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Abstract—The advent of the massive open online course
promises to bring world-class education to anyone with internet
access. Instructors use blended models of education to deliver
course content via video, text, interactive assignments, exams,
wikis, and discussion forums. Courses with largely theoretical
content are readily adapted to blended models for online audi-
ences, but significant challenges arise when incorporating project-
based learning and interactive experiments. Cyber-physical sys-
tems courses commonly include experiments that explore the
interplay between computation and physics and are especially
subject to the challenges of bringing experimentation and project-
based learning to online audiences. We describe technical aspects
of embedded and cyber-physical systems laboratory exercises
used at the University of California, Berkeley, and investigate
avenues for adapting this content to a massive open online course.

I. INTRODUCTION

A massive open online course (MOOC) [1] is an online
course designed to scale to a large number of participants who
do not need to be registered at an academic institution. Models
for developing MOOCs vary dramatically and the landscape is
still largely uncharted. Organizations leading the development
of MOOCs include edX (a nonprofit founded by MIT and
Harvard) [2], Coursera (a private organization with roots in
Stanford University) [3], and Udacity (a private organization
also with roots in Stanford University) [4]. An example of the
scale of a MOOC comes from edX, where its inaugural MITx
course 6.002x in introductory circuits [5], [6] drew more than
150,000 registrants [7], 28% of which completed the course
[6]. The University of California, Berkeley, recently became a
partner in edX [8].

The course EECS 149, “Introduction to Embedded Systems”
[9] at the University of California, Berkeley, is a course taken
by graduate students and undergraduate juniors and seniors.
The course follows the textbook Lee & Seshia, Introduction
to Embedded Systems: A Cyber-Physical Systems Approach
[10], and lecture recordings are published online [11]. The
textbook is available as a free PDF download and is designed
specifically for reading on desktops and tablets, featuring
extensive use of hyperlinks [12]. Laboratory exercises give
students experience with three distinct levels of embedded
software design, namely bare-metal programming (software
that executes in the absence of an operating system), program-
ming within a real-time operating system, and model-based

design for cyber-physical systems. In each case, students are
taught to think critically about technology, to probe deeply
the mechanisms and abstractions that are provided, and to
understand the consequences of chosen abstractions on overall
system design [13], [14]. Laboratory exercises follow Jensen,
Lee, & Seshia, An Introductory Lab in Embedded and Cyber-
Physical Systems [15], a textbook companion that is available
as a free PDF download along with all accompanying software
and documentation.

Over the last six years we have developed and refined the
lectures, textbook, and laboratory exercises. Our focus now
turns to adapting the course to a MOOC. Initial results have
been obtained for automatically generating problems and so-
lutions for textbook exercises and auto-grading [16]; however,
more must be done to bring online the laboratory exercises
that are central to the course experience. Here, we addresses
this challenge, beginning with a technical overview of key
laboratory exercises and then evaluating potential adaptations
for an online audience.

II. ARCHITECTURE OF THE ON-CAMPUS LABS

The Cal Climber [17], [18] is a cyber-physical system based
on a commercially available robotics platform derived from the
the iRobot Roomba autonomous vacuum cleaner. The off-the-
shelf platform is capable of driving, sensing bumps and cliffs,
executing simple scripts, and communicating with an external
controller. The Cal Climber is comprised of the iRobot Create,
a National Instruments Single-Board RIO (sbRIO) embedded
microcontroller, and an Analog Devices ADXL-335 three-
axis analog accelerometer. The Cal Climber demonstrates
the composition of cyber-physical systems, where a robotics
platform is modeled as a subsystem and treated as a collection
of sensors and actuators located beyond a network boundary.

The problem statement is as follows [15]:
Design a Statechart to drive the Cal Climber. On
level ground, your robot should drive straight. When
an obstacle is encountered, such as a cliff or an
object, your robot should navigate around the object
and continue in its original orientation. On an
incline, your robot should navigate uphill, while still
avoiding obstacles. Use the accelerometer to detect
an incline and as input to a control algorithm that
maintains uphill orientation.
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Students employ model-based design [17], [19] to develop
software for controlling the Cal Climber, making use of
the LabVIEW Robotics Environment Simulator by National
Instruments. The simulator is based on the Open Dynamics
Engine [20] rigid body dynamics software that can simulate
robots in a virtual environment (Fig. 1). Students design their
controller in both C and LabVIEW following the Statecharts
model of computation, and execute their controllers both in
simulation and on the real device. Student controllers execute
within a hardware abstraction layer responsible for simulating
sensors and actuators when executing within the simulator
and linking to sensor and actuator drivers when deploying
to the embedded target (Fig. 2). Control software can be
migrated between simulation and deployment with little or no
modification. The result is a complete end-to-end model-based
design flow (Fig. 3).

Source files distributed with the Cal Climber laboratory
are designed so that students need modify only a single C
source file or a single LabVIEW Statechart file to complete
the exercises. The template C source file is structured as a
Statechart that receives as arguments the most recent values
of the accelerometer and robot sensors and returns desired
wheel speeds. The LabVIEW Statechart receives the same
inputs and produces the same outputs as the C source file. In
both C and LabVIEW, timing is governed by the rate at which
the robot sensors are updated, and inputs and outputs use the
same units and binary representation. Timing is simulated by
sampling the simulated environment at the same rate as the
real robot samples its environment, and quantization error is
simulated by converting physical quantities in simulation to the
same binary representation used by the robot. The hardware
abstraction layer and robotics simulator interface are written
in structured dataflow [21], which can execute C code that
has been compiled into a dynamic-linked library (DLL), or
natively execute a LabVIEW Statechart.

LabVIEW Robotics Environment Simulator provides a
graphical interface for customizing environments, including
adding, removing, and moving obstacles, changing the initial
position of the robot, adjusting sensor locations, and adding
multiple robots to the environment. Robots modeled in CAD
software such as SolidWorks and Google Sketch can be
imported and customized with sensors and actuators. The
configuration of the environment, including dimensions and
placement of objects and robots, is stored in an XML file.

III. COST OF VIRTUALIZATION

In an ideal world, we would provide an infrastructure where
students can log in remotely to a computer which has been pre-
configured with all development tools and laboratory exercises.
In fact, such an infrastructure is already becoming a reality.
For instance, the iLab project [22] at MIT has for several years
sought to make real laboratories accesible through the Internet.
In the setting of our course, each virtual computer would
connect wirelessly to a real robot in a real environment, with
feedback provided by robot sensors, a robot-mounted camera,
and one or more cameras with visibility of the environment.

Fig. 1. Cal Climber in the LabVIEW Robotics Environment Simulator.
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Fig. 3. Model-based design flow used in the Cal Climber exercises.

There are few technical challenges to such an implemen-
tation of the laboratory: only the cameras and remote access
are added to the existing implementation. Scaling to 100,000
students, however, poses significant logistical challenges. As-
suming each student has a dedicated robot and environment,
each environment has modest dimensions of 5 feet wide by 10
feet long, and each robot costs $500 US dollars, the combined
space needed for the environments would exceed that of the
Boeing Everett Factory (the largest footprint of any building
in the world) and the combined cost would exceed $50 million
for the robots alone! Time-sharing is implausible as even the
most optimal utilization of resources would result in a still
sizable fraction of these costs. Then consider incapacitated



robots, dead batteries, and other practical concerns faced by
real-world laboratories. MITx 6.002x uses circuit simulation
software instead of physical hardware due to similar concerns
[6]. For a MOOC with cyber-physical laboratories, only sim-
ulation appears viable.

Having solved – or sidestepped – the hardware question,
now consider software. The Cal Climber exercises require
a gcc compiler for development of the C controller and
LabVIEW for the simulation environment and development of
the dataflow controller. If students install laboratory software
on their personal computers, they absorb cost of licensing
commercial software and need computers capable of running
modern design and simulation software, which seems counter
to the open model of a MOOC. Alternatively, a virtual
server maintained by the institution would provide students
remote access to virtual instances of a computer that has
been preconfigured with all necessary software. Students need
not purchase, install, or configure software, and computers
need only the capability to access the virtual server over a
decent internet connection. Using a virtual server alleviates
support burdens and student costs while incurring costs on the
institution including any license agreements with commercial
software and operating system vendors, setup and maintenance
costs of institution-operated servers, and usage fees for a third-
party service provider (“cloud” services).

Consider a student remotely connecting to a virtual com-
puter running a Microsoft Windows operating system. The
virtual server is hosted on Amazon Elastic Compute Cloud
(EC2) services and users connect using Microsoft Remote
Desktop Connection. A pilot of LabVIEW running on a virtual
Windows server in EC2 is in progress, and early results are
promising [23]. We extended this pilot with the simulated
labs and verified performance and behavior are sufficient
when executing in the cloud. Further evidence of the potential
of EC2 is BerkeleyX CS161.1x, which enables students to
replicate a virtual computer that has been preconfigured with
all development software. Pricing for the LabVIEW EC2
service, at the time of this publication, is $0.18 per hour for
software licenses, $0.23 per hour for EC2 usage, and $0.12
for each gigabyte of data transferred [24]. Students typically
take between 9 and 12 hours to complete the Cal Climber
exercises. Microsoft Remote Desktop Connection will likely
use more than 100 kilobytes of data per second during the use
of graphical design environments and 3D simulations [25]. The
net cost of using Amazon EC2 cloud services for hosting the
Cal Climber exercises for 100,000 students is approximately
$492,000 in usage fees and $51,840 in data transfer fees.
Clearly this is is an unreasonable cost for the institution, but
the cost per student is convincing:

[
$0.41

hr
+

(
$0.12

gB
× 100kB

sec

)]
× 12hr

student
=

$5.44

student
. (1)

Given the relatively low cost per student and ease of support,
we plan to use virtualization to bring the course online.

IV. AUTOMATIC GRADING

Manual grading of laboratory solutions for massive courses
is difficult. Some courses, mostly non-technical, use crowd-
sourcing. Technical courses such as the software engineering
courses BerkeleyX CS169.1x and CS1692.x employ automatic
grading. The model-based design framework of the laboratory
exercises aids the creation of automatic grading software,
particularly because the controller is modular and independent
of the simulator. The concept is to develop grading software
that can easily enumerate simulation environments and student
solutions.

A. Grading via Simulation

One implementation of the grading software would be a
modified simulator that executes the environment simulator
with the submitted controller, tests for success and failure
conditions, reports, and then permutes the environment and
initial conditions. A simple approach would be to manually
build a number of set of test cases, where each test case
includes an environment, initial conditions, and a set of desired
final positions for the robot. Automatic generation of test
cases may be possible through the use of simulation-based
falsification tools such as S-TaLiRo [26] or Breach [27], [28].
Formal verification tools such as model checkers may be used
to decide whether a solution is correct if relatively a simple
model of computation (e.g., finite state machines) is used for
the student controller. Design requirements can be formally
stated in mathematical notation such as temporal logic, allow-
ing the use of techniques for efficient run-time monitoring of
such requirements [27]. Temporal logic is a topic covered in
our course, and we envision sharing requirements in terms
of temporal logic to encourage students to learn through the
grading process.

Test cases should be organized in such a way that they first
test simple, independent requirements, then advance to more
sophisticated requirements, complete test courses, and “torture
tests”. For example, first test cases would assert “the robot
maintains orientation” and “the robot navigates to the top of
an incline” in an environment without obstacles. Test cases
advance to asserting more complex requirements like “the
robot maintains orientation while avoiding obstacles”, then
sophisticated assertions like “the robot maintains orientation
and avoids obstacles on level ground and navigates uphill when
on an incline”. Torture-tests can introduce environments where
the robot may encounter fixed obstacles while on level ground
or on an incline, or moving obstacles such as another robot. We
imagine test cases where two robots navigate within the same
environment, with one robot controlled by student code and
the other controlled by a solution submitted by a fellow student
or instructor – a test case that challenges student controllers
to be robust against a potentially competitive environment.

B. Feedback Generation

Automatic grading serves the purpose of deciding whether
a submitted answer is correct, but perhaps more importantly,
generating useful feedback to the student when an answer is



incorrect or inelegant. One kind of feedback is to identify
the design steps in which the student went wrong. This is a
form of debugging, in the following sense: given an error trace
showing the failure of a test, automatic grading software must
identify the steps that lead to the failure of a requirement. This
problem has been studied in the computer-aided verification
and software engineering literature under the terms “error
localization” or “bug localization.”

Several error localization methods operate on source code,
but these can be limited by the expressiveness of the models
of computation used and the size of the programs they ana-
lyze. More promising are error localization and explanation
techniques that operate on execution traces [29], [30], and
those that make use of “fault” models that codify common
mistakes [31]. An open technical challenge is to lift these
methods to operate on the rich hybrid dynamical models
needed in the design and analysis of cyber-physical systems.

C. Local versus Global Implementation

One possible implementation of automatic grading is local
grading where students students run grading software that
tests their solutions, displays results, and optionally submits
results to an online database. When students are satisfied
with their design, they run tests and submit the results to
a remote grading server. If students are able to pass some
test cases, but not all, they may still submit their results for
partial credit. A secure results database must be maintained
by the institution, and care must be taken to prevent students
from submitting fraudulent results. Local grading leverages
the existing virtual computing framework and gives immediate
feedback, but the grading process is vulnerable to hacking.
Local grading software is straightforward to implement and
does not require any additional virtual computing frameworks
beyond a simple secure grading results database.

One benefit of local grading is the instructional value of
testing. Students, in a sense, know the answer before they
begin: design a controller that satisfies the problem statement.
It is the design methodology and the steps leading to the
answer that they must learn. With local testing, as test cases are
enumerated, students can watch the video of their controllers
executing within each simulated test case. This gives them
immediate and valuable insight into where design changes
should be made. Tests can be run one at a time to focus
on a specific case, or in sequences that ensure modifications
directed at more advanced cases do not result in the failure of
more primitive tests – in essence, a unit test framework.

An alternate implementation of automatic grading is global
grading where students submit their solutions to a grading
server that tests solutions, records results on a local database,
and sends the student a report via e-mail. Global grading is
more secure since students do not have visibility into the
grading software, but grading may not be immediate and
a separate grading computer (or cluster of computers) must
be virtualized and maintained by the institution. Students do
not receive immediate feedback as tests are run, but students
can be given the test environments to execute on their own.

Grading machines may need to be overprovisioned or capable
of spawning additional instances should demand be high –
such as the hours before exercises are due. Since testing is
performed on a secure server, fraudulent results are difficult
to submit, but the burden on the institution is high. Global
grading would also require custom software to manage queues,
report results, and record grades.

D. Detecting Cheating

In both local and global grading, steps must be taken
to prevent students from sharing solutions. Many techniques
exist for automatic detection of textual code plagiarism [32],
however we have been unable to find methods for similar
detection of graphical code plagiarism. A naive method for
detecting plagiarism is to compare simulation traces, however
this may not be practical (or even possible). The ODE solver
may not always produce equal traces for sequential executions
of the same controller, especially if any form of noise is
modelled. If the active states of the solution Statechart are
output along with control signals, then an execution trace can
be produced by the grader and checked against previously
submitted execution traces. Automatic detection of textual
code plagiarism, as well as execution trace correlation, place
additional burdens on the institution, but we are not far enough
along in development to predict what will be the impact and
cost. We leave this as future work.

E. Execution on Hardware

As previously discussed, making real hardware available to
several thousand students is impractical. However, the code
that students write for use in a simulation-based virtual envi-
ronment must also run on real hardware. This is an important
requirement that ensures that the students learning experience
is as “close” as possible to the one they would get in a real
hardware laboratory. Executing the best student solutions on
real hardware is also a nice validation for the students to see
their work in action in the real world. Students who have the
wherewithal to purchase and use their own hardware may also
be able to deploy their solutions on that hardware and submit,
as extra evidence, video of their code running on the hardware.

V. CONCLUSION

We give evidence that some laboratory exercises in cyber-
physical systems can be adapted for use by a MOOC. Hard-
ware replication and resource sharing appear infeasible both
in cost and maintainability; however, simulation software such
as the LabVIEW Robotics Environment Simulator and virtual
computing services such as Amazon EC2 are attractive and
cost-effective alternatives that are readily maintained. While
the experience of a physical lab environment can never be fully
replaced, the combination of simulation software and virtual
computing enables online students to experiment, learn, and
achieve the laboratory objectives of our course.
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