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The Context for this Talk: Cyber-Physical Systems 
or The Internet of Important Things (IoIT) 

Leveraging Internet 
technology in cyber-
physical systems. 
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This Bosch Rexroth printing press is a cyber-
physical factory using Ethernet and TCP/IP 
with high-precision clock synchronization 
(IEEE 1588) on an isolated LAN. 

Challenges: 

•  Isolated networks are reliable, 
predictable, and controllable. But 
they lose the benefits of 
connectedness. 

•  Safety is the most critical design 
requirement. 

•  Security is essential, particularly 
w.r.t. how it impacts safety.  

•  Privacy (protection of data) is 
required. 
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Automotive 

IoIT and CPS 
Underlie much of the industrial economy 

Biomedical 

Military 

Energy 

Manufacturing 

Avionics 

Buildings 



Schematic of a simple CPS 
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In CPS, “cyber” == “software” and 
“physical” == “not software”.  Digital 
hardware sits in a gray area! 



The Theme of This Talk 

Determinacy 
 
or 
 

Better Engineering through Better Models 
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Sources of Nondeterminism 
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Physical noise Imperfect actuation 

Parts failures 

Unknowable delays Packet losses 

Unknowable execution times 

Uncontrollable scheduling 



In the face of such nondeterminism, does 
it make sense to talk about deterministic 

models for cyber-physical systems? 
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 Models vs. Reality 
Solomon Golomb: Mathematical models – Uses and limitations. 
Aeronautical Journal 1968 

Solomon Wolf Golomb (1932)  mathematician 
and engineer and a professor of electrical 
engineering at the University of Southern 
California. Best known to the general public and 
fans of  mathematical games as the inventor of  
polyominoes, the inspiration for the computer  
game Tetris. He has specialized in problems  
of combinatorial analysis, number theory,  
coding theory and communications.  

You will never strike oil by 
drilling through the map! 
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But this does not, in any way, 
diminish the value of a map! 
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The Kopetz Principle 
 
Many (predictive) properties that we assert 
about systems (determinism, timeliness, 
reliability, safety) are in fact not properties of 
an implemented system, but rather properties 
of a model of the system. 
 
We can make definitive statements about 
models, from which we can infer properties of 
system realizations. The validity of this 
inference depends on model fidelity, which is 
always approximate. 
 
(paraphrased) 

Prof. Dr. Hermann Kopetz 
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Deterministic Models of Nondeterministic Systems 

Physical System Model 

Synchronous digital logic 
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Image: Wikimedia Commons 



Deterministic Models of Nondeterministic Systems 

Physical System Model 

Instruction Set Architectures (ISAs) 
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Image: Wikimedia Commons 
Waterman, et al., The RISC-V Instruction Set Manual, 
UCB/EECS-2011-62, 2011 



Deterministic Models of Nondeterministic Systems 

Physical System Model 

Single-threaded imperative programs 
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Image: Wikimedia Commons 



Deterministic Models of Nondeterministic Systems 

Physical System Model 

Signal Signal 

Differential Equations 
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Image: Wikimedia Commons 



A Major Problem for CPS: 
Combinations of these Models are Nondeterministic 

Signal Signal 
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A Key Challenge: 
Timing is not Part of Software Semantics 

Correct execution of a program in C, C#, Java, Haskell, 
OCaml, Esterel, etc. has nothing to do with how long it 
takes to do anything. Nearly all our computation and 
networking abstractions are built on this premise. 

  
Programmers have to step outside the 
programming abstractions to specify 
timing behavior. 
 
Programmers have no map! 

Lee, Berkeley 16 



Lee, Berkeley 17 

The Model 
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The Reality 
USB interface

JTAG and SWD interface

graphics
display

CAN bus interface

Ethernet interface

analog
(ADC)
inputs

micro-
controller

removable 
flash 

memory
slot

PWM outputs

GPIO connectors

switches
connected

to GPIO pins
speaker
connected to
GPIO or PWM
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The Model is  
not much more 
deterministic than 
the reality 

The modeling 
languages have 

disjoint, incompatible 
semantics 
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System dynamics 
emerges from the 
physical 
realization 

USB interface

JTAG and SWD interface

graphics
display

CAN bus interface

Ethernet interface

analog
(ADC)
inputs

micro-
controller

removable 
flash 

memory
slot

PWM outputs

GPIO connectors

switches
connected

to GPIO pins
speaker
connected to
GPIO or PWM

! leading to a 
“prototype and test” 

style of design 



The first edition of Hennessy and 
Patterson (1990) revolutionized 
the field of computer architecture 
by making performance metrics 
the dominant criterion for design.  
 
Today, for computers, timing is 
merely a performance metric. 
 
It needs to be a  
correctness criterion. 

Computer Science has not completely ignored 
timing! 
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Correctness criteria 

We can safely 
assert that line 8 
does not execute  
 
 
 
(In C, we need to 
separately ensure that 
no other thread or ISR 
can overwrite the stack, 
but in more modern 
languages, such 
assurance is provided 
by construction.)  

We can develop absolute 
confidence in the software, in that 
only a hardware failure is an excuse. 
 
But not with regards to timing!! 
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Research Efforts at Berkeley 
Better Engineering through Better Models 
¢  PTIDES: distributed real-time software 

l  Deterministic timing of distributed CPS 

¢  PRET machines 
l  Deterministic timing at the processor level 

¢  Accessors 
l  Principled composition of networked components 

¢  Open-source software 
l  Ptolemy II 

¢  Model-based design (iCyPhy) 
l  Interfaces (e.g. FMI), contracts, aspects, … 

¢  Semantics 
l  Timed models of computation, 
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Focus first on the 
Network 
Interactions 

We also developed deterministic models for distributed 
real-time software, using a technique called PTIDES.  



Our Proposal: Discrete-Event Semantics + 
Synchronized Clocks 
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DE models have been widely used simulation, hardware 
design, and network modeling. design, and network modeling. 



Using Discrete Event Semantics in  
Distributed Real-Time Systems 

¢  DE is usually used for simulation (HDLs, network simulators, …) 
¢  Distributing DE is done to accelerate simulation. 
 
 
We are using DE for distributed real-time software, binding time 
stamps to real time only where necessary. 

PTIDES: Programming Temporally Integrated Distributed Embedded 
Systems 
 
Y. Zhao, E.A. Lee, J. Liu, “A Programming Model for Time-Synchronized Distributed 
Real-Time Systems,” Proc. Real-Time and Embedded Technology and Applications 
Symposium (RTAS), IEEE, 2007, pp. 259 - 268. 

 



Ptides: First step: 
Time stamps bind to real time at sensors and actuators 

Time stamp value is a 
deadline 

Time stamp value is 
time of measurement 

Actors wrap 
sensors 

Actors wrap 
actuators 



Ptides: Second step: 
Time-stamped messages. 

Messages carry time 
stamps that define their 

interleaving 

Actors specify 
computation 



Ptides: Third step:  
Network clock synchronization 

GPS, NTP, IEEE 1588, 
TSN, time-triggered 
busses, ! they all work. 
We just need to bound 
the clock synchronization 
error. 

Assume bounded 
clock error 

Assume bounded 
clock error e 

Assume bounded 
clock error e 

Clock synchronization 
gives global meaning to 

time stamps 

Messages are 
processed in time-
stamp order 



Global latencies between sensors and actuators become 
controllable, which enables analysis of system dynamics. 

Ptides: Fourth step: 
Specify latencies in the model 

Model includes 
manipulations of time 
stamps, which control 

latencies between 
sensors and actors 

Actuators may be 
designed to interpret 
input time stamps as 
the time at which to 

take action. Feedback through the physical world 



Ptides: Fifth step 
Safe-to-process analysis (ensures determinacy)  
Safe-to-process analysis guarantees that events are processed in time-stamp 
order, given some assumptions. 

Assume bounded 
network delay d 

Assume bounded 
clock error 

Assume bounded 
clock error e 

An earliest event with 
time stamp t here can 
be safely merged when 
real time exceeds  
t + s + d + e – d2 

Assume bounded 
clock error e 

Assume bounded 
sensor delay s 

Application 
specification of 

latency d2 
Technical: 
Need to have 
deadlines on 
network 
interfaces, to 
guarantee 
time-stamp 
order 
irrespective 
of execution 
times of 
actors. 



 So Many Assumptions? 
Recall Solomon Wolf Golomb: 

All of the assumptions are achievable with today’s 
technology, and in fact are requirements anyway 
for hard-real-time systems. The Ptides model 
makes the assumptions explicit. 
 
Violations of the assumptions are detectable as 
out-of-order events and can be treated as faults. 

You will never strike oil by 
drilling through the map! 
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Handling Faults 

A “fault” is a violation of assumptions in the model. 

! after an event here 
with a later time 
stamp has been 
processed, then one 
or more assumptions 
was violated. 

If an event 
arrives here with 
an earlier time 

stamp! 

As with any 
model, the 
physical 
world may 
not conform 
to its rules. 
Violations 
should be 
treated as 
faults. 



Ptides Schedulability Analysis 
Determine whether deadlines can be met 
 
The problem turns out to be decidable for a large class of models. 



Google Spanner 

Google 
independently 
developed a 
very similar 
technique and 
applied it to 
distributed 
databases. 
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 Proceedings of OSDI 2012 



Google Spanner 
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Distributed database with redundant 
storage and query handling across data 
centers. 

Record update comes 
in. Time stamp t1. 

Query for the same record 
comes in. Time stamp t2. 



Google Spanner 
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Record update comes 
in. Time stamp t1. 

Query for the same record 
comes in. Time stamp t2. 

If t2 < t1, the query response should be 
the pre-update value. Otherwise, it 
should be the post-update value. 



Google Spanner: When to Respond? 
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Record update comes 
in. Time stamp t1. 

Query for the same record 
comes in. Time stamp t2. 

When the local clock time exceeds 
t2 + e + d, issue the current record 
value as a response. 

Synchronize clocks 
with error bound e. 

Communication 
latency bound b. 



Google Spanner: Fault! 
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Record update comes 
in. Time stamp t1. 

Query for the same record 
comes in. Time stamp t2. 

If after sending a response, we receive 
a record update with time stamp t1 < t2 
declare a fault. Spanner handles this 
with a transaction schema. 

Synchronize clocks 
with error bound e. 

Communication 
latency bound b. 



Ptides in  
Ptolemy II 

Open-source modeling and simulation 
environment, with Ptides support created 
by Patricia Derler. 
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http://ptolemy.org 



See Book 

See 
!! Chapter 8:  

Discrete-Event Models 
!! Chapter 10:  

Modeling Timed Systems 

Free download at: 
http://ptolemy.org/systems 
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But what about the  
Cyber-Physical Boundary? 



Research Efforts 
Better Engineering through Better Models 
¢  PTIDES: distributed real-time software 

l  Deterministic timing of distributed CPS 

¢  PRET machines 
l  Deterministic timing at the processor level 

¢  Accessors 
l  Principled composition of networked components 

¢  Open-source software 
l  Ptolemy II 

¢  Model-based design (iCyPhy) 
l  Interfaces (e.g. FMI), contracts, aspects, … 

¢  Semantics 
l  Timed models of computation, 
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The hardware out of which we build computers 
is capable of delivering “correct” computations 
and precise timing! 

 
The synchronous digital logic 
abstraction removes the 
messiness of transistors. 
 
 
 
! but the overlaying software 
abstractions discard the timing 
precision. 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 
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PRET Machines – Giving Programs the 
Capabilities their Hardware Already Has. 

!! PREcision-Timed processors = PRET 
!! Predictable, REpeatable Timing = PRET 
!! Performance with REpeatable Timing = PRET 

= PRET + 
Computing 

With time 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 

http://chess.eecs.berkeley.edu/pret 
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Major Challenges 
and existence proofs that they can be met 

¢  Pipelines 
l  fine-grain multithreading 

¢  Memory hierarchy 
l  memory controllers with controllable latency 

¢  I/O 
l  threaded interrupts, with bounded effects on timing 
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Major Challenges, Yes, but 
Leading to Major Opportunities 

¢  Improved determinism 
¢  Better testability 
¢  Reduced energy consumption 
¢  Reduced overdesign (cost, weight) 
¢  Improved confidence and safety 
¢  Substitutable hardware 
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PRET Publications 
PRET ISA Realizations: 
¢  PRET1, Sparc-based 

l  [Lickly et al., CASES, 2008] 
¢  PTARM, ARM-based 

l  [Liu et al., ICCD, 2012] 
¢  FlexPRET, RISC-V-based 

l  [Zimmer et al., RTAS, 2014] 
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PRET Principle: 
¢  The case for PRET 

l  [Edwards & Lee, DAC 2007] 
¢  PRET ISA extensions 

l  [Edwards at al., ICCD 2009] 
¢  Temporal isolation 

l  [Bui et al., DAC, 2011] 
¢  Design challenges 

l  [Broman et al., ESLsyn, 2013] 
¢  Cyber-physical systems 

l  [Lee., Sensors, 2015] 

PRET for Security: 
¢  Eliminating side-channel attacks 

l  [Lie & McGrogan, Report 2009] 

PRET Applications: 
¢  Control systems 

l  [Bui et al., RTCSA 2010] 
¢  Computational fluid dynamics 

l  [Liu et al., FCCM, 2012] 

PRET Memory Systems: 
¢  DRAM controller 

l  [Reineke et al., CODES+ISSS 2011] 
¢  Scratchpad managment 

l  [Kim et al., RTAS, 2014] 
¢  Mixed criticality DRAM controller 

l  [Kim et al., RTAS 2015] 



One Last Comment… 
Model Fidelity 

¢  In science, a good model matches well the behavior of 
the physical world. 

¢  In engineering, a good physical implementation 
matches well the behavior of the model. 
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In engineering, model fidelity is a two-way street! 

For a model to be useful, it is necessary  
(but not sufficient) to be able to be able to  

construct a faithful physical realization. 



A Model 
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A Physical Realization 
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Model Fidelity 

¢  To a scientist, the model is flawed. 

¢  To an engineer, the physical realization is flawed. 

I’m an engineer… 
Ptides and PRET offer less flawed physical realizations. 
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Determinism? 

¢  The real world is highly unpredictable. 
¢  So, are deterministic models useful? 

l  Is synchronous digital logic useful?  
l  Are Instruction-Set Architectures useful? 
l  Single-threaded imperative programs?  
l  Differential equations? 
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For a model to be useful, it is necessary  
(but not sufficient) to be able to be able to  

construct a faithful physical realization. 



Determinism? 

Deterministic models do not eliminate the need for for 
robust, fault-tolerant designs. 

In fact, they enable such designs, because they make it 
much clearer what it means to have a fault! 
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Conclusions 
 

Today, timing behavior in computers emerges 
from the physical realization. 
 
Tomorrow, timing behavior will be part of the programming 
abstractions and their hardware realizations. 

Raffaello Sanzio da Urbino – The Athens School 
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Image: Wikimedia Commons 
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