N. Williams (who is the Assistant Dean for Student 
Affairs at VU School of Engineering), will pursue an outreach effort toward HBCUs, traditionally white 
institutions (TWIs) with a critical mass of minority students, and Community Colleges in the South and in 
California. Taking advantage of Dr. Williams’ current responsibility at VU as an Assistant Dean and 
previous experience managing and directing a summer research program at the University of Georgia 
(which brought in minority high school students and undergraduates from public HBCUs in the state of 
Georgia with an interest in science and math), he will establish recruiting networks and linkages to 
schools such as Fisk University, Tennessee State University, University of Alabama-Birmingham, 
Morehouse College, Spelman College, Florida State University, Florida A & M University, Tuskegee 

  

University, and others. In the State of California, the focus of the recruiting effort will be the California 
community colleges with which UCB has established relationships and which have a high enrollment of 
Hispanic and African American students, a  number of whom transfer to Berkeley in their junior year.  
 
By utilizing NSF funding and cost sharing from UCB and VU, the SIPHER program will offer summer 
internship opportunities that partner the best students and faculty from UCB and VU with 10-12 students 
and 3-5 faculty members from our pool of partnering institutions. To further enhance faculty support from 
partnering institutions, we propose covering 50% of their salary for 3 summer months. For participating 
faculty, we will organize summer schools on how to teach the new, required sophomore-level course on 
signals and systems, as well as other new core courses. Interaction with instructors will also affect the 
material that we include in the new core courses. Introducing changes in the undergraduate curriculum is 
difficult. Achieving the far-reaching shifts envisaged by the modern systems science perspective is an 
even greater challenge. We are committed to bringing this to fruition in our own institutions, and we will 
strive to facilitate change in other universities and colleges whose faculty wish to emulate our example. 
4. Institutional Participation, Leadership, Management, and Organization 
4.1 Institutional Participation 
This project incorporates the strengths of researchers from 3 institutions, using their expertise and 
experience to bring the project vision to reality. The project team includes two major research groups with 
well-established, complementary research programs in hybrid and embedded software. The Berkeley 
(UCB) group has a long history and leading role in the development of hybrid systems theory (Robotics 
and Intelligent Systems Laboratory, Partners for Automation on the Highways, Embedded Systems 
Laboratory) and advanced tool architectures for embedded systems (Ptolemy and Polis groups). The 
Vanderbilt (VU) group has over a decade history and runs a major research program in model-integrated 
computing, a foundation of model-based design (Institute for Software Integrated Systems). In the last 
three years, Berkeley and Vanderbilt have started cooperating in several research programs, leading to the 
recognition of the benefits of joining their unique perspectives in hybrid and embedded software systems. 
A leading researcher from the University of Memphis, working on the mathematical foundations of phase 
transitions in constrained systems, will complement the UCB and VU groups. 
4.2 Leadership and Management 
The organization chart for the project management is shown in the figure below. The Project Director, 
Prof. Sastry, will be responsible for the overall management of the project and will chair the Executive 
Council. The role of the Executive Council is to perform strategic planning, research and outreach 
coordination, budget allocation, and measurement of the effectiveness of the overall research, education, 
and dissemination efforts. The members of the Executive Council are Profs. Henzinger, Lee and 
Sangiovanni-Vincentelli (UCB), and Prof. Sztipanovits (VU). Besides their academic credentials, 
members of the Executive Council have substantial research management experience. Prof. Sastry is the 
Chair of the EECS Department at Berkeley, and he was former director of DARPA-ITO. Prof. 
Sztipanovits is founding director of ISIS, and was a program manager and the deputy director of 
DARPAITO. 
Profs Henzinger, Lee, and Sangiovanni-Vincentelli have been managing major research labs at 
UCB, and have had extensive consulting and management responsibilities in start-ups and established 
EDA companies. 
 
The members of the Executive Council are the principal investigators of the four major research focus 
areas: Prof. Henzinger – Hybrid Systems Theory; Prof. Sztipanovits – Model-based Design, Prof. Lee – 
Advanced Tool Architectures; and Prof. Sangiovanni-Vincentelli – Experimental Research. The research 
focus areas will be complemented by the Curriculum Development and Education Outreach areas. The 
leader of Curriculum Development is Prof. Varaiya (UCB); the leader of Education Outreach is Prof. 
Karsai (VU), in cooperation with Dr. Brian Williams (VU). Each leader will be responsible for 
developing the research and technology activities of the research focus area. Each area will have a 
number of projects; the investigators in these projects constitute the focus area committee and are 



  

responsible for executing the focus area research agenda. 
 
Director 
Shankar S. Sastry 
Executive Council 
Shankar S. Sastry 
Thomas A. Henzinger 
Edward A. Lee 
Alberto Sangiovanni-Vincentelli 
Janos Sztipanovits 
Hybrid Systems Theory 
Thomas A. Henzinger 
Advanced Tool Architectures 
Edward A. Lee 
Model-based Design 
Janos Sztipanovits 
Experimental Research 
Alberto Sangiovanni-Vincentelli 
Board of Directors 
Curriculum Development 
Pravin Varaiya 
Education Outreach 
Gabor Karsai 
 
The project team will be supported by a Board of Advisors chosen from industry and academia. The 
primary role of the Board of Advisors is to provide feedback to the team on progress and effectiveness in 
industrial applications. Members will be major industry stakeholders in advances in embedded software 
technology (GM, FORD, Boeing, Honeywell, Lockheed-Martin, Motorola, Intel), representatives from 
the tool industry (Cadence, Synopsys), and representatives from other academic groups such as Stanford, 
the University of Pennsylvania, the DARPA-SRC MARCO Research Centers (including CMU and 
Georgia Tech), the Technical University of Vienna, and the EU Group on Embedded Software, Artiste, 
headed by Prof. Sifakis from CNRS-VERIMAG, Grenoble. Letters of support from a representative 
sample of Board Members is attached to this proposal. The Board of Advisors will meet twice per year to 
review research activities. The semi-annual meetings will alternate between California and Tennessee and 
will have a retreat format with participating faculty, students, and visiting researchers presenting research 
results, progress, and future directions. The project team will meet immediately after each of the retreats, 
to collect the feedback from the retreats and determine new ideas and directions with an emphasis on the 
individual focus areas. In addition, the investigators will meet in conjunction with the annual Embedded 
Software Workshop, EMSOFT, established by Henzinger and Kirsch in 2001, and co-chaired by 
Sangiovanni-Vincentelli in 2002. The theme of this meeting will be integration among research focus 
areas and curriculum/education outreach. Coordinating this meeting with EMSOFT will enable us to 
involve a broader group of researchers from the community. 
In addition, teleconferences and net meetings with colleagues will be used on an as-needed basis for 
consultation and planning. The Executive Council will have a formal teleconference arrangement each 
month for operational issues. 
4.3 Institutional Commitment 
The administrative units for the research effort at the two lead campuses are the Center for Hybrid and 
Embedded Software (CHESS) at UCB and the Institute for Software Integrated Systems (ISIS) at VU. 
This proposal to the NSF-ITR will serve as an incubator to the UCB Center on Hybrid and Embedded 
Software Systems (CHESS). UCB-CHESS will be a research unit operating as a part of the newly 
established initiative at the University of California, CITRIS, the Center for Information Technology in 
the Interests of Society (see the letter of support from Dean Richard Newton). CITRIS Director Prof. 
Bajcsy is an investigator on this proposal. They will provide a point of greater outreach of the research of 

  

the center to societal-scale information systems, and will also provide grant management and personnel 
support. CITRIS involves a commitment by the State of California of $100M over the period 2001–2004. 
The majority of the state funds will be used for the construction of new laboratories in Cory Hall and a 
new building located next door to Cory Hall and Soda Hall (where all UCB investigators reside), as well 
as networking, storage, and other infrastructure needs. The laboratories for the experimental components 
of CHESS will be housed in CITRIS space. CITRIS is organized according to a center of centers concept 
and is designed to address societal-scale concerns and applications-pull parts of the IT research agenda. 
CHESS will primarily do technology development with a view to integration in embedded platforms in IT 
and old economy industries. CHESS Center organization will consist of a Scientific Director (Prof. 
Henzinger), Participating Faculty, an Executive Director (to be hired), and a Board of Advisors. The 
Scientific Director and the Participating Faculty will direct all research activities. The Executive Director 
will be responsible for Center operations and business management, including industrial sponsorship. 
The VU Institute for Software Integrated Systems (ISIS) focuses on conducting and disseminating 
research on model-integrated computing and its applications. ISIS includes academic faculty, graduate 
students, professional research staff, and a wide range of industrial collaborators. ISIS is supported by the 
Model-Integrated Computing Alliance, whose members are private industry and government labs. The 
ISIS director, Prof. Sztipanovits, will be responsible for integrating and coordinating the proposed 
research and teaching activities of ISIS researchers and the participating research teams from VU and 
MU. Beside his academic credentials, Prof. Sztipanovits brings a great deal of program management 
experience with industry (especially the automotive and semiconductor industry) and DARPA. ISIS has 
extensive support from the Vanderbilt University School of Engineering (VUSE). VUSE provides over 
$500,000 annual operating budget for the ISIS director. The School will also provide funding for the 
renovation of a 13,000 ft2 building in 2002. The building will have sufficient space to run the proposed 
outreach program and host the increased number of visiting researchers, faculty, and students. Besides 
commitment from the School, the VU EECS department strongly supports the major curriculum 
modernization activity of the proposed effort. 
4.4 Leadership in the Field and Outreach to Other Groups 
The primary focus of our ITR submission is to develop the engineering science and methods for the 
modern systems science of hybrid and embedded systems. In addition to this fundamental rethinking, the 
tools and technologies that we will develop will impact systems for vehicle electronics, avionics, 
networked embedded sensors, and other safety-critical systems. CHESS at UCB and ISIS at VU will have 
an outreach effort to industry in the areas of avionics, vehicle electronics, networked embedded systems, 
and high-confidence systems. We expect to engage industry leaders from these market sectors in the 
Advisory Board (see the letters of support from Boeing, Ford, GM, and Lockheed Martin), and will 
eventually rely on industry to dedicate researchers and case studies to the ITR Project. Case studies are 
critical, since they will serve as calibration points of the level of maturity of the design tools and also 
enable us to confront two often-quoted difficulties in industry: (1) software advances lag behind hardware 
advances; and (2) there are numerous cost overruns in the delivery of embedded software. This latter 
difficulty results in the “testing until the money runs out” mindset, which in turn is reflected as cost 
overruns. 
 
This proposal has an ambitious research agenda, which will establish a well-structured new core for 
embedded software including a new systems science, model-based design technology, tool architectures, 
experimental platforms, and education. We are fully aware of the importance of metrics that will be used 
to measure the success of the proposed ITR. While we have an overarching vision of the direction of the 
project, its instantiation can be and will be measured by the number of special conferences, special 
sessions at conferences, journals, and intellectual excitement in the scientific community. A number of 
activities and opportunities, listed below, have allowed us to communicate our vision nationally and 
internationally (see the letters of support from the European Network on Embedded Software Artiste and 
the letter from the Technical University of Vienna). We will continue to pursue the following and other 
such activities in the course of this project. 



  

� Hybrid Systems---Control and Computation. An annual workshop initiated by two of the principal 
investigators, Henzinger and Sastry, and co-chaired by Sangiovanni-Vincentelli in 2001. 
� International Workshop on Embedded Software. An annual workshop, in which Henzinger, Lee, and 
Sztipanovits have played a key role and co-chaired by Sangiovanni-Vincentelli in 2002. 
� New Visions in Software Design and Productivity (SDP). A workshop co-chaired by Sztipanovits, and 
funded the Interagency Working Group for Information Technology Research and Development 
(ITRD) 
� IEEE Proceedings, Special Issue on Embedded Software Design. Sztipanovits and Sastry are coeditors 
of an IEEE Proceedings Special Issue to appear in early 2003. 
� National Experimental Platform for Hybrid and Embedded System Technology (NEPHEST). UCB 
and VU are participants in a seedling effort coordinated by Lockheed Martin on the design of tools 
and frameworks for embedded software design. 
� Model Integrated Computing Alliance. ISIS established the Model-Integrated Computing Alliance in 
1995. The members are Boeing, DuPont, Motorola, GM-Saturn, IBM, USAF Arnold Center, NASA 
Marshall Flight Sciences Center, and Sandia National Labs. 
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