
The Internet of Important Things

Edward A. Lee
Robert S. Pepper Distinguished Professor
UC Berkeley

Keynote

Time Sensitive Networks and Applications (TSNA)
April 28-29, 2015.
Santa Clara, CA

The Context for this Talk: Cyber-Physical Systems
or The Internet of Important Things (IoIT)

Leveraging Internet
technology in cyber-
physical systems.

Lee, Berkeley 2

This Bosch Rexroth printing press is a cyber-
physical factory using Ethernet and TCP/IP
with high-precision clock synchronization
(IEEE 1588) on an isolated LAN.

Challenges:

•  Isolated networks are reliable,
predictable, and controllable. But
they lose the benefits of
connectedness.

•  Safety is the most critical design
requirement.

•  Security is essential, particularly
w.r.t. how it impacts safety.

•  Privacy (protection of data) is
required.

!"#$%&'"%()$"%*&+',-./'&%"012&'3'45%.&5-',0!""
•! #$%&'"("!"#$%&'()
•! #)*+,-./)0"("*#+',%&$)
•! 1&2,'3-$"("-'./0#)
6'&",.7*1/'&$8%
•! 456)'3-7*8"98:"*#+',%&$)
•! ;2)0)*3&8")<"82.5&"=25),>?"98:"12&'(%0#)3.245)
•! @367"+&'<)'*.02&"98:"126)7+/84#)
•! 48$027')0$"98:"9228:%+';2+<922=/8';2+"
•! 4>.+-.%353-$"98:">/=/'0'?%(%0#)
•! @367"2)00&2/93-$"98:"-/&@8%0#)'+:)!8%A'&#)
•! 12.5.%353-$"98:">/(%'?%(%0#)'+:)!8/:%&0'?%(%0#)
•! A+&0"98:"!82=8%/0'8#)
•! B.C8".0>"D&6,5./)08"98:"B/&"+%&'()!2$$%?%(%;/$)
!&&'9./'&8%
#$%&'E+7$832.5"8$8-&*8".'&"<,0>.*&0-.55$">3F&'&0-"<')*"2)*+,-./)0.5"
8$8-&*8".0>"<')*"+7$832.5"8$8-&*8:"G7&$"'&H,3'&"0&C"&0630&&'306"*)>&58"
-7.-"&*%'.2&"-&*+)'.5">$0.*328".0>".56)'3-7*32"2)*+,-./)0:"

Automotive

IoIT and CPS
Underlie much of the industrial economy

Biomedical

Military

Energy

Manufacturing

Avionics

Buildings

Schematic of a simple CPS

Lee, Berkeley 4

In CPS, “cyber” == “software” and
“physical” == “not software”. Digital
hardware sits in a gray area!

The Theme of This Talk

Determinacy

or

Better Engineering through Better Models

Lee, Berkeley 5

Sources of Nondeterminism

Lee, Berkeley 6

Physical noise Imperfect actuation

Parts failures

Unknowable delays Packet losses

Unknowable execution times

Uncontrollable scheduling

In the face of such nondeterminism, does
it make sense to talk about deterministic

models for cyber-physical systems?

Lee, Berkeley 7

 Models vs. Reality
Solomon Golomb: Mathematical models – Uses and limitations.
Aeronautical Journal 1968

Solomon Wolf Golomb (1932) mathematician
and engineer and a professor of electrical
engineering at the University of Southern
California. Best known to the general public and
fans of mathematical games as the inventor of
polyominoes, the inspiration for the computer
game Tetris. He has specialized in problems
of combinatorial analysis, number theory,
coding theory and communications.

You will never strike oil by
drilling through the map!

Lee, Berkeley 8

But this does not, in any way,
diminish the value of a map!

Lee, Berkeley 9

The Kopetz Principle

Many (predictive) properties that we assert
about systems (determinism, timeliness,
reliability, safety) are in fact not properties of
an implemented system, but rather properties
of a model of the system.

We can make definitive statements about
models, from which we can infer properties of
system realizations. The validity of this
inference depends on model fidelity, which is
always approximate.

(paraphrased)

Prof. Dr. Hermann Kopetz

Lee, Berkeley 10

Deterministic Models of Nondeterministic Systems

Physical System Model

Synchronous digital logic
Lee, Berkeley 11

Image: Wikimedia Commons

Deterministic Models of Nondeterministic Systems

Physical System Model

Instruction Set Architectures (ISAs)
Lee, Berkeley 12

Image: Wikimedia Commons
Waterman, et al., The RISC-V Instruction Set Manual,
UCB/EECS-2011-62, 2011

Deterministic Models of Nondeterministic Systems

Physical System Model

Single-threaded imperative programs
Lee, Berkeley 13

Image: Wikimedia Commons

Deterministic Models of Nondeterministic Systems

Physical System Model

Signal Signal

Differential Equations
Lee, Berkeley 14

Image: Wikimedia Commons

A Major Problem for CPS:
Combinations of these Models are Nondeterministic

Signal Signal

Lee, Berkeley 15
Image: Wikimedia Commons

A Key Challenge:
Timing is not Part of Software Semantics

Correct execution of a program in C, C#, Java, Haskell,
OCaml, Esterel, etc. has nothing to do with how long it
takes to do anything. Nearly all our computation and
networking abstractions are built on this premise.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Programmers have no map!

Lee, Berkeley 16

Lee, Berkeley 17

The Model

Lee, Berkeley 18 Image: Wikimedia Commons

The Reality
USB interface

JTAG and SWD interface

graphics
display

CAN bus interface

Ethernet interface

analog
(ADC)
inputs

micro-
controller

removable
flash

memory
slot

PWM outputs

GPIO connectors

switches
connected

to GPIO pins
speaker
connected to
GPIO or PWM

Lee, Berkeley 19

The Model is
not much more
deterministic than
the reality

The modeling
languages have

disjoint, incompatible
semantics

Lee, Berkeley 20 Image: Wikimedia Commons

System dynamics
emerges from the
physical
realization

USB interface

JTAG and SWD interface

graphics
display

CAN bus interface

Ethernet interface

analog
(ADC)
inputs

micro-
controller

removable
flash

memory
slot

PWM outputs

GPIO connectors

switches
connected

to GPIO pins
speaker
connected to
GPIO or PWM

! leading to a
“prototype and test”

style of design

The first edition of Hennessy and
Patterson (1990) revolutionized
the field of computer architecture
by making performance metrics
the dominant criterion for design.

Today, for computers, timing is
merely a performance metric.

It needs to be a
correctness criterion.

Computer Science has not completely ignored
timing!

Lee, Berkeley 21

Correctness criteria

We can safely
assert that line 8
does not execute

(In C, we need to
separately ensure that
no other thread or ISR
can overwrite the stack,
but in more modern
languages, such
assurance is provided
by construction.)

We can develop absolute
confidence in the software, in that
only a hardware failure is an excuse.

But not with regards to timing!!

Lee, Berkeley 22

Research Efforts at Berkeley
Better Engineering through Better Models
¢  PTIDES: distributed real-time software

l  Deterministic timing of distributed CPS

¢  PRET machines
l  Deterministic timing at the processor level

¢  Accessors
l  Principled composition of networked components

¢  Open-source software
l  Ptolemy II

¢  Model-based design (iCyPhy)
l  Interfaces (e.g. FMI), contracts, aspects, …

¢  Semantics
l  Timed models of computation,

Lee, Berkeley 23

Lee, Berkeley 24

Focus first on the
Network
Interactions

We also developed deterministic models for distributed
real-time software, using a technique called PTIDES.

Our Proposal: Discrete-Event Semantics +
Synchronized Clocks

Lee, Berkeley 25

DE models have been widely used simulation, hardware
design, and network modeling. design, and network modeling.

Using Discrete Event Semantics in
Distributed Real-Time Systems

¢  DE is usually used for simulation (HDLs, network simulators, …)
¢  Distributing DE is done to accelerate simulation.

We are using DE for distributed real-time software, binding time
stamps to real time only where necessary.

PTIDES: Programming Temporally Integrated Distributed Embedded
Systems

Y. Zhao, E.A. Lee, J. Liu, “A Programming Model for Time-Synchronized Distributed
Real-Time Systems,” Proc. Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE, 2007, pp. 259 - 268.

Ptides: First step:
Time stamps bind to real time at sensors and actuators

Time stamp value is a
deadline

Time stamp value is
time of measurement

Actors wrap
sensors

Actors wrap
actuators

Ptides: Second step:
Time-stamped messages.

Messages carry time
stamps that define their

interleaving

Actors specify
computation

Ptides: Third step:
Network clock synchronization

GPS, NTP, IEEE 1588,
TSN, time-triggered
busses, ! they all work.
We just need to bound
the clock synchronization
error.

Assume bounded
clock error

Assume bounded
clock error e

Assume bounded
clock error e

Clock synchronization
gives global meaning to

time stamps

Messages are
processed in time-
stamp order

Global latencies between sensors and actuators become
controllable, which enables analysis of system dynamics.

Ptides: Fourth step:
Specify latencies in the model

Model includes
manipulations of time
stamps, which control

latencies between
sensors and actors

Actuators may be
designed to interpret
input time stamps as
the time at which to

take action. Feedback through the physical world

Ptides: Fifth step
Safe-to-process analysis (ensures determinacy)
Safe-to-process analysis guarantees that events are processed in time-stamp
order, given some assumptions.

Assume bounded
network delay d

Assume bounded
clock error

Assume bounded
clock error e

An earliest event with
time stamp t here can
be safely merged when
real time exceeds
t + s + d + e – d2

Assume bounded
clock error e

Assume bounded
sensor delay s

Application
specification of

latency d2
Technical:
Need to have
deadlines on
network
interfaces, to
guarantee
time-stamp
order
irrespective
of execution
times of
actors.

 So Many Assumptions?
Recall Solomon Wolf Golomb:

All of the assumptions are achievable with today’s
technology, and in fact are requirements anyway
for hard-real-time systems. The Ptides model
makes the assumptions explicit.

Violations of the assumptions are detectable as
out-of-order events and can be treated as faults.

You will never strike oil by
drilling through the map!

Lee, Berkeley 32

Handling Faults

A “fault” is a violation of assumptions in the model.

! after an event here
with a later time
stamp has been
processed, then one
or more assumptions
was violated.

If an event
arrives here with
an earlier time

stamp!

As with any
model, the
physical
world may
not conform
to its rules.
Violations
should be
treated as
faults.

Ptides Schedulability Analysis
Determine whether deadlines can be met

The problem turns out to be decidable for a large class of models.

Google Spanner

Google
independently
developed a
very similar
technique and
applied it to
distributed
databases.

Lee, Berkeley 35

 Proceedings of OSDI 2012

Google Spanner

Lee, Berkeley 36

Distributed database with redundant
storage and query handling across data
centers.

Record update comes
in. Time stamp t1.

Query for the same record
comes in. Time stamp t2.

Google Spanner

Lee, Berkeley 37

Record update comes
in. Time stamp t1.

Query for the same record
comes in. Time stamp t2.

If t2 < t1, the query response should be
the pre-update value. Otherwise, it
should be the post-update value.

Google Spanner: When to Respond?

Lee, Berkeley 38

Record update comes
in. Time stamp t1.

Query for the same record
comes in. Time stamp t2.

When the local clock time exceeds
t2 + e + d, issue the current record
value as a response.

Synchronize clocks
with error bound e.

Communication
latency bound b.

Google Spanner: Fault!

Lee, Berkeley 39

Record update comes
in. Time stamp t1.

Query for the same record
comes in. Time stamp t2.

If after sending a response, we receive
a record update with time stamp t1 < t2
declare a fault. Spanner handles this
with a transaction schema.

Synchronize clocks
with error bound e.

Communication
latency bound b.

Ptides in
Ptolemy II

Open-source modeling and simulation
environment, with Ptides support created
by Patricia Derler.

Lee, Berkeley 40

http://ptolemy.org

See Book

See
!! Chapter 8:

Discrete-Event Models
!! Chapter 10:

Modeling Timed Systems

Free download at:
http://ptolemy.org/systems

Lee, Berkeley 41 41

Lee, Berkeley 42

But what about the
Cyber-Physical Boundary?

Research Efforts
Better Engineering through Better Models
¢  PTIDES: distributed real-time software

l  Deterministic timing of distributed CPS

¢  PRET machines
l  Deterministic timing at the processor level

¢  Accessors
l  Principled composition of networked components

¢  Open-source software
l  Ptolemy II

¢  Model-based design (iCyPhy)
l  Interfaces (e.g. FMI), contracts, aspects, …

¢  Semantics
l  Timed models of computation,

Lee, Berkeley 43

The hardware out of which we build computers
is capable of delivering “correct” computations
and precise timing!

The synchronous digital logic
abstraction removes the
messiness of transistors.

! but the overlaying software
abstractions discard the timing
precision.

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

Lee, Berkeley 44

PRET Machines – Giving Programs the
Capabilities their Hardware Already Has.

!! PREcision-Timed processors = PRET
!! Predictable, REpeatable Timing = PRET
!! Performance with REpeatable Timing = PRET

= PRET +
Computing

With time

// Perform the convolution.
for (int i=0; i<10; i++) {
 x[i] = a[i]*b[j-i];
 // Notify listeners.
 notify(x[i]);
}

http://chess.eecs.berkeley.edu/pret

Lee, Berkeley 45

Major Challenges
and existence proofs that they can be met

¢  Pipelines
l  fine-grain multithreading

¢  Memory hierarchy
l  memory controllers with controllable latency

¢  I/O
l  threaded interrupts, with bounded effects on timing

Lee, Berkeley 46

Major Challenges, Yes, but
Leading to Major Opportunities

¢  Improved determinism
¢  Better testability
¢  Reduced energy consumption
¢  Reduced overdesign (cost, weight)
¢  Improved confidence and safety
¢  Substitutable hardware

Lee, Berkeley 47

PRET Publications
PRET ISA Realizations:
¢  PRET1, Sparc-based

l  [Lickly et al., CASES, 2008]
¢  PTARM, ARM-based

l  [Liu et al., ICCD, 2012]
¢  FlexPRET, RISC-V-based

l  [Zimmer et al., RTAS, 2014]

Lee, Berkeley 48

PRET Principle:
¢  The case for PRET

l  [Edwards & Lee, DAC 2007]
¢  PRET ISA extensions

l  [Edwards at al., ICCD 2009]
¢  Temporal isolation

l  [Bui et al., DAC, 2011]
¢  Design challenges

l  [Broman et al., ESLsyn, 2013]
¢  Cyber-physical systems

l  [Lee., Sensors, 2015]

PRET for Security:
¢  Eliminating side-channel attacks

l  [Lie & McGrogan, Report 2009]

PRET Applications:
¢  Control systems

l  [Bui et al., RTCSA 2010]
¢  Computational fluid dynamics

l  [Liu et al., FCCM, 2012]

PRET Memory Systems:
¢  DRAM controller

l  [Reineke et al., CODES+ISSS 2011]
¢  Scratchpad managment

l  [Kim et al., RTAS, 2014]
¢  Mixed criticality DRAM controller

l  [Kim et al., RTAS 2015]

One Last Comment…
Model Fidelity

¢  In science, a good model matches well the behavior of
the physical world.

¢  In engineering, a good physical implementation
matches well the behavior of the model.

Lee, Berkeley 49

In engineering, model fidelity is a two-way street!

For a model to be useful, it is necessary
(but not sufficient) to be able to be able to

construct a faithful physical realization.

A Model

Lee, Berkeley 50

A Physical Realization

Lee, Berkeley 51

Model Fidelity

¢  To a scientist, the model is flawed.

¢  To an engineer, the physical realization is flawed.

I’m an engineer…
Ptides and PRET offer less flawed physical realizations.

Lee, Berkeley 52

Determinism?

¢  The real world is highly unpredictable.
¢  So, are deterministic models useful?

l  Is synchronous digital logic useful?
l  Are Instruction-Set Architectures useful?
l  Single-threaded imperative programs?
l  Differential equations?

Lee, Berkeley 53

For a model to be useful, it is necessary
(but not sufficient) to be able to be able to

construct a faithful physical realization.

Determinism?

Deterministic models do not eliminate the need for for
robust, fault-tolerant designs.

In fact, they enable such designs, because they make it
much clearer what it means to have a fault!

Lee, Berkeley 54

Conclusions

Today, timing behavior in computers emerges
from the physical realization.

Tomorrow, timing behavior will be part of the programming
abstractions and their hardware realizations.

Raffaello Sanzio da Urbino – The Athens School

Lee, Berkeley 55

Image: Wikimedia Commons

Special Thanks to:
•! Particia Derler
•! John Eidson
•! Slobodan Matic
•! Hiren Patel
•! Jan Reineke
•! Yang Zhao
•! Jia Zou

See: Lee, "The Past, Present, and Future of Cyber-Physical Systems: A
Focus on Models," Sensors, 15(3), February, 2015. (Open Access)

