The Internet of Important Things

Edward A. Lee

Robert S. Pepper Distinguished Professor
UC Berkeley

Keynote

Time Sensitive Networks and Applications (TSNA)
April 28-29, 2015.
Santa Clara, CA

The Context for this Talk: Cyber-Physical Systems
or The Internet of Important Things (lolT)

. This Bosch Rexroth printing press is a cyber-
Leveraging I nternet physical factory using Ethernet and TCP/IP
technology in cyber- with high-precision clock synchronization
physical systems. (IEEE 1588) on an

Challenges:

Isolated networks are reliable,
predictable, and controllable. But
they lose the benefits of
connectedness.

Safety is the most critical design
requirement.

Security is essential, particularly
w.r.t. how it impacts safety.

Privacy (protection of data) is
required.

Lee, Berkeley

loIT and CPS

Underlie much of the industrial economy

It’s not just information technology anymore:

* Cyber + Physical
* Computation + Dynamics
* Security + Safety

Contradictions:

e Algorithms vs. Dynamics
* Economies of scale (cloud) vs. Locality (fog)

* High performance vs. Low Energy

* Asynchrony vs. Coordination/Cooperation

e Adaptability vs. Repeatability

* High connectivity vs. Security and Privacy

* Scalability vs. Reliability and Predictability

* Open vs. Proprietary

* Laws and Regulations vs. Technical Possibilities

Innovation: _ | Manufacturing

Cyber-physical systems are fundamentally different from computational
systems and from physical systems. They require new engineering models
that embrace temporal dynamics and algorithmic computation.

\ooo

g T

et 31108

D |3'.< m
L ﬂ
—+]

= Ei 140 |

Schematic of a simple CPS

Computational Network Computational
Platform Fabric Platform

Physical

plant

In CPS, “cyber” == “software” and
“ohysical” == “not software”. Digital
hardware sits in a gray area...

Lee, Berkeley 4

The Theme of This Talk

Determinacy

or

Better Engineering through Better Models

Lee, Berkeley

Sources of Nondeterminism

Packet losses

Y

Computational
Platform

Unknowable execution times

Unknowable delays

y

/L

Physical noise

Fabric

. 'I Network

Physical
plant

A

Parts failures

Lee, Berkeley

Computational
Platform

/

Uncontrollable scheduling

A

Imperfect actuation

In the face of such nondeterminism, does
it make sense to talk about deterministic
models for cyber-physical systems?

Lee, Berkeley

Models vs. Reality

Solomon Golomb: Mathematical models — Uses and limitations.
Aeronautical Journal 1968

You will never strike oil by
drilling through the map!

Solomon Wolf Golomb (1932) mathematician
and engineer and a professor of electrical
engineering at the University of Southern
California. Best known to the general public and
fans of mathematical games as the inventor of
polyominoes, the inspiration for the computer
game Tetris. He has specialized in problems

of combinatorial analysis, number theory,
coding theory and communications.

Lee, Berkeley

But this does not, in any way,
diminish the value of a map!

Lee, Berkeley

The Kopetz Principle

Prof. Dr. Hermann Kopetz

Lee, Berkeley

Many (predictive) properties that we assert
about systems (determinism, timeliness,
reliability, safety) are in fact not properties of
an implemented system, but rather properties
of a model of the system.

We can make definitive statements about
models, from which we can infer properties of
system realizations. The validity of this
inference depends on model fidelity, which is
always approximate.

(paraphrased) 10

Deterministic Models of Nondeterministic Systems

Physical System Model

----- vl Erven CHFENT Operaian
| l

_..\L
_")I' b

—

™ +

CanyCit

Synchronous digital logic

Lee, Berkeley 11

Deterministic Models of Nondeterministic Systems

Physical System Model

| Integer Register-Register Operations

RISC-V defines several arithmetic R-type operations. All operations read the rs! and rs2 registers
i as source operands and write the result into register rd. The funct field selects the type of operation.

27 26 22 21 17 16 76 0
rd | rsl | rs2 | funct10 | opcode |
5 5 5 10 7
dest srcl src2 ADD/SUB/SLT/SLTU (0
dest srcl src2 AND/OR/XOR 10)
dest srcl src2 SLL/SRL/SRA oP
dest srcl src2 ADDW/SUBW OP-32
dest srcl src2 SLLW/SRLW /SRAW OP-32

ye o . Waterman, et al., The RISC-V Instruction Set Manual,
Image: Wikimedia Commons UCB/EECS-2011-62. 2011

Instruction Set Architectures (ISAs)

Lee, Berkeley 12

Deterministic Models of Nondeterministic Systems

Physical System Model

/*% Reset the output receivers, which are the inside receivers of
* the output ports of the container.
* @exception IllegalActionException If getting the receivers fails.
*/
private void _resetOutputReceivers() throws IllegalActionException {
List<I0Port> outputs = ((Actor) getContainer()).outputPortlist();
for (I10Port output : outputs) {
if (_debugging) {
_debug("Resetting inside receivers of output port:
+ output.getName());

Receiver[][] receivers = output.getInsideReceivers();
if (receivers != null) {
for {int 1 = @; 1 < receivers.length; i++) {
if (receivers[i] != null) {
for (int j = @; J < receivers[i].length; j++) {
if (receivers[i]1[j] instanceof FSMReceiver) {
receivers[i][j].reset();

}

Single-threaded imperative programs

Lee, Berkeley 13

Deterministic Models of Nondeterministic Systems

Physical System Model

Signal Model Signal
- 1 t
Image: Wikimedia Commons | X(f) — X(O) + H /F(T)dT
0

Differential Equations

Lee, Berkeley 14

A Major Problem for CPS:
Combinations of these Models are Nondeterministic

/*¥* Reset the output receivers, which are the inside receivers of
* the output ports of the container.
* @exception IllegalActionException If getting the receivers fails.
L7
private void _resetOutputReceivers() throws IllegalActionException {
List<I0Port> outputs = ((Actor) getContainer(}).outputPortlist();
for (I0Port output : outputs) {
if (_debugging) {
_debug("Resetting inside receivers of output port:
+ output.getName());

Receiver[][] receivers = output.getlnsideReceivers();
if (receivers != null) {
for (int 1 = @; i < receivers.length; 14+) {
if (receivers[i] != null) {
for (int j = B; j = receivers[i].length; j++) {
if (receivers[i][j] instanceof FSMReceiver) {
receivers[i][j].reset();

}

Signal Signal

f
. _ |
Image: Wikimedia Commons X(f) - X(O) + ﬂ / F(T)dT
0 15

Lee, Berkeley

A Key Challenge:
Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,
OCaml, Esterel, etc. has nothing to do with how long it
takes to do anything. Nearly all our computation and
networking abstractions are built on this premise.

Programmers have to step outside the

programming abstractions to specify
timing behavior.

Programmers have no map!

16

The Model

SysTickPeriodSet (SysCtlClockGet () / 1000);|
SysTickEnable ();

\
SysTickIntEnable();

}
volatile uint timer_count = 0; \
veid ISR({veid) {
if (timer_count != 0) {
timer_count--;

\
u int main{void) {

\
SysTickIntRegister (RISR); '
. // other init \
timer_count = 2000;
" initTimer();

\
7 while(timer_count != 0) {
AY

\
... code to run for 2 seconds
"w }

\
// other code

Computational
Platform

Computational
Platform

Network
Fabric

Lee, Berkeley

17

The Reality

Computational
Platform

Lee, Berkeley

JTAG and SWD interface

\
\
¥ \
switches = \
connected € ‘\
to GPIO pins * [E71E] connected to \
- GPIO or PWM \
\
\
\

Network
Fabric

Physical

plant
-

/ Image: Wikimedia Commons

Computational
Platform

18

= SysTickPeriodSet (SysCtlClockGet () / 1000)
The Model is rneait
SysTickIntEnable Q0;
5 }
volatile t timer_count 0
not much more ik
if(ti -co t=m 0) {
t r_c
[]]] }
}
deterministic than SRR
SysTickIntRegister (8ISR)
// other init
- er_count 200
e rea I initTimer ();
hile(timer_count 0) {
«os cod T 2 d

Computational ~ [Network}
Platform | Fabric Platform

Physical
plant

The modeling

y languages have
f F(t)dt .~ disjoint, incompatible
0 semantics

Lee, Berkeley 19

System dynamics
emerges from the

physical
realization

Computational
Platform

Lee, Berkeley

iiiiii

JTAG and SWD interface

USB interface

speaker
ol

nnected to
GPIO or PWM

Network
Fabric

| Computational
Platform

Physical

plant
-

/ Image: Wikimedia Commons

... leading to a

“prototype and test”

style of design

20

Computer Science has not completely ignored

timing...

Lee, Berkeley

The first edition of Hennessy and
Patterson (1990) revolutionized
the field of computer architecture
by making performance metrics
the dominant criterion for design.

Today, for computers, timing is
merely a performance metric.

It needs to be a
correctness criterion.

21

Correctness criteria

We can safely
assert that line 8
does not execute

1
2
3
4
5
6
7
8
8

(In C, we need to 10
separately ensure that
no other thread or ISR

can overwrite the stack,

but in more modern
languages, such
assurance is provided

by construction.)

Lee, Berkeley

void foo(int32_t x) {

}

if (x > 1000) {
x = 1000;
}
if (x > 0) {
x = x + 1000;
if (x < 0) {
panic ();

}

We can develop absolute
confidence in the software, in that
only a hardware failure is an excuse.

But not with regards to timing!!
22

Research Efforts at Berkeley
Better Engineering through Better Models

o PTIDES: distributed real-time software
Deterministic timing of distributed CPS

o PRET machines

Deterministic timing at the processor level

o Accessors
Principled composition of networked components

o Open-source software
Ptolemy Il

o Model-based design (iCyPhy)

Interfaces (e.g. FMI), contracts, aspects, ...

o Semantics
Timed models of computation,

Lee, Berkeley

23

. . e e |y void initTimer (void) {
SSSSSSSSSSSSSS (SysCt1lClockGet () / 1000)
Focus firstonthe | & | | &
llllllllllllllll Q0;
}
; f \ ~ volatile uint timer_count = \
P 4 > void ISR(veid) { ‘\
e WO r e et if (timer_count != 0) { \
timer_coun \
[\
. . ’ / } \
! / e int main(veoid) { \
| nteractions , TSt asisptever (41855 |
P g /7 other i \
o L timer_count = 0; \
" initTimer (); \
" while(timer_ !) £ \\
" code n t 2 onds \
\\ h W } \
N 1 0 .. // other code \
N ! u)
- \\ ! \ "
Computationall ™ .| Network |} | Computational
p \\ \\
Platform Fabric Platform

Physical

plant

We also developed deterministic models for distributed
real-time software, using a technique called PTIDES.

Lee, Berkeley 24

Our Proposal: Discrete-Event Semantics +
Synchronized Clocks

DE models have been widely used simulation, hardware

I AURANCES I CALD FNR VUST ilime 7

design, and network modelm.

HETWOEE SIMULATION Introduction to
Rt LV Discrete Event

o ﬁ Systems

Second Edition

I| A

Computer | iﬁn\\ |
Networks oh- ¢ PPPR - msnmﬂlnn

. DISCRETE-EVENT e - R vt - . l“ﬁ“ﬂﬂ‘

SYSTEM SIMULATION The Verilog e
Hardware

Description

Language
Network Simulator
Mapping Guide e. = Flhy [t

Fomm

E

[

it #

Ly
el —

Jeffrey S. Beasley

|

Lee, Berkeley 25

Using Discrete Event Semantics in
Distributed Real-Time Systems

o DE is usually used for simulation (HDLs, network simulators, ...)
o Distributing DE is done to accelerate simulation.

We are using DE for distributed real-time software, binding time
stamps to real time only where necessary.

PTIDES: Programming Temporally Integrated Distributed Embedded
Systems

Y. Zhao, E.A. Lee, J. Liu, “A Programming Model for Time-Synchronized Distributed
Real-Time Systems,” Proc. Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE, 2007, pp. 259 - 268.

Ptides: First step:
Time stamps bind to real time at sensors and actuators

Actors wrap

Sensors . .
Time stamp value is
rm1 | time of measurement Time stamp value is a
deadline
Computationl *
Platform 3
I Computation3 E_—
Actors wrap
actuators

Platform 2 l
‘Eﬂﬂ* Sensq‘rz H Computation2 * Mer %/

= P o

X
hysical Local _
i?‘lt:rface network| Event Iph‘fsmal
fabric Source interface
S
@—* Computation4 +

Physical
plant

v

kv

Ptides: Second step:
Time-stamped messages.

Actors specify

computation :
P \ Messages carry time
\ () stamps that define their
Platform 1 interleaving
Computationl *
Flatform 3
/ Computation3 E_—

Platform 2 l

riﬂﬂ* 5en5q[r2 H Computation2 * Merge

A)

Y Loca D¢
.ph‘y’SilCEll network Ezz?'lt physical
interface fabric Source interface

S
g Computationd +
t;.
Physical
plant

Ptides: Third step:

Network clock synchronization

GPS, NTP, IEEE 1588,
TSN, time-triggered
busses, ... they all work.
We just need to bound
the clock synchronization
error.

()

Platform 1
Computationl
puatont §

Platform 3

]

I Computation3 E_—

time stamps

Platform 2 l
tﬂﬁ* Sensc,lrz H Comp/ /ionz * e
?!i [o
i b4
physical al Hesical
i Ty t physica
Ll o ce terface
Computationd + —
Messages are
Assume bounded &\ Clock synchronization | | Processed in time-
clock error e Ul gives global meaning to stamp order

Ptides: Fourth step:
Specify latencies in the model

Global latencies between sensors and actuators become
controllable, which enables analysis of system dynamics.

l l Model includes

manipulations of time
stamps, which control

Platform 1

Computationl *
Platform 3

model time .
A delay d1 1 latencies between
/ IC""‘”“““““ ; mode time sensors and actors
Platform 2 l
tm* Se nsq‘r2 H Computation2 *
model time
LL ' P:“'“ =
X
physi
interf.

v

Actuators may be
designed to interpret
input time stamps as

v

physical Local
interface network| Event
fabric Source

@ Computation4

the time at which to
take action.

Feedback through the physical world |

Ptides: Fifth step
Safe-to-process analysis (ensures determinacy)

Safe-to-process analysis guarantees that events are processed in time-stamp

order, given some assumptions.

Assume bounded
sensor delay s

Technical:
Need to have
deadlines on
network
interfaces, to
guarantee
time-stamp
order
irrespective
of execution
times of
actors.

Assume bounded
network delay d

_x

Platform 2

5 Sensdr2 C

v |

phﬁica
interfac

Assume bounded
clock error e

odel time

i

Application
specification of
latency d2

network
fabric

delay d3

Local

An earliest event with
time stamp t here can
be safely merged when
real time exceeds
t+s+d+e—-d?

So Many Assumptions?
Recall Solomon Wolf Golomb:

You will never strike oil by
drilling through the map!

All of the assumptions are achievable with today’s
technology, and in fact are requirements anyway
for hard-real-time systems. The Ptides model
makes the assumptions explicit.

Violations of the assumptions are detectable as
out-of-order events and can be treated as faults.

Lee, Berkeley 32

Handling Faults

A “fault” is a violation of assumptions in the model.

As with any
model, the
physical
world may
not conform
to its rules.
Violations
should be
treated as
faults.

Platform 1

Platform 3

Computation3 :‘

Platform 2

tiﬂﬂ* Se nscfrZ H ComputationZ *

model time |

A .
v

i

delay d3

physical
interface

Physical
plant

Local
Event
Sa -

network
fabric

model time
delay d1

If an event
arrives here with
an earlier time

madel time
Iay d2

.. after an event here
with a later time

—* stamp has been

d processed, then one
or more assumptions

was violated.

Ptides Schedulability Analysis

Determine whether deadlines can be met

The problem turns out to be decidable for a large class of models.

Input Automata
onepersensor

Scheduler Automaton

Task Automata one per platform
one per actor in the model

On the Schedulability of Real-Time Discrete-Event

Systems:
Eleftherios Matsikoudis Christos Stergiou - Edward A. Lee

EMSOFT 2013

—

Google Spanner

Google
independently
developed a
very similar
technique and
applied it to
distributed
databases.

Lee, Berkeley

Spanner: Google’s Globally-Distributed Database

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JI Furman,
Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura,
David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, Dale Woodford

Google, Inc.

Abstract

Spanner is Google’s scalable, multi-version, globally-
distributed, and synchronously-replicated database. It is
the first system to distribute data at global scale and sup-
port externally-consistent distributed transactions. This
paper describes how Spanner is structured, its feature set,
the rationale underlying various design decisions, and a
novel time API that exposes clock uncertainty. This API
and its implementation are critical to supporting exter-
nal consistency and a variety of powerful features: non-
blocking reads in the past, lock-free read-only transac-
tions, and atomic schema changes, across all of Spanner.

tency over higher availability, as long as they can survive
1 or 2 datacenter failures.

Spanner’s main focus is managing cross-datacenter
replicated data, but we have also spent a great deal of
time in designing and implementing important database
features on top of our distributed-systems infrastructure.
Even though many projects happily use Bigtable [9], we
have also consistently received complaints from users
that Bigtable can be difficult to use for some kinds of ap-
plications: those that have complex, evolving schemas,
or those that want strong consistency in the presence of
wide-area replication. (Similar claims have been made

by other authors [37].) Many applications at Google

Proceedings of OSDI 2012

35

Google Spanner

Record update comes
in. Time stamp t,.

MNarth Pacific

Query for the same record

Mexico comes in. Time stamp t..

México

Distributed database with redundant
storage and query handling across data
centers.

Lee, e

36

Google Spanner

Record update comes
in. Time stamp t,.

MNarth Pacific

Query for the same record

Mexico comes in. Time stamp t..

México

Ift, <t, the query response should be
the pre-update value. Otherwise, it
should be the post-update value.

Lee, e

37

Google Spanner: When to Respond?

Record update comes

in. Time stamp t, Synchronize clocks

with error bound e.

Communication
latency bound b.

Query for the same record

Mexico comes in. Time stamp t..

México

When the local clock time exceeds
t, + e + d, issue the current record
value as a response.

Lee, e

Google Spanner: Fault!

Record update comes

in. Time stamp t, Synchronize clocks

with error bound e.

QG

Communication
latency bound b.

Query for the same record

Mexico comes in. Time stamp t..

México

If after sending a response, we receive
a record update with time stamp t, <t,
declare a fault. Spanner handles this
with a transaction schema.

Lee, e

Ptides In
Ptolemy |l

DE Director

Qracle time

PtidesPlatform1

Physical
plant

Network.

PtidesPlatform2

NemarH—g}é?F

PtidesDirector

Local clock represents
platform time (which drifts
relative to oracle time), but

SensorPort

actors inside see logical time.
Computation TimeDelay
delay of:

Logical time stamp

specifies

(in platform time) for

producti

ActuatarPort

dl

s

time stamp to
input events.

Uses platform time
to assign a logical

Logical time delay
(only modifies the
logical time stamp).

NetwaorkTransmitterPort

a deadline

on of an output

http.//ptolemy.org

Open-source modeling and simulation
environment, with Ptides support created

by Patricia Derler.

Lee, Berkeley

PtidesDirector

Computation

Logical time stamp
specifies a deadline

(in platform time) for
production of an output.

NetworkReceiverPort
B

Logical time stamp

is received along

with the data from the
remote platform.

TimeDelay2
delay of: ActuatarPort
d2 L |
Logical time delay
(only modifies the
time stamp). 40

See Book

See

o Chapter 8:
Discrete-Event Models

o Chapter 10:
Modeling Timed Systems

Free download at: > S VD u

@

& ;

http://ptolemy.org/systems

RFndezvc-u'i

r”".; c# T ;; &
e,,m ; usf_:,E,.d,J iaﬁ

Lee, Berkeley B, ' "" X
fan? L { ! -,..]_. # L

But what about the

Cyber-Physical Boundary?

Computational
Platform

Network
Fabric

void in

s}

0
n }

u int main{void) {

¢« volatile uint timer_count = 0;
1 void ISR({veoid) {
if (timer_count

itTimer (void) { \
SysTickPeriodSet (SysCtlClockGet () / 1000);|
SysTickEnable ();

SysTickIntEnable ();

t=m 0) {
¥

SysTickIntRegister (RISR);
. // other init

ttttt _count 2000;
initTimer ()
while(time ot != 0) {
... code t for 2 d
3
wva Sf other d

Physical

Lee, Berkeley

Computational
Platform

42

Research Efforts
Better Engineering through Better Models

o PTIDES: distributed real-time software
Deterministic timing of distributed CPS

o PRET machines

Deterministic timing at the processor level

o Accessors
Principled composition of networked components

o Open-source software
Ptolemy Il

o Model-based design (iCyPhy)

Interfaces (e.g. FMI), contracts, aspects, ...

o Semantics
Timed models of computation,

Lee, Berkeley

43

The hardware out of which we build computers

Is capable of delivering “correct” computations
and precise timing...

The synchronous digital logic
abstraction removes the
messiness of transistors.

; // Perform the convolution.
... but the overlaying software for Gint 1-0: ica0s ian) 1
abstractions discard the timing x[i] = alil*b[j-i];
. // Notify listeners.
pl’eCISIOI’I notify(x[i]) ;

}
Lee, Berkeley 44

http.//chess.eecs.berkeley.edu/pret

PRET Machines — Giving Programs the
Capabilities their Hardware Already Has.

o PREcision-Timed processors = PRET
o Predictable, REpeatable Timing = PRET
o Performance with REpeatable Timing = PRET

// Perform the convolution.

for (int i=0; i<10; i++) {
x[1] = al[i]*b[j-1]; ot
// Notify listeners.
notify(x[i]);

}

Computing —
Lee, Berkeley With time 45

Major Challenges
and existence proofs that they can be met

o Pipelines
fine-grain multithreading
o Memory hierarchy
memory controllers with controllable latency

o I/O
threaded interrupts, with bounded effects on timing

Lee, Berkeley

46

Major Challenges, Yes, but
Leading to Major Opportunities

Improved determinism

Better testability

Reduced energy consumption
Reduced overdesign (cost, weight)
Improved confidence and safety
Substitutable hardware

O O O O O O

Lee, Berkeley

47

PRET Publications

PRET ISA Realizations:
o PRET1, Sparc-based

o PTARM, ARM-based

o FlexPRET, RISC-V-based
PRET Applications:

o Control systems

o Computational fluid dynamics

PRET for Security:
o Eliminating side-channel attacks

Lee, Berkeley

PRET Memory Systems:
o DRAM controller

o Scratchpad managment

o Mixed criticality DRAM controller

PRET Principle:
o The case for PRET

o PRET ISA extensions
o Temporal isolation
o Design challenges

o Cyber-physical systems

48

One Last Comment...
Model Fidelity

o In science, a good model matches well the behavior of
the physical world.

o In engineering, a good physical implementation
matches well the behavior of the model.

In engineering, model fidelity is a two-way street!

For a model to be useful, it is necessary
(but not sufficient) to be able to be able to
construct a faithful physical realization.

Lee, Berkeley 49

A Model

Lee, Berkeley

50

A Physical Realization

Lee, Berkeley

51

Model Fidelity

o To a scientist, the model is flawed.

o To an engineer, the physical realization is flawed.

I'm an engineer...
Ptides and PRET offer less flawed physical realizations.

Lee, Berkeley

52

Determinism?

For a model to be useful, it is necessary
(but not sufficient) to be able to be able to
construct a faithful physical realization.

o The real world is highly unpredictable.

o So, are deterministic models useful?
Is synchronous digital logic useful?
Are Instruction-Set Architectures useful?
Single-threaded imperative programs?
Differential equations?

Lee, Berkeley

53

Determinism?

Deterministic models do not eliminate the need for for
robust, fault-tolerant designs.

In fact, they enable such designs, because they make it
much clearer what it means to have a fault!

Lee, Berkeley

54

Special Thanks to:

Conclusions + Particia Derler
. . » John Eidson
Today, timing behavior in computers emerges « Slobodan Matic
from the physical realization. * Hiren Patel
« Jan Reineke
Tomorrow, timing behavior will be part of the programming ﬁ”goihao

abstractions and their hardware realizations.

See: Lee, "The Past, Present, and Future of Cyber-Physical Systems: A
Focus on Models," Sensors, 15(3), February, 2015. (Open Access)

Raffaello Sanzio da Urbino — The Athens School Image: Wikimedia Commons

