
Synthesis of task and message activation models in real-time distributed
automotive systems∗

Abstract

Modern automotive architectures support the execution
of distributed safety- and time-critical functions on a com-
plex networked system with several buses and tens of ECUs.
Schedulability theory allows the analysis of the worst case
end-to-end latencies and the evaluation of the possible ar-
chitecture configurations options with respect to timing con-
straints. We present an optimization framework, based on
an ILP formulation of the problem, to select the communica-
tion and synchronization model that exploits the trade-offs
between the purely periodic and the precedence constrained
data-driven activation models to meet the latency and jitter
requirements of the application. We demonstrated its effec-
tiveness by optimizing a complex automotive architecture.

1. Introduction

Past work in electronics/controls/software-based (ECS)
vehicle architectures and function development has been
component-focused, each function being usually deployed
to a single control module. Recent architectures feature
networking of control modules within application domains
(e.g. power train) as well as across domains (e.g. power
train and chassis). The implications are an increased num-
ber of distributed time-critical functions and multiple tasks
in execution on each ECU. Distributed architectures sup-
porting the execution of (hard) real-time applications are
also common in avionics, factory and plant control sys-
tems. For building these systems with a design-time guaran-
tee that the timing constraints are met, different design and
scheduling methodologies are used. Avionics controls, for
example, are often built based on static, time-driven sched-
ules. Because of resource efficiency, many automotive con-
trols are designed based on run-time priority-based schedul-
ing of tasks and messages. Examples of standards support-
ing this scheduling model are the OSEK operating system
standard [7]and the CAN [2] bus arbitration model. At the
interface between any two resource domains, and very often
also at the interface between two abstraction layers (such
as, for example, the application and the middleware lay-

∗This work has been supported by General Motors and by CHESS.

ers), different interaction models may be implemented. The
simplest interaction model consists of the purelyperiodic
activationmodel, where all interacting tasks are activated
periodically and communicate by means of asynchronous
buffers based on a freshest value (non time-deterministic)
semantics. Similarly, message transmission is triggered pe-
riodically and each message contains the latest values of the
signals that are mapped into it. Another possible activation
model is thedata-driven activation, where task executions
and message transmissions are triggered, respectively, by
the arrival of the input data and by the availability of the sig-
nal data. The periodic activation model has the advantage of
higher possible schedulability on all resources, but suffers
from possibly very high worst-case latencies on the end-to-
end computations. The data-driven activation model, on the
other hand, provides for much shorter end-to-end delays and
time determinism in the communication, but it may result in
time intervals with bursty activations of tasks and messages,
hence high instantaneous load on some resources and possi-
bly very high latencies or even impossibility of scheduling
for low priority end-to-end computations.

The two competing models of periodic activation with
asynchronous communication and data-driven activation
are reconciled by a new conceptual framework for the
analysis of distributed chains of computations, based on
network calculus [3] and its application for evaluating the
propagation of event models [4]. In [5] this model is used
for distributed schedulability analysis, where the system can
be described as an arbitrary mix of data-driven and peri-
odic asynchronous interaction models. Other papers, such
as [9], focused on providing lock-free and wait-free com-
munication mechanisms that ensure deterministic delays in
the implementation of models integrating both event and
time triggered subsystems. Later, the mechanism has not
only been extended to EDF scheduled systems, but the au-
thors also provided optimal (tight) bounds for buffer allo-
cation in the implementation of Rate Transition blocks for
many-to-one communication channels [10]. Optimization
of buffer implementation is also the objective of [1]. Finally,
the trade offs between a purely periodic activation model
and an event-driven activation semantics are explored in [6]
with respect to the composability of subsystems scheduled
according to the two models. However, even if these papers

1

provide analysis procedures with increasing speed and pre-
cision, the synthesis problem is scantly analyzed: the only
approach is provided by [8], where the use of genetic al-
gorithms is proposed for optimizing priority and period as-
signments with respect to a number of constraints, including
end-to-end deadlines and jitter.

Our work is performed in the context of the design of
distributed software architectures for next-generation auto-
motive controls, where the application performance require-
ments impose constraints on end-to-end latencies in the exe-
cution of the control functions. We propose a novel synthe-
sis procedure, based on approximate timing analysis to opti-
mize the definition of the activation model in the functional
network with respect to the latency constraints. We demon-
strate its effectiveness in the tuning of a complex real-world
automotive architecture.

2. Definitions, Notation and Assumptions

Our model is adataflow of tasks, represented with a
Directed Acyclic Graph. The model is a tuple{V, E ,R},
whereV is the set of vertices,E the set of edges, and
R = {R1, . . . , Rz} is the set of shared resources support-
ing the execution of the tasks (CPUs) and the transmission
of the messages (bus).
V = {o1, . . . , on} is the set of objects implementing the

computation and communication functions of the system.
oi can be a task or a message and is characterized by a max-
imum time requirementCi and a resourceRoi that it needs
to execute or for its transmission. All objects are scheduled
according to their priority;πi is the priority ofoi and in-
dexes are assigned by decreasing priority levels;ri is the
worst case response time ofoi, from the activation of the
object to its completion in case it is a task, or its arrival at
the destination node in case it is a message.wi is defined
as the worst case time spent from the instant the job is re-
leased with maximum jitterJi to its completion or arrival.
An objectoi has conceptually one or moreinput portsand
one or moreoutput portsthat are used to exchange data and
optionallyactivation signalsor events. Each object runs at
a base periodTi (and optionally, jitterJi). It reads its inputs
at the time it starts executing, if it is a task, or it samples
the incoming signal values and it is enqueued at the activa-
tion time in case it is a message. At the end of its execution
or transmission, it delivers its results (task) or its data con-
tent (message) and, where required, activation signals on its
output ports.
E = {l1, . . . , lm} is the set oflinks. A link li = (oh, ok)

connects the output port of objectoh (the source) to the in-
put port of objectok (the sink). Alternatively, a link may be
labeled with the indexes of the source and destination task
as in lh,k = (oh, ok). A link li may carry the activation
signal produced when the source object completes its exe-
cution or transmission and instantaneously received on the
input port of the sink. However, a different communication
and synchronization model is possible, where the sink is ac-

tivated by a periodic timer and, when it executes, reads the
latest value that was transmitted over the link (and stored
into a buffer). The source and the sink of linkli are also
denoted bysrc(li) andsnk(li), respectively.

When an object is activated by the completion of a pre-
decessor we define anevent-drivenactivation model. If an
object is activated by a single completion event, then the
only condition is that its period must be an integer mul-
tiple of the predecessor object period. In this case, the
activation semantics is of one everyk signals. We de-
fine a less restrictive activation semantics by allowing an
object to be activated by multiple completion events. In
this case, the activation is of type AND. The only allowed
case for multiple activation events from multiple incom-
ing links is when the links are connected to predecessor
objects having periods that are integer dividers of the tar-
get object period, have a unique common predecessor, and
are scheduled on the same resource. In this case, we de-
fine a set of link groupsG = {lg1, . . . , lgk} where each
link grouplgi = {li0 , . . . liki

} has the following properties,
snk(lij

) = snk(lil
) andR(src(lij

)) = R(src(lil
)) for any

link pair lij
, lil

∈ lgi. If τj1 = src(lij
) andτj2 = snk(lij

)
then kTj1 = Tj2 for some integerk. Finally, ∀lgi, ∃!op

such that∀lj,k ∈ lgi there exists a linklp,j ∈ E . and there
is no other incoming link tooj . If all the links in a group
carry an activation signal, then the source objects must be
activated at the same time or they must all be activated by
a completion event. These last conditions do not apply to
singleton groups.G(ok) is the set of link groups that are
incoming took. For example, in Figure 1,l1, l2, l3 belong
to grouplg1, l4, l5 to lg2 andl6 to lg3 consisting of only one
link. Hence, an object can be activated by a periodic trigger,
by a signal coming from a single predecessor object or by
the AND composition of signals coming from a single link
group. In this last case, the object is actually activated by
the completion of the lowest priority objector in the group
lgi, which is calledgroup representativeor = rep(lgi).

2

1
l3

l2

l1

l4

l5

l6 lg
3

lg
2

o
k

G(o) = {lg , lg , lg }k 1 2 3

R 1

R

lg

Figure 1. Example of link groups.
An external eventresults from the execution of a virtual

objectoi with no input links, representing the environment.
External events can beperiodic with period Ti and jitter
Ji, or sporadicwith a minimum interarrival time, equally
denoted byTi.

An outputobjectoj represents data consumption by the

2

environment, e.g. when the system updates an actuator.
A functional chainor Path from oi to oj , or Pi,j , is an

ordered sequenceP = [l1, . . . , ln] of links that, starting
from oi = src(l1), reachoj = snk(ln) crossing a unique
sequence ofn + 1 objects such thatsnk(lk) = src(lk+1).
oi is the chain’s source andoj its sink.

When task and messages are activated periodically and
communicate on a freshest value semantics, several defin-
itions of end-to-end latency (and the associated deadline)
are possible. In our work, the end-to-end latencyLi,j asso-
ciated to a pathPi,j is defined as the largest possible time
interval that is required for the change of the input at one
end of the chain to be propagated to the last task at the other
end of the chain, whatever is the state of the tasks in the path
and regardless of the fact that some intermediate result may
be overwritten before it is read.

We assume in this paper thatthe application can tolerate
the semantic variation when changing from one synchro-
nization model to the other.In many control applications,
the nondeterminism in time introduced by the periodic ac-
tivation model and the jitter introduced by the event-driven
activation can both be tolerated within acceptable ranges.

2.1. Periodic activation model

In the periodic activation model (Figure 2), the release
jitter is zero and the worst case end-to-end latency is com-
puted for each path by adding the worst case response times
and the periods of all the objects in the path (rk = wk).

L(i,j) =
∑

k:ok∈P (i,j)

(Tk + rk)

1

o1

o7o5
o4 R4

o6o2

o2

ro 3

ro 4

ro 2

R3

2,4

R R2

l 1

o3

o4

o3

T2

T3

T4L

Figure 2. Periodic activation model.
Due to unsynchronized timers, in the worst case (Figure

2) the external event arrives right after the completion of the
first instance of tasko2 with minimum (negligible) response
time. The event data will be read by the task on its next
instance and the result will be produced after its worst case
response time, that is,T2 + r2 time units after the arrival
of the external event. The same reasoning applies to the
execution of the following objects.

2.2. Data driven activation model

In the data driven activation model (an example in Fig-
ure 3), if we assume the same activation period for all the
nodes that are activated in a computation chain, then for all
the intermediate neighboring nodesoi → oj it is clearly

ri = Jj . The worst case end-to-end latency can be com-
puted for each path by adding the worst case queuing and
execution/transmission times of all the objects in the path.

L(i,j) =
∑

k:ok∈P (i,j)

wk

4

o1

o7o5
o4R2 R4

o6

R3

R1

o3

o2

o4

w
4

w
3

w
2

L2,4

l 1

o2
o3

J3

J

Figure 3. Data driven activation model.
In this case, the worst case jitter of the activation events

grows larger as the computations propagate along the chain.
The latency is typically lower if compared with the previous
case, but the large jitter in the activation of the intermediate
tasks and messages means that they may be activated ac-
cording to bursty patterns of events. These bursts of high
priority tasks and messages increase the response time of
the lower priority objects that share resources with them.

2.3. Processor scheduling

The worst case response time for a periodic taskτi, ac-
tivated with maximum jitterJi in a generic preemptive and
priority based scheduled system is given by:

wi(q) = (q + 1)Ci +
∑

j∈hp(i)

⌈
wi(q) + Jj

Tj

⌉
Cj

wi = maxq{wi(q)− qTi}
ri = Ji + wi

for all q = 0 . . . q∗ until ri(q∗) ≤ Ti

(1)

wherej ∈ hp(i) means all the object indexes such that
πj ≥ πi andRoi = Roj . The need of evaluating the first
q instances inside the busy period is caused by the uncer-
tainty about the instance which causes the worst case re-
sponse time. However, a lower bound on the worst case
response time can be obtained by restricting the computa-
tion to the first instance. This bound is tight in caseri ≤ Ti.

wi = Ci +
∑

j∈hp(i)

⌈
wi + Jj

Tj

⌉
Cj

ri = Ji + wi

(2)

Linear upper and lower bounds for the solution to the pre-
vious fixed point equation can be obtained from

w↑i = Ci +
∑

j∈hp(i)

(
w↑i + Jj

Tj
+ 1)Cj (3)

w↓i = Ci +
∑

j∈hp(i)

(
w↓i + Jj

Tj
)Cj (4)

3

19

4 5

ECU2

4 4

4

4

48 4

40 ms

15 ms

30 ms
8 4 6 9

ECU1 ECU3

12 6

τ 1

78 6

9 1311 12

2m

m

m

m

m

τ

τ

τ

τ

τ

τ

τ10

16

15

17

14

o

o

o

o

o

o

CAN

18

3

Figure 4. Example graph.

2.4. Bus scheduling
In this paper we assume thatmessage objects are trans-

mitted over CAN buses. The evaluation of the worst-case
latencies for the messages follows the same rules for the
worst-case response time of the tasks, with the exception
that an additional blocking termBi must be included in
the formula in order to account for the non preemptability
of CAN frames and the transmission time of the message
cannot be preempted. The blocking termBi for a generic
messageoi can be computed as the largest worst-case trans-
mission time of any frame having a priority lower thanπi

and sharing the same bus resource (wqi > 0 is the queuing
delay part ofwi, without the transmission time).

wqi(q) = Bi + qCi +
∑

j∈hp(i)

⌈
wqi(q) + Jj

Tj

⌉
Cj

wi = maxq{Ci + wqi(q)− qTi}
ri = wi + Ji

for all q = 0 . . . q∗ until ri(q∗) ≤ Ti.

(5)

A lower bound onwi andri can be computed by only
considering the first instance (q = 0) and, similar to proces-
sor scheduling, the response times of messages can be ap-
proximated by linear functions of the jitter variables.

3. An example
Figure 4 represents a sample system consisting of 3

ECUs, 1 CAN bus, 8 tasks and 5 messages (priorities, pe-
riods and worst-case execution times as in the following ta-
ble.) Three computation paths are defined, ending respec-
tively in objectso15, o17 ando19.

periodic event− driven

Object πi Ti Ci ri Li Ji wi ri

τ1 13 15 4 4 4 0 4 4
m2 12 15 4 8 27 4 8 12
τ3 11 15 8 8 50 12 8 20
m4 10 15 4 12 77 20 12 32
τ5 9 15 4 8 100 32 8 40
τ6 8 40 6 14 14 0 30 30
m7 7 40 4 16 66 30 28 58
τ8 6 40 12 20 130 58 30 88
τ9 5 30 8 28 28 0 60 60

m10 4 30 4 28 82 60 44 104
τ11 3 30 6 28 140 104 60 164
m12 2 30 4 28 198 164 88 252
τ13 1 30 9 28 260 252 60 312

The last four columns explain the tradeoffs in the analysis.
In the case all objects are activated periodically and com-
municate by means of asynchronous buffers, the latencies
for the three paths, assuming no sampling delay on the first
task are shown in the fourth to last column. If, however,
the activation of the objects is always driven by the comple-
tion of their predecessor, then the latencies are much better
for the highest priority paths, but are significantly larger for
the lowest priority path ending ino19. Although the jitter
analysis is characterized by pessimism (relative offset in-
formation and best case response times are not considered
in the analysis), the results show the tradeoff between the
two models and the opportunity for design optimization.

If the deadlines are defined asd14,15 = 80, d16,17 =
120 and d18,19 = 280, then in neither of the two cases,
the deadlines can be guaranteed. However, if the activation
model is defined in such a way that messagesm2, m4 and
m7 are activated periodically, then the worst-case latencies
areL14,15 = 70, L16,17 = 100 andL18,19 = 208, with all
the deadline constraints satisfied.

Calculating the worst-case response time of tasks and
messages means solving a least fixed-point equation. In
some cases, the problem may be tentatively approached by
using linear upper and lower bounds for the response time
of the first object instance in the critical instant hypothesis
(which is itself a lower bound of the real value) as in (3),
(4).

The question is to determine the amount of pessimism
(and optimism) introduced by the linear approximations.
The data of the example show that the linear approxima-
tions become progressively less accurate when the prior-
ity of the objects in the chain is lowered. For exam-
ple, for the event-driven activation model, the upper and
lower bound latencies for the three paths are, respectively,
{44.36, 130.86, 507.03} and{38.91, 79.43, 294.96}. How-
ever, a linear combination of the linear upper and lower
bounds can be sufficiently accurate to be used as an estima-
tor of the actual end-to-end latencies. We will demonstrate
the effectiveness of the linear approximation in the follow-
ing real design case of an automotive system architecture.

4. MILP Solution

A mixed integer linear programming formulation can be
used to find a solution with respect to the deadline con-
straints on the paths. In addition tori, Ji, wi, Ls,t we define
yh,k as

yh,k =
{

1, if the activation ofok is event-driven byoh

0, otherwise

4.1. Feasibility Constraints

The feasibility constraints are modeled according to the
rules for computing the jitter, the response times and the
latencies at all nodes in the graph.

4

The jitter inheritance rule is encoded as follows. Con-
sider a scheduled objectok with multiple incoming link
groups. We are only interested in those groups (links) that
can possibly carry an activation signal (for all the other links
lj,k it is clearlyyj,k = 0).

We enforce the condition that all the links in one group
assume the same activation model. This means that

yr,k = ys,k (6)

for all the pairslr,k, ls,k belonging to the same grouplgh.
The equivalence must be extended to all the incoming links
to the source objects of the group links, in case periodic
objects cannot be activated at the same time.

If ok has more than one incoming link group, only one of
the group representatives can provide its activation signal.
For each objectok it must be

∑

lgh∈G(ok)

yr,k ≤ 1 whereor = rep(lgh).

If all group links have a periodic activation (allyr,k = 0)
thenok is activated periodically andJk = 0. Otherwise,
Jk will be equal to the response time of the representative
object in the group from which it gets the activation signal.
The two alternative ways of computingJk can be encoded
in a pair of constraint sets leveraging a typical formulation
in use in integer linear programming.

A very large constant valueM is used to nullify one or
more constraints by making them always true depending on
the value of a set of binary variables (yr,k in our case).

Jk ≤
∑

lgh∈G(ok)

yr,k ×M whereor = rep(lgh) (7)

0 ≤ Jk (8)

If all yr,k = 0, then (7) and (8) constrain the value ofJk

to 0. If yr,k = 1 for one of the incoming link groups, then
the first inequality is redundant and the following two set of
constraints (a pair for eachlgh ∈ G(ok)) makeJk equal to
the worst-case response timerr of the predecessor objector

that is the representative of the activating group.

Jk ≤ rr + (1− yr,k)×M whereor = rep(lgh) (9)

rr − (1− yr,k)×M ≤ Jk whereor = rep(lgh) (10)

If ok has only one incoming link from objectoh that can
possibly provide an activation signal, then a simpler set of
constraints replaces (7), (9), and (10)

rh + (yh,k − 1)×M ≤ Jk (11)

Jk ≤ rh (12)

Jk ≤ yh,k ×M (13)

The worst-case response timerh for objectoh can be com-
puted as

rh = wh + Jh

Because of the non-linearity and even non convexity of
the fixed point formula that provides the exact value ofwh,
a linear combination with coefficientα ∈ [0, 1] of the linear
upper (3) and lower bounds (4) is used.

wh = Ch +
∑

ok∈hp(h)

(
wh + Jk

Tk
+ α)Ck (14)

whereα is chosen as to minimize the following mean square
fit function, computed for ally = 0 and assumingα does
not depend significantly on the value of they variables.

∑

Pr∈P
(α ∗ L↑Pr

+ (1− α) ∗ L↓Pr
− LPr)

2 (15)

whereL↑Pr
andL↓Pr

are the latencies computed on the path
Pr using the upper and the lower linear bound respectively.

Finally, for computing the end-to-end latencies, a vari-
ablezi,j is defined for each linkli,j to express the link con-
tribution to the end-to-end latencies of all the paths contain-
ing it. The variablezi,j is equal towj if the link li,j carries
an activation event (first two of the following constraints.)
Otherwise,zi,j will be equal towj + Jj + Tj , considering
the fact thatoj may be activated by some other signal with
release jitterJj . Hence, the contribution to the latency de-
pends on the value ofyi,j and the usual formulation is used
to express the alternative.

wj ≤ zi,j (16)

zi,j ≤ wj + (1− yi,j)×M (17)

zi,j ≤ wj + Jj + Tj (18)

wj + Jj + Tj − yi,j ×M ≤ zi,j (19)

The end-to-end latencyLs,t associated with pathPs,t is
computed as

Ls,t =
∑

lu,v∈Ps,t

zu,v

and should not exceed its deadline.

Ls,t ≤ ds,t.

4.2. Objective Functions

Based on the above constraints, in addition to get a fea-
sible solution, which satisfies the deadline constraints, we
have the flexibility to get the optimal solution with respect
to different cost functions. The minimization of the number
of event buffers is expressed by

maximize
∑

lgh∈G
yj,k, whereoj = rep(lgh)

Other interesting cost functions are the sum of the end-
to-end latencies, or the sum of the positive differences be-
tween the end-to-end latency of each path and the corre-
sponding deadline over all the paths in the system. In the

5

second objective function we may assign a penalty for the
violation of a specific path deadline through a weightγpr

.
∑

pr∈P Lpr

∑
pr∈P γpr ∗Max(Lpr − dpr , 0)

4.3. Optimization of the example graph

For the example in Figure 4, we used the objective func-
tions defined in the previous section. The results are shown
in the following table whereP1 = o14 → o15, P2 = o16 →
o17, P3 = o18 → o19 and the objective functions areF1 =
minimization of the number of event buffers,F2 = mini-
mization of the sum of the path latencies,F3 = minimiza-
tion of the sum of weighted lateness for all the paths ex-
ceeding the deadline andF4 = minimization of the lowest
priority path latency.

Objective P1 P2 P3 periodic objectsevent objects
F1 55 84 304 m4 remainings
F2 70 58 266 τ3, m4, τ10 remainings
F3 55 112 236 m2, m7 remainings
F4 70 98 168 τ3, m4, τ8 remainings

5. Case study and Conclusions

The paper presented a novel synthesis framework pro-
cedure, based on approximate timing analysis to optimize
the definition of the activation model in the functional net-
work with respect to the latency constraints. The proposed
approach has been applied to the architecture configuration
of an experimental vehicle. The architecture consists of 38
nodes connected by 6 CAN buses. A total number of 100
tasks are executed on the ECU nodes, supporting from 1
to 22 tasks each, and 322 messages are exchanged over the
six buses, with a minimum and maximum number of mes-
sages of, respectively, 32 and 145 for each group. The num-
ber of links in the dataflow graph is 507. Bus utilizations
are between 30% and 50% and CPU utilizations are esti-
mated between 5% and 60%. Ten pairs of endpoints have
been identified in the graph as sources and destinations of
computation paths with deadlines. An analysis of the graph
found 184 paths between these 10 pairs of nodes and dead-
lines ranging from 100 ms to 300 ms have been defined for
them.

If all tasks and messages are activated periodically, the
end-to-end latencies largely exceed (in the worst case) the
desired deadlines. For example, a worst-case latency of
627ms was found for paths with deadline 300 and 302.83
for paths with deadline 100. Of the 507 links, 313 are sub-
ject to optimization, including link groups. The sum of the
end-to-end latencies was used as the metric function. The
problem encoding results in 1673 variables, 313 of which
are binary, and 3989 linear constraints. The time required
to solve the problem is always close to 0.25 seconds (1.4
GHz PC).

After the first optimization round, the end-to-end laten-
cies were much closer to the desired deadlines, but still
not feasible for 12 of the 148 paths. It was necessary to
change the period of one more task (from 12.5 to 10) and
one more message (from 100 to 80), making it shorter so
that an event driven activation could be defined on the cor-
responding incoming and outgoing links. After another op-
timization round, all the latencies became lower than the
deadlines, with the largest value of 265 for paths with dead-
line 300, 190 for paths with deadline 200 and 97 for paths
with deadline 100. The final result of the optimization was
the definition of 115 links and 3 groups (140 total links)
to carry an event-driven activation signal. The value ofα
changed from 0.239, at the start, when ally = 0 to 0.224 for
the final solution. When repeating the optimization proce-
dure with the new value ofα, the same result was obtained,
therefore supporting the validity of our linear approxima-
tion assumption.

Besides the assignment of priorities to tasks and mes-
sages, or the definition of task and message periods, another
possible objective for the synthesis of the software architec-
ture is finding the optimal placement of the tasks on the
ECUs. However, these optimization variables are not con-
sidered in this paper and will be the subject of future work.

References

[1] M. Baleani, A. Ferrari, L. Mangeruca, and A. S. Vincentelli.
Efficient embedded software design with synchronous mod-
els. In Proceedings of the 5th ACM EMSOFT conference,
2005.

[2] R. Bosch. Can specification, version 2.0. Stuttgart, 1991.
[3] J.-Y. L. Boudec and P. Thiran. Network calculus - a theory

of deterministic queuing systems for the internet. InLNCS
2050, Springer, 2001.

[4] S. Chakraborty and L. Thiele. A new task model for stream-
ing applications and its schedulability analysis. InIEEE
DATE, Munich, Germany, March 2005.

[5] A. Hamann, R. Henia, M. Jerzak, R. Racu, K. Richter, and
R. Ernst. SymTA/S symbolic timing analysis for systems.
available at http://www.symta.org, 2004.

[6] S. Matic and T. Henzinger. Trading end-to-end latency for
composability. InProceedings of the 26th IEEE RTSS, 2005.

[7] OSEK. Osek os version 2.2.3 specification. available at
http://www.osek-vdx.org, 2006.

[8] R. Racu, M. Jersak, and R. Ernst. Applying sensitivity
analysis in real-time distributed systems. InProceedings of
the 11th IEEE RTAS, pages 160–169, San Francisco (CA),
U.S.A., Mar. 2005.

[9] N. Scaife and P. Caspi. Integrating model-based design and
preemptive scheduling in mixed time- and event-triggered
systems. In6th Euromicro ECRTS, July 2004.

[10] S. Tripakis, C. Sofronis, N. Scaife, and P. Caspi. Semantics-
preserving and memory-efficient implementation of inter-
task communication on static-priority or edf schedulers.
Proceedings of the 5th ACM EMSOFT conference, 2005.

6

